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Abstract—In intelligent IoT networks, an IoT user is capable
of sensing the spectrum and learning from its observation to
dynamically access the wireless channels without interfering with
the primary user’s signal. The network, however, is potentially
subject to primary user emulation and jamming attacks. In
the existing works, various attacks and defense mechanisms for
spectrum sharing in IoT networks have been proposed. This
paper systematically conducts a targeted survey of these efforts
and proposes new approaches for future studies to strengthen the
communication of IoT users. Our proposed methods involve the
development of intelligent IoT devices that go beyond existing
solutions, enabling them not only to share the spectrum with
licensed users but also to effectively thwart potential attackers.
First, considering practical aspects of imperfect spectrum sensing
and delay, we propose to utilize online machine learning-based
approaches to design optimal spectrum sharing attack policies.
We also investigate the attacker’s channel observation/sensing
capabilities to design an optimal attack policy using time-varying
feedback graph models. Second, taking into account the IoT
devices’ practical characteristics of channel switching delay, we
propose an online learning-based channel access policies for
optimal defense by the IoT device to guarantee the maximum
network capacity. We then highlight a future research direction,
focusing on the defense of IoT devices against adaptive attackers.
Finally, aided by concepts from intelligence and statistical factor
analysis tools, we provide a workflow which can be utilized
for devices’ intelligence factors impact analysis on the defense
performance.

I. INTRODUCTION

Internet-of-Things (IoT) technology as a promising paradigm
is envisioned to shift the future wireless communications
and provide ubiquitous connections in many application areas
such as smart city, smart home, smart vehicles, smart grid,
smart farming, healthcare systems, etc. [1]–[3]. This projection,
indeed, has now become close to reality by the recent emer-
gence of intelligent IoT devices as a new technological design
development which adds new capabilities such as sensing,
learning, and reasoning to the IoT devices [4], [5].

However, the flourishing increase in the number of intelligent
IoT devices causes explosive growth of demands for wireless
spectrum bandwidth, and consequently spectrum shortage
problem. To resolve the imminent spectrum shortage problem,
Federal Communications Commission (FCC) has authorized
opening spectrum bands (e.g., 3550-3700 MHz and TV white
space) owned by licensed primary users to unlicensed secondary
users when the licensed users are inactive [6].With this
authorization, in wireless IoT networks, intelligent IoT users as
unlicensed users can form the opportunistic spectrum sharing
system to dynamically search and identify the unused portions
of licensed spectrum (aka, spectrum hole or white space)

to fully utilize that spectrum without adverse interference
with the licensed users [7], [8].This opportunistic spectrum
sharing mechanism results in increasing spectral efficiency
in IoT networks. To enhance spectrum sharing mechanisms
significantly, a recent development is the introduction of
the Incumbent Informing Capability (IIC). This innovative
approach aims to collaboratively, securely, and dynamically
enhance opportunistic spectrum access within allocations
primarily designated for federal government use [9]. Research
in spectrum sharing for 5G IoT networks, focusing on 5G
New Radio (NR) for IoT devices [10], and game theory-based
spectrum sharing in industrial IoT networking [11], addresses
distinct aspects of the IoT spectrum sharing problem.

Despite the significant advantages brought by opportunistic
spectrum access mechanisms, IoT networks are vulnerable
to threats posed by adversaries which aim to disrupt the
communication between IoT users (see Figure 1) and degrade
the network capacity [12]–[14]. An adversary known as a
primary user emulation attacker may attempt to occupy the
spectrum hole [15]–[17], or as a jamming attacker, it may
emit high power interference signal to interrupt the IoT users’
communication [18]–[20].These threats justify the need for
effective countermeasure mechanisms. The overall goal of
this paper is to introduce a new class of secure, resilient,
and efficient spectrum sharing frameworks for intelligent IoT
devices with spectrum learning capabilities to circumvent the
posed threats to maximize the network capacity.

Within the above goal, the first objective of this paper is to
investigate the vulnerabilities of IoT wireless communication
networks by proposing new online machine learning-based
spectrum access attacking strategies. Better understanding of
effective attacking strategies enables us to quantify and assess
the severeness of attacks on the IoT networks which in turn
sheds light on designing effective countermeasure schemes.

Spectrum sensing is a key enabling functionality for any
online leaning-based attack policy in wireless spectrum sharing
networks [21], [22]. Over time, by sensing a frequency
channel, the attacker perceives whether there is an active
IoT user communication on that channel. This information is
utilized to update the attacker’s belief, reasoning, and learning
on the channel based on which it optimizes its attacking
strategy. In practice, due to the attacker’s inherent hardware
imperfection and the computational complexities of the sensing
algorithms, spectrum sensing introduces non-negligible delay
and the sensing accuracy is imperfect which affects the attack
performance [23], [24]. In our previous works [15], [25], along
with the literature [26], a set of solutions for the optimal
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Fig. 1: Spectrum sharing of IoT networks in adversarial environments.

learning-based primary user emulation and jamming attacks
have been proposed, respectively. However, these works have
not considered the aforementioned practical aspects of spectrum
sensing. In this paper, we aim to integrate the imperfect
spectrum sensing and delay into the design paradigm of an
effective attacking policy.

