Multi-Corner, Energy-Delay Optimized, NBTI-Aware Flip-Flop Design

Hamed Abrishami,  Safar Hatami,  Massoud Pedram
University of Southern California


Abstract

With the CMOS transistors being scaled to sub 45nm and lower, Negative Bias Temperature Instability (NBTI) has become a major concern due to its impact on PMOS transistor aging process and the corresponding reduction in the long-term reliability of CMOS circuits. This paper investigates the effect of NBTI phenomenon on the setup and hold times of flip-flops. First, it is shown that NBTI tightens the setup and hold timing constraints imposed on the flip-flops in the design. Second, an efficient algorithm is introduced for characterizing the codependent setup and hold time (CSHT) contours. Third, we introduce a multi corner optimization problem to minimize the energy-delay product of the flip-flops. The optimization relies on mathematical programming to find the best transistor sizes. Finally, we apply our proposed optimization formulation on True Single-Phase Clock (TSPC) and Master-Slave flip-flops (MSFF) and show the simulation results.