
Reliability Challenges in Sub 20nm y g
Technologies
Tanya Nigam
Distinguished Member of Technical Staff

Motivation

Why do we worry about CMOS reliability?

Performance

Reliability Cost

CMOS technologies are designed to maximize performance 

Reliability

at reduced cost increasing pressure on reliability

The challenge is finding the optimum trade off to be 
titi i th k t lcompetitive in the market place

 If you are too conservative you leave money on the table !!! 

 If you are too aggressive you may risk your business !!!
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Tinv Scaling  Challengeg g

 Tinv Scaling severely limited due to BTI  for sub 20 nm 
nodes.

Reliability aware design can alleviate the challenge
3
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The Convergence is HereThe Convergence is Here

Communication NavigationConvergence g
of communications, 

computing, and consumer 
technologies

Computing Imaging

Devices are smaller and cheaper 
th i i d

Entertainment Video

than ever imagined. 
And now these devices are 

connected to the internet and run 
applications in the cloud.Entertainment Videoapplications in the cloud.
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Convergence Powered by Semiconductors

Wireless segment overtakes PCs in 2011g
 Becoming world’s leading market for semiconductor purchasing by OEMs

 Sign of a fundamental shift from PCs to mobile devices

D i b b i l f t h d t bl t Driven by booming sales of smartphones and tablets
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Application specific ‘tuned’ Solutions
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Role of Reliability Engineers in Technology 
DevelopmentDevelopment

Technology TechnologyTechnology 
Definition

Technology 
Development Production

 Define Technology 
Vmax and Tinv
 Overlay and 

V i ti f i CD

 Provide Feedback 
to the development 
line on scaling

 Enable reliability 
support for over 
biasing the 

Variation of via CDs 
 worst case Min. 
Insulator spacing.
 GR must protect Min.

line on scaling 
trends. 
 Validate the tends 

as derived from 

g
technology
 Support custom 

circuits and design
GR must protect Min. 
Ins. at target  
Vdd+tolerance.

previous 
technology nodes.
 Develop new 

methodologiesmethodologies 
which would help 
technology 
enablement.
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 Qualification
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Three Key Technology Enablers
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HKMG in Production

Lessons learned
Materials integration as important as materials choice g p
HKMG is hard – but we have tamed the beast!
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3D Devices (FINFET/TRIGATE)

Need for low Vt and betterNeed for low Vt and better 
subthreshold slope drives 3D 
Device approach. 

MOSFET becomes a resistor 
for short Channel lengths 

d D i t ithand Drain competes with 
Gate to control the channel 
barrierbarrier.

Gate can not control the 
leakage current paths thatleakage current paths that 
are far from gate irrespective 
of oxide scaling.
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Device Scaling Basics 

ScalingWi i
V Scaling

Voltage V/

Gate Length L/
Gate

Wiring

W
t

V

g

Wire Width W/

tox tox/source drain

W
tox

Diffusion Xd/

Doping Na*XdL

Scaling results in
 Higher Density Higher Density

 Higher Speed

 Lower Power

….
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Vdd and Thickness Scaling
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 Vdd and Tox scaling virtually stopped after 90nm technology.

f

Technology Node (nm)

 Below this node the power dissipation and reliability halted further scaling 
and need for HK- MG became necessary. 

 Further material changes seem unlikely and we may again face no further u e a e a c a ges see u e y a d e ay aga ace o u e
Tox scaling driven by reliability unless Vdd scales with FINFETs.
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Juse targets and implications for EM 

 Juse targets likely to remain similar 
to previous node.

 Cu Cross-section could scale as 
much as 50% for tight pitch lower 

101

g
levels.

 This gap must be bridged by 
Material engineering and more 

100

d 
Ju

se

g g
precise accounting of EM 
performance;
 Cu-Alloy seed. (Resistivity hit, 10-1

or
m

al
iz

e
d

y ( y
industry standard, 20 nm option)

 Metal Cap. (Manufacturability and 
TDDB, …)

2

Juse Desired 
Juse based Cu scaling
Juse with EM boost

N

 Short line EM boosts.

 Vertical current flow rules.

 Redundant via array boosts.

10-2

10 20 30 40 50 60 70 80 90
Technology Node (nm)
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What is reliability?

 “Reliability is defined as the probability that a given item will Reliability is defined as the probability that a given item will 
perform its intended function for a given period of time under 
a given set of conditions”

 The probability is the likelihood that some given event will occur and 
l b t 0 d 1 i i das a measure a value between 0 and 1 is assigned

 The intended function of the item and its use condition areThe intended function of the item and its use condition are 
specifications which need to be stated

 The period of time is often referred as lifetime and depends on the 
items application 
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Definition of failure and the various mechanism

 “Failure is when the given item lost its ability to perform the Failure is when the given item lost its ability to perform the 
intended function within previously specified limits”

FEOL related failure mechanism in CMOS devices:
 Time Dependent Dielectric Breakdown (TDDB), Bias Temperature Instability 

(BTI) Hot Carrier Injection (HCI)(BTI), Hot Carrier Injection (HCI)

 Mobile Ion Contamination, Plasma-processing Induced Damage (PPID), 
Random Telegraph Noise (RTN), Electrostatic Discharge (ESD), Latch-up, 
Soft Error Rate (SER)Soft Error Rate (SER), …

FEOL related failure modes:
 Gate current increase, Threshold voltage shift, Drain current degradation, …  

2/21/2015 18



Typical failure modes for reliability modelingyp y g

Gate current increase caused by dielectric breakdown
 sudden failure 101  

) 2 sudden failure 
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Threshold voltage shift or drain current degradation caused 
by e.g. BTI or HCI  gradual failure 
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Time Dependent Dielectric Breakdown

What is TDDB?What is TDDB?

TDDB measurement methods

Challenges of detecting breakdownChallenges of detecting breakdown

BD in HK MG

2/21/2015 20



What is dielectric breakdown?

 “Dielectric breakdown occurred when the dielectric has lost 
it i l ti t ”its insulating property”
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 Loosing insulting property in thick oxide means:

Stresstime (s) Voltage (V)

 High current when a voltage source is connected

 Small build up of voltage when a current source is connected
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Methods to study TDDB

 Constant Current Stress (CCS) VI

A.Kerber/McMahon, IRPS 2012 tutorial.

 Inject current and measure Voltage as function of time.

 Used for thicker oxides (>~5nm) for F-N stress where QBD/TBD

dependend on J and independent of thickness. 

 Constant Voltage Stress (CVS)

time

V Ig ( )
 Apply voltage and measure current as function of time, possibly 

interrupt stress to measure current at reference
condition.

 Used for thinner dielectrics stressed in DT regime where TBD/QBD 
d d t lt d thi k

time

depends on gate voltage and thickness.

 Exponential Current Ramp Stress (ECRS)
 Increase injection current on an exponential scale and measure 

voltage at each current level.

ln(I)

time

V

 Voltage Ramp stress (VRS)
 Increase stress voltage on a linear scale and measure current at each 

voltage, include intermittent current measurement at reference 
condition.

V ln(I)

ti Gaining in popularity for quick turn feedback on process learning.

 For leading-edge technologies two methods, 
CVS d VRS f d f TDDB d li

Applied Measured

time

CVS and VRS are preferred for TDDB modeling.
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Degradation Modes

1 SILC

2 SBD

1. Trap generation : Vt shifts and SILC
2. Formation of local conducting path 

3 HBD

via the neutral electron traps leading to 
Soft Breakdown (SBD)
3 Thermal run away leading to Hard3. Thermal run away leading to Hard 
Breakdown (HBD)
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Degradation Mode-SILC

T. Nigam, PhD Thesis 1999

• Signature : Gradual Increase in gate leakage at low voltage/fields
• Conduction Mechanism: Trap assisted tunneling via neutral p g
electron traps generated in the bulk of the oxide.
•Current voltage relationship: Exponential with a reduced barrier
•Impact on Transistor : Gradual shift in Vt, gm etc..Impact on Transistor : Gradual shift in Vt, gm etc..

• Is a reliability challenge for Non-Volatile Memory devices
2/21/2015 24



Degradation Mode-SBD

Signature : Sudden Increase in gate leakage at low voltage/fields

T. Nigam, PhD Thesis 1999

• Signature : Sudden Increase in gate leakage at low voltage/fields
• Conduction Mechanism: Quantum co-tunneling arising from 
Coulomb Blockade or Quantum point contact

C l l i hi P l (I V)• Current voltage relationship: Power law (I=V)
• Impact on Transistor : Further shift in Vt, gm etc., but transistor 
still functional

• May or may not be a reliability challenge for CMOS

2/21/2015 25

Degradation Mode-HBD

T Ni PhD Th i 1999

• Signature : Sudden Increase in gate leakage 
• Conduction Mechanism : Simple resistor 

T. Nigam, PhD Thesis 1999

p
•Current voltage relationship: Linear dependence (I=a.V)
• Impact on Transistor : Transistor no longer functional

• Is a reliability challenge for CMOS• Is a reliability challenge for CMOS

2/21/2015 26



Percolation Theory

Oxide BD occurs when a 
conducting path is formed

Defect density reaches a critical 
l Nvalue NBD

NBD : an intrinsic statistical 
property of the oxideproperty of the oxide

NBD decreases as TOX decreases

P di t d ti i W ib llPredicts reduction in Weibull 
slope with TOX

Degraeve et al., IEDM, 863, 1995
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Time Dependent Dielectric Breakdown

• 2 modes for breakdown distribution2 modes for breakdown distribution
• Intrinsic and Extrinsic

• Weibull distribution given by 
F(t)=1-exp{-(t/t63)}
W(t)=Ln(-Ln(1-F))=Ln(t/t63)


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Ultra-thin Oxide Breakdown
T. Nigam IRPS Tutorial 2006 

(Kaczer et al. IEDM, 2004)

• Larger  and smaller voltage g  g
acceleration measured if 1st

SBD not detected properly
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SILC in HK : Stress Induced Leakage Current
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SILC has emerged as a new concern for HKMG (esp. nFET).

SILC is commonly attributed to Trap assisted Tunneling (TAT)

V
t
shift (V)

SILC is commonly attributed to Trap-assisted Tunneling (TAT).

SILC is sensitive to IL thickness and to gate stack processing
 Less SILC formation for thicker ILLess SILC formation for thicker IL.
 At long stress times “linear SILC” seen, independent of IL thickness.



Basic TDDB Observations for HK

 Significant SILC is measured on NFET during stress
Large number of defects are generated in HK.

 In the literature, data is mostly collected on small areasIn the literature, data is mostly collected on small areas
The obtained Weibull slope is limited by the interfacial oxide

Weibull slope increases with area for NMOS and PMOSWeibull slope increases with area for NMOS and PMOS
See Kerber, IRSP 2009

 PFET Weibull slope is less than that of NFET PFET Weibull slope is less than that of NFET 
See Kerber IRPS 2009

V ti l li k ll th t 1000 2 Vertical area scaling works all the way to 1000m2

Any theory proposed must explain all the above observations

31
31

Nature of BD Path Changes
MC simulations
AHK=300AIL

Long BD: probability 
determined only by IL. 
=0.38x2=0.763-layer HKy

2-layer IL

ln(-ln(1-F))=2

Short BD: probability 
determined by

ln(-ln(1-F))=0.5

determined by 
complete stack. 
=0.38x5~1.9

ln( ln(1 F))= 2

ln(ln(1-F))=-6

ln(-ln(1-F))=-2

32



HK MG NFET Breakdown Challenge
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 For small Ifail larger  and smaller voltage acceleration in SILC regime.

 For large Ifail we get lower  if device suffer HBD and may see an uptake 

Ifail (A)

g g  y
in Weibull if progressive breakdown is observed.

 VAE will increase with Ifail.

 For intermediate Ifail Weibull slope will decrease and VAE will increase For intermediate Ifail Weibull slope will decrease and VAE will increase.
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Figure of merit for dielectric breakdown
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TDDB Take away

TDDB is studied using CVS.TDDB is studied using CVS.

Breakdown in oxides can be either soft leading to local 
percolation or Hard breakdown.p

Detecting dielectric breakdown is becoming challenging as 
oxide is scaled.

Presence of SILC in HK MG for NFET devices makes BD 
detection a challenge.

 Introduction of HK MG induced a new mode in breakdown 
distribution. 

Continued scaling of dielectric leads to a reduction in lifetime 
TDDB.
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Bias Temperature Instability

What is BTI?What is BTI?

BTI measurement methods

Recovery in BTIRecovery in BTI 

BTI in HK MG
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BTI

When the MOSFET device is 
biased in inversion mode the V

Stress or Sense 

A.Kerber/McMahon, IRPS 2012 tutorial.

biased in inversion mode the 
device characteristics shift / 
degrade 
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Typical NBTI dataset 
A Kerber S Krishnan E Cartier IEEE EDL VOL 30 NO 12 pp 1347 1349 2009

From CVS Vt – time traces
voltage and time evolution

0.1

T=125OC
t
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=1ms
fit range

 A. Kerber, S. Krishnan, E. Cartier, IEEE EDL, VOL. 30, NO. 12, pp. 1347–1349, 2009.

voltage and time evolution 
is extracted
 Note the sub-linear time

0.01
 -1.25 V

 

V
T
 (

V
)

Note the sub linear time
and super-linear voltage 
dependence 

1E 3 0 01 0 1 1 10 100 1000 10000

1E-3

 -1.5 V
 -1.75 V
 -2.0 V
 -2.25 V
 -2.5 V



a)

1E-3 0.01 0.1 1 10 100 1000 10000

Time (s)

0 1

 

0 18

0.20
 

n
t, 

n
 

0.01

0.1

m = 4.16

 

a
t 1

s 
(V

)

0 14

0.16

0.18

 

m
e

 e
xp

o
n

e
n

1E-3 c)


V

T
 a

0 10

0.12

0.14

e)

o
w

er
 la

w
 ti

m

1 1.5 2 2.5 3

Gate Voltage (V)

1 1.5 2 2.5 3
0.10P

o

Gate Voltage (V)
2/21/2015 38



BTI Degradation Metric

BTI degradation is reported either as %Ion or more commonly 

A.Kerber/McMahon, IRPS 2012 tutorial.

BTI degradation is reported either as %Ion or more commonly 
as a Vt shift. 

Id b i t d Id can be approximated 
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BTI measurement methods

 Stress-Measure-Stress (S-M-S)

 h ll i t

M D i t l IEDM 2004

 challenge is to 
minimize delay time
(intermittent Id-Vg versus spot Id)

M. Denais et al., IEDM, 2004.

 On the fly method

 challenge is to translate challenge is to translate 
current degradation to voltage shift 
(issue of the t0 value)

 AC BTI characterization

 insufficient by itselfsu c e by se
for comprehending recoverable part of 
degradation.
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BTI Recovers and has Permanent and 
Recoverable PartsRecoverable Parts

 NBTI recovers 

00
2

S. Rangan et al., IEDM 2003al
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 Unavoidable recovery during S-M-S

G

 Unavoidable recovery during S-M-S 
distorts time dependence. When 
continuous Idlin is measured, time 
evolution notevolution not 
a simple power law