Attacker’s observation capability is defined by the obser-
vation/sensing policy governing the attacks, as well as, the
number of observations it makes. We study effective observation
capabilities that lead to optimal attack mechanisms. Existing
works consider deterministic policies with fixed number of
observations [15], [25]–[28]. We aim to study a random number
channel observation policy using randomized time-varying
feedback graphs. Following the proposed attacking policies in
spectrum sharing IoT networks, we study a family of defense
mechanisms for intelligent IoT devices to circumvent the
attacker to achieve maximum network capacity. In our defense
design paradigm, we take into account the inevitable limitations
of IoT devices such as channel switching delay [29], [30], and
the IoT devices’ intelligence capabilities [4], [31], [32].

We consider an intelligent IoT device which aims to defend
against an attacker with no prior knowledge about the attacker’s
attack policy nor of the channel state information such as noise
and fading. The defense strategy employed by the IoT device
will be governed by online machine learning approaches for
effective sequential frequency channel selection and data trans-
mission. In practice, the IoT device incurs a channel switching
delay when switching from a certain frequency channel to
a different channel [29], [30], [33]. The channel switching
delay which leads to throughput loss is due to the elapsed
time between detaching from the current operation frequency
and resettling on another channel for data communication [34].
In the existing works, several defense strategies have been
designed without consideration of switching delay [20], [26],
[35]–[37]. We formulate an online learning-based defense
mechanism for the intelligent IoT device to maximize network
capacity while minimizing channel switching delay.

When both the attacker and IoT device apply learning-based
frameworks to access the channels, the two agents become
adaptive to each other’s strategy [38]. For this setting, we
study the asymptotic network capacity that can be achieved
(degraded) by the IoT device (attacker). In the literature, the
outcome of two adaptive opponents when both of the agents

apply a learning-based strategy has been studied [26]. However,
the authors assumed fixed and time-invariable channel statistics.
We characterize the wireless channels’ inherent conditions with
a time-varying stochastic process and integrate its effects into
the problem formulation. With this modeling, our setting forms
an online repeated stochastic game between the IoT device
and the attacker for which we illustrate an equilibrium under
certain assumption.

Sophisticated intelligence or cognitive capabilities such as
sensing, reasoning, and learning are essential for IoT devices to
cope with the uncertainties of spectrum environment. Being able
to quantitatively measure the intelligence capabilities of IoT
devices enables us to design and deploy efficient and resilient
IoT devices (see Figure 2). The research on the intelligence
measure of IoT devices is in its early stages. Several works
aimed to study this problem [39]–[41]; however, cognitive
factors extraction and their quantitative analysis are missing in
these works. In our previous work, we proposed a data-driven
methodology to quantitatively measure intelligence factors [31],
[32] using statistical factor analysis [42], [43]. In this paper,
we propose to characterize the IoT device’s robustness as
a function of its intelligence factors in adversarial wireless
communication networks.

II. BACKGROUND INFORMATION

Sharing spectrum with legacy systems has attracted intensive
research during the past decade [44]–[46]. In order to resolve
the imminent spectrum shortage problem, cognitive radios
have been emerged as a key enabling technology for dynamic
spectrum access to improve spectrum efficiency and guarantee
the unharmful coexistence with the legacy systems [44],
[45], [47], [48]. Although the cognitive radio concept was
born with the core idea of realizing “cognition” [49], the
research on measuring cognitive radios’ cognitive capabilities
or intelligence is largely open. There are various works on
studying and evaluating cognitive radios’ performance [39],
[40], [50], [51]. In our previously work [31], motivated by the
Cattell-Horn-Carroll (CHC) intelligence model [52], [53], we
proposed a data-driven methodology to model and measure
the cognitive capabilities of cognitive radios based on factor
analysis [42], [43], [54]. The complex and uncertain spectrum
environment makes IoT users’ spectrum sharing extremely
challenging. The uncertainty may come from the inherent
nature of the IoT communication system such as fluctuations
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Fig. 2: Intelligence factor analysis of various IoT devices with different cognitive capabilities.

in wireless signal propagation and the legacy system activities,
or it may be generated due to the presence of adversaries which
aim to maliciously degrade the system performance.

Existing works study security of spectrum sharing networks
by introducing various types of attacks including jamming and
primary user emulation attacks [15], [16], [18], [19]. There are
several works formulating jamming attacks and anti-jamming
strategies as online learning problems [20], [26], [35], [36].
Optimal primary user emulation attack strategy has been also
addressed in our previous work [15], [25] where the problem
has been formulated as an online machine learning problem in
the setting of adversarial Multi-Armed Bandits (MAB) [55].

Multi-armed bandits is one of the most fundamental online
learning problems, wherein, at each round a player chooses an
action out of K available actions and observes the reward
associated with the chosen arm. The reward may either
be stochastic or adversarial (aka, non-stochastic). Several
real-world problems, