Reliability Challenges in Sub 20nm Technologies

Tanya Nigam Distinguished Member of Technical Staff

Wireless segment overtakes PCs in 2011

- Becoming world's leading market for semiconductor purchasing by OEMs
- Sign of a fundamental shift from PCs to mobile devices
- Driven by booming sales of smartphones and tablets
 Unit shipment for PC versus Smartphone + tablets

Outline

Introduction

- Industry overview
- Role of Reliability Engineer in Technology Development
- What is scaling and what is not scaling...

Basics of FEoL Reliability Mechanisms

- BTI
- HCI
- TDDB

Moving beyond 20nm

- Product level degradation
- New Channel materials

2/21/2015

3D Devices (FINFET/TRIGATE)

- Need for low Vt and better subthreshold slope drives 3D Device approach.
- MOSFET becomes a resistor for short Channel lengths and Drain competes with Gate to control the channel barrier.
- Gate can not control the leakage current paths that are far from gate irrespective of oxide scaling.

Weff = 2 x Fin_H + Fin_W

 Below this node the power dissipation and reliability halted further scaling and need for HK- MG became necessary.

 Further material changes seem unlikely and we may again face no further Tox scaling driven by reliability unless Vdd scales with FINFETs.

Juse targets and implications for EM

- Juse targets likely to remain similar to previous node.
- Cu Cross-section could scale as much as 50% for tight pitch lower levels.
- This gap must be bridged by Material engineering and more precise accounting of EM performance;
 - Cu-Alloy seed. (Resistivity hit, industry standard, 20 nm option)
 - Metal Cap. (Manufacturability and TDDB, ...)
 - Short line EM boosts.
 - Vertical current flow rules.
 - Redundant via array boosts.

What is reliability?
 "Reliability is defined as the probability that a given item will perform its intended function for a given period of time under a given set of conditions"
 The <u>probability</u> is the likelihood that some given event will occur and as a measure a value between 0 and 1 is assigned
 The intended function of the item and its use condition are specifications which need to be stated
 The <u>period of time</u> is often referred as lifetime and depends on the items application
2/21/2015 17
Definition of failure and the various mechanism

- "Failure is when the given item lost its ability to perform the intended function within previously specified limits"
- FEOL related failure mechanism in CMOS devices:
 - Time Dependent Dielectric Breakdown (TDDB), Bias Temperature Instability (BTI), Hot Carrier Injection (HCI)
 - Mobile Ion Contamination, Plasma-processing Induced Damage (PPID), Random Telegraph Noise (RTN), Electrostatic Discharge (ESD), Latch-up, Soft Error Rate (SER), ...

• FEOL related failure modes:

• Gate current increase, Threshold voltage shift, Drain current degradation, ...

2/21/2015

Percolation Theory

- Oxide BD occurs when a conducting path is formed
- Defect density reaches a critical value N_{BD}
- N_{BD}: an intrinsic statistical property of the oxide
- N_{BD} decreases as T_{OX} decreases
- Predicts reduction in Weibull slope with T_{OX}

Degraeve et al., IEDM, 863, 1995

2.2

2/21/2015

TDDB Take away

- TDDB is studied using CVS.
- Breakdown in oxides can be either soft leading to local percolation or Hard breakdown.
- Detecting dielectric breakdown is becoming challenging as oxide is scaled.
- Presence of SILC in HK MG for NFET devices makes BD detection a challenge.
- Introduction of HK MG induced a new mode in breakdown distribution.
- Continued scaling of dielectric leads to a reduction in lifetime TDDB.

2/21/2015

- What is BTI?
- BTI measurement methods
- Recovery in BTI
- BTI in HK MG

Take away for BTI

- NBTI in SiON, PBTI + NBTI in HKMG.
- Both show similar voltage dependence and time evolution including recovery
- NBTI causes gm degradation in addition to Vt shift, PBTI only Vt shift.
- Controlling measurement delays is critical for assessing magnitude of BTI and extracting the time evolution
- Scaling Dieelctric thickness leads to significant increase in BTI. 2/21/2015

Challenges with DC to AC Correlation for short channel HCI

A.Kerber/McMahon, IRPS 2012 tutorial.

Model 1 (see, e.g. McMahon et al. Trans. Nanotech. p. 33 2002)

- Multiple carrier bond breaking
- Single Electron Energy < Bond</p> Energy hence multiple electrons required to break bond.

Model 2 (see, e.g. Rauch IRPS Tutorial 2010)

- Local self-heating NBTI
- Local self-heating accelerates N/PBTI process, causing high apparent degradation

But

- Excitation time >> switching times.
- Self-heating time >> switching times.

Quasi-static approximation breaks down. AC \neq (integrated) DC.

But

All models suggest that DC HCI measurements are not meaningful for AC lifetime prediction

Product Reliability

Early Life	Defect Driven Useful Life	Wearout End of Life	 A Reduction in Intrinsic Lifetime with Scaling Limited to no Vdd reduction with node scaling 		
No BI With BI	B	Wearout from GOX, EM, SM, ILD BTS	 Hilly /Design Rule & @ ~ same vud Higher power density: Temperature 1 More functionality, SOC complexity: Chip Area 1 Aggressive Burn-In incorporation leads to earlier wear-out B Enhanced product wear out correlation to Device/Circuit-level REL models Better understanding of physics of wear out Methodology enhancements: TDDB PBD, BTI recovery, EM SEB, BTS SBB C Design for Reliability Degradation-aware design 		
 Degradation-aware design Increased margin to failure by circuit- and architectural-level compensation Predictive capability improvement and increased design for reliability required to offset margin reduction from scaling to produce reliable products. 					
2/21/2015			57		

1st Breakdown does not destroy Transistor functionality

- Impact of oxide breakdown on circuits then depends on post breakdown defect generation and circuit sensitivity to enhanced leakage.
 - Successive breakdown and circuit implications
 - Multiple breakdown spots in a given area
 - Progressive breakdown and circuit implications
 - Growth of the 1st SBD spot into HBD
- Fmax guard banding critical for products
 - Using RO degradation as proxy one can provide a DC to AC level correlation going from device level models to circuit implication
- SRAM sensitivity to BTI
 - Using simple circuits like Cross coupled Inverters device degradation and recovery in SRAM like environment can be studied

Both enhance lifetime and increases Weibull slope.

2/21/2015

2/21/2015

Read disturb example

- When the cell holds a certain state (say '0') PD1 and PU5 are under "DC" PBTI stress
- Weaker PD1 + weaker PU6 increases read disturb
 - Increases read Vmin
- Area of Focus needed
 - BTI(Vdd, time exponent, and recovery)
 - Recovery at time scales that matter (<us)
 - Understanding of these mechanisms better will aid in a better overall attribute for SRAMs

63

Comparison of measured and modeled CCI transfer characteristics A. Kerber, et al., IRPS 2011 Pre: Post: Simulated CCI transfer Force SNL Force SNL Force SNR Force SNR characteristics using SPICE - Simulation Simulation 0.7 0.6 0.5 0.4 SNL=GND model match experimental SNR (V) data well 0.3 0.2 0.1 Based on pre- and 0.0 07 post- stress device 0.6 0.5 SNL=VDD SNR (V) characteristics 0.4 0.3 0.2 SRAM degradation 0.1 0.0 follows device level BTI 07 AC 0.6 0.5 0.4 SNR (V) drift and recovery 0 1 0.0 -0.1 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 SNL (V) 2/21/2015

Fin

- GLOBALFOUNDRIES FEOL Reliability Team
 - A. Kerber, B. Parameshwaran, B. McMahon, P. Justison

Trademark Attribution	
GLOBALFOUNDRIES, the GLOBALFOUNDRIES logo and combinations thereof are trademarks of GLOBALFOUNDRIES Inc. in the United States and/or other jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks of their respective owners.	
©2011 GLOBALFOUNDRIES Inc. All rights reserved.	
2/21/2015 71	