 At 125C, there is “lock-in” or 
permanent damage that is not 
recovered. 
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BTI recovery extended to s delay times

H. Reisinger et al., IRPS, pg. 448, 2006. Log(t) like recovery 
observed down to sobserved down to s 
delay times

 log(t) recovery implies log(t) recovery implies 
equal amount of 
recovery per decade in y p
time

To accurately determine 
magnitude of shift, sense 
delay needs to be 

i i i dminimized
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Challenges for dynamic BTI assessment

10-1

poly Si / SiON: T=125OC
 DC: -2V
AC: -2V & 0V, 100Hz, 50%

0.08
 DC: -2V, t=1000s, 

A.Kerber/McMahon, IRPS 2012 tutorial.
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Comparison of BTI in MG/HK to
conventional Poly Si / SiON gate stacks

100

 1.3nm SiON / poly Si
 1.6nm SiON / poly Si (S.Zafar, JAP05)
2.5nm HfO / TiN (S.Zafar, VLSI06)

 
A. Kerber, et al., TED 2008

conventional Poly Si / SiON gate stacks
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With introduction of MG/HK into CMOS technologies PBTI has
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Relaxation time (s)

With introduction of MG/HK into CMOS technologies PBTI has 
emerged as addition reliability challenge

Magnitude of PBTI similar to NBTI for technology relevant gateMagnitude of PBTI similar to NBTI for technology relevant gate 
stacks
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NBTI versus PBTI in MG/HK

NBTI:
H l t i

S. Pae et al., IRPS, pg. 352, 2008.

 Hole trapping

 Hole trap generation at and near 
Si-SiO2 interface in PFET2

 Interface trap generation and 
corresponding  mobility 
degradationdegradation 

PBTI:
 Electron trapping and trap 

generation in HfO2 for HKMG 
NFETNFET

 No interface traps, no mobility 
degradation
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Impact of interlayer and high-k layer thickness  
on VRS PBTI reliability parameteron VRS PBTI reliability parameter 

1 85
  S. Krishnan et al., IRPS 2011.  Increase in interlayer (IL) 

1.75

1.80

1.85

H
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y
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2  T

P

thickness leads to:
 Increase in VG to 50mV

 Increase in slope (m+n)

1.65

1.70

 

m
V

 
V

T
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IL
 T Ph

y Phy    Increase in slope (m+n)

 substantial improvement 
in operation lifetime

1 50
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Constant
IL TG
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0m

Constant
HfO T

in operation lifetime

 Increase in HfO2

5 6 7 8
1.45

1.50

5 6 7 8

IL T
PhyV

G

Slope (m + n)

HfO
2
 T

Phy

Slope (m + n)

thickness leads to:
 Decrease in Vg to 50mV

 Increase in slope (m+n)Slope (m + n) Slope (m  n)  Increase in slope (m+n)

 fairly constant lifetime at 
constant operating biasconstant operating bias
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Impact of CET scaling on NBTI & PBTI for Gate First and 
Gate Last processes

E C ti t l (i it d) IEDM 2011
Gate Last processes

E. Cartier et al. (invited), IEDM 2011

Poly-Si Cap 

Gate First Gate Lasta) b)

Poly-Si Cap 

Gate First Gate Lasta) b)

Gate First and Gate 
Last process follow a 

i l BTI CET

y p
PC Gap Fill

MG
HK
IL

y p
PC Gap Fill

MG
HK
IL universal BTI – CET 

scaling trend

IL

Si

IL

Si

Exponential 
xBTI CET relationxBTI – CET relation 
makes gate stack 
scaling at constant g
VDD very difficult

Take away for BTI

NBTI in SiON, PBTI + NBTI in HKMG. 

Both show similar voltage dependence and time evolution g p
including recovery 

NBTI causes gm degradation in addition to Vt shift, PBTI only 
Vt shift. 

Controlling measurement delays is critical for assessing 
magnitude of BTI and extracting the time evolutionmagnitude of BTI and extracting the time evolution 

S li Di l t i thi k l d t i ifi t i iScaling Dieelctric thickness leads to significant increase in 
BTI.
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Hot Carrier Injection 

Methods to study HCIMethods to study HCI

Modeling HCI

Challenges with HCIChallenges with HCI
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Methods to Study HCI

HCI is always studied with Vd high. V

SMU

A.Kerber/McMahon, IRPS 2012 tutorial.

HCI is always studied with Vd high. 

Vg is a variable which needs explicit 
modeling for circuit level projection.

Gate

V

g p j

Typically during qualification worst 
case Vg/Vd ratio is tested. p-sub

Source Drain

n+
V

S
M

U

Two approaches for testing
 Constant Voltage Stress (Qualification)

R V lt St (S i /M it i )

Pre-stress 
characterization Ramp Voltage Stress (Screening/Monitoring)

 Recovery is not typically observed in 
HCI and hence Stress Measure Stress

characterization

Stress
HCI and hence Stress Measure Stress 
(SMS) is used. intermittent  

characterization
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Modeling Idsat degradation

T0 degradation normalization:
leading to Saturation Model for

100

T

T. Nigam et al., IRPS, pp. 634, 2009.

leading to Saturation  Model for 
HCI
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 so 1/Id may be a better metric if Ni degradation
1

~itN so 1/Id may be a better metric if Nit degradation 
dominates


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Challenges for HCI modeling as function of Lg
A K b /M M h IRPS 2012 t t i l

Ea changes from positive to 
negative

A.Kerber/McMahon, IRPS 2012 tutorial.

negative

 Isub_max increases from Vg<Vd

to V ~Vd
E. Li et al. IRPS p. 4A.6 1999to Vg Vd

Peak HCI shifts from V <V toPeak HCI shifts from Vg<Vd to 
Vg~Vd as evident from the 
channel length dependence of g p
Idsat
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Challenges with DC to AC Correlation for short 
channel HCIchannel HCI

Model 1 (see, e.g. McMahon et al. Trans. 
Nanotech. p. 33 2002)

Model 2 (see, e.g. Rauch IRPS Tutorial 
2010)

A.Kerber/McMahon, IRPS 2012 tutorial.

 Multiple carrier bond breaking

 Single Electron Energy < Bond 
Energy hence multiple electrons

)

 Local self-heating NBTI

 Local self-heating accelerates 
N/PBTI process causing highEnergy  hence multiple electrons 

required to break bond.

But

N/PBTI process, causing high 
apparent degradation

ButBut
 Excitation time >> switching times. 

But
 Self-heating time >> switching 

times.

Quasi-static approximation breaks down. AC ≠ 
(i t t d) DC(integrated) DC.

All models suggest that DC HCI measurements are not gg
meaningful for AC lifetime prediction

Take away for HCI

Worst case DC hot carrier degradation shifts from Isub max 

A.Kerber/McMahon, IRPS 2012 tutorial.

Worst case DC hot carrier degradation shifts from Isub max 
to Vg=Vd condition for ~ <200nm devices 

BTI contributions are inherently present in advanced 
technology nodes (poly Si / SiON pFETs and MG/HK n/pFETs) and 
the separation is not trivial

Device degradation >10% only properly capture with 
saturation models

All models unable to capture AC to DC translation since quasi 
t ti i ti b k dstatic approximation breaks down 
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Basic BTI/HCI projection methodology

Saturation drain current degradation at use condition 
translated by multiplying the current degradation at stresstranslated by multiplying the current degradation at stress 
condition with various acceleration factors

percentilelengthwidthtemptimeVdVgstressuse AFAFAFAFAFAFAFIdId 

%
)

 Idstress is the current degradation at
reference Vg Vd TOX T and frequently

1

10
margin

eg
ra

d
a

tio
n

 (

stress
target

AFreference Vg, Vd, TOX, T and frequently
call the pre-factor (e.g. A) 0.1

use

n 
cu

rr
e

n
t d

e

 TVdVgAId

The various acceleration factors are related to the

10-1 101 103 105 107 109
0.01

D
ra

in

Stress time (s)

 refrefrefstress TVdVgAId ,,

The various acceleration factors are related to the 
reference condition 
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Outline

 Introduction
 Industry overview

 Role of Reliability Engineer in Technology Development

Scaling Roadmap and its enablement 
 What is scaling and what is not scaling…

Basics of FEoL Reliability Mechanisms
 BTI

 HCI 

 TDDB

M i b d 20Moving beyond 20nm 
 Product level degradation 

 New Channel materials New Channel materials
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Product Reliability

 Reduction in Intrinsic Lifetime with 
S li

A
Defect Driven Wearout Scaling

 Limited to no Vdd reduction with node scaling

 Tinv /Design Rule  @ ~ same Vdd

 Higher power density: Temperature A

Early Life Useful Life End of Life

Defect Driven Wearout

 More functionality, SOC complexity: Chip Area 
 Aggressive Burn-In incorporation leads to earlier 

wear-out 

 Enhanced product wear out correlationB
C

No BI

B Enhanced product wear out correlation 
to Device/Circuit-level REL models
 Better understanding of physics of wear out

 Methodology enhancements: TDDB PBD, BTI 
recovery EM SEB BTS SBB

With BI

B

recovery, EM SEB, BTS SBB

 Design for Reliability
 Degradation-aware design

 Increased margin to failure by circuit- and 
hit t l l l ti

CWearout from GOX, 
EM, SM, ILD BTS

Predictive capability improvement and increased design for 
reliability required to offset margin reduction from scaling to 

architectural-level compensation

produce reliable products.
572/21/2015

Enabling technology via device to circuit 
correlation understandingcorrelation understanding

1st Breakdown does not destroy Transistor functionality1 Breakdown does not destroy Transistor functionality

 Impact of oxide breakdown on circuits then depends on post 
breakdown defect generation and circuit sensitivity to g y
enhanced leakage.
 Successive breakdown and circuit implications

 Multiple breakdown spots in a given area Multiple breakdown spots in a given area

 Progressive breakdown and circuit implications
 Growth of the 1st SBD  spot into HBD

Fmax guard banding critical for products
 Using RO degradation as proxy one can provide a DC to AC level correlation 

going from device level models to circuit implicationgoing from device level models to circuit implication

SRAM sensitivity to BTI
 Using simple circuits like Cross coupled Inverters device degradation and g p p g

recovery in SRAM like environment can be studied
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Current jumps correlated to gate oxide BDs

A
)

VOSC = 4.4 V
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0 200 400
Stress time (s)

“Satellite” spots identified as hot carrier emission by spectral and SPICE analysis
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Progressive breakdown in TDDB (HK MG)

1E-2

1E-3

Progressive BD Successive BD

1E-4

2nd BD

Progressive BD

Successive BD

1E-6

1E-5

0 1 1 10 100 1000

1st BD Suñé/Wu/Lai, TED,2004
Alam, IEDM 2002

Monsieur et al. IRPS, 45, 2002,
Hosoi et al IEDM 155 20020.1 1 10 100 1000 Hosoi et al. IEDM, 155, 2002,
Linder/Stathis et al. EDL, 661, 2002; 
IRPS, 402, 2003

 Progressive and successive breakdown is observed for large area 
devices. 

 Both enhance lifetime and increases Weibull slope.
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Progressive Breakdown (HK MG) 

Probability Plot for C8-C10
Weibull Distribution - ML Estimates - 95.0% CI

C l t D t
Ifail Weibull Vmax
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2.1433 49.980 1.06 21/0

1.3319 2.0048 1.11 24/0

 

5uA 1.35 1.1

10uA 1.8 1.25

      1

      2

      3

      5

50uA 2.14 1.35

Both t63 and Weibull slope increases with increase in acceptable Ifail

0.01 0.10 1.00 10.00 100.00

Time to Failure

 Both t63 and Weibull slope increases with increase in acceptable Ifail.

 Vmax boost of 350mV if Ifail increase to 50uA.  
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Product lifetime extraction

TAP •Voltage Scaling

•Temperature Scaling
10 years

B
D
)

•Temperature Scaling

•Area Scaling

Ln
(T

B Area Scaling

•Percentile Scaling

•Percentile Scaling 
with n SBD or

Ln(Vg)
Voper

with n-SBD or 
progressive SBD

Ln(Vg)
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6T SRAM Cell – role of PBTI and NBTI

Read disturb example

Wh th ll h ld t i t t ( ‘0’) WL Pullup When the cell holds a certain state (say ‘0’) 
PD1 and PU5 are under “DC” PBTI stress

 Weaker PD1 + weaker PU6 increases read 
disturb PU5

WL Pullup

PU6

VDD

disturb

 Increases read Vmin

 Area of Focus needed

BTI(Vdd ti t d )

‘1’

U5

PG3

Access

CH

‘0’

PD2

PG4

 BTI(Vdd, time exponent, and recovery)

 Recovery at time scales that matter (<us)

 Understanding of these mechanisms 

PD1

BL

Pulldown

Access PD2

BL

better will aid in a better overall attribute 
for SRAMs

BL BL
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Comparison of measured and modeled CCI 
transfer characteristics

Simulated CCI transfer Post:
 Force SNL 
Force SNR

Pre:
 Force SNL 
Force SNR

A. Kerber, et al., IRPS 2011

characteristics using SPICE 
model match experimental SNL=GND
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  Simulation  

data well
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 SRAM degradation 
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RO Frequency Degradation

)I/I)/(I/I)/((
1

f/f 

T. Nigam, et al., IRPS 2009

)I/I)./(I/I)./((
2

f/f dsatpdsatppdsatndsatnn 

Vin=VG

NMOS HCI
stress

VDD
NBTI stress

• HCI Occurs only during switching and the equivalent 
stress time is a function of rise and fall time 
(teq=tuse.Z(tr/tf))

• NBTI occurs only during off state and so teq= tuse/2
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Individual Components - II
T. Nigam, et al., IRPS 2009
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• Process optimization needs to comprehend the 
individual components at the typical operating voltage
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Beyond 20nm: What’s Next?

Immersion 
Lithography

3D 
Integration

Extreme 
Ultraviolet (EUV)

Ultra Low-k 
Dielectrics

32/28nm 16/14nm45/40nm 22/20nm

Strained 
Silicon

High K/
Metal Gate

Non-Planar 
Structures

Source Mask 
Optimization
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14nm and Beyond

 Multi-gate FinFET
N t i t t t

ETSOI
 New transistor structure
 Smaller geometries
 Low operating voltage for 

power/performance improvement

Geometrical confinement 
reduces leakage

Further innovations
power/performance improvement
 Successfully demonstrated in SRAM

 Source Mask Optimization

Packaging
Novel device architectures 
(III-V, Ge channels)

 Improves pattern fidelity on wafers by 
computational optimization of lithography 
light source and reticle

Ultimate replacement for 
the CMOS switch

Gate

25 nm

FinFin
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Summary

Semiconductor industry on path towards sub 20 nm Semiconductor industry on path towards sub 20 nm 
technology
 Key Challenges continue to be

 Lithography

 Material innovation and integration with an eye towards manufacturability

 Building in Reliability Margins

 Reliability Challenges
 Comprehend and model the impact of material change 

Develop fundamental physical understanding Develop fundamental physical understanding

 Leverage learning from other areas

 Comprehend and link device level degradation to circuit level degradation

 Provide designer with tools to build reliability aware designs
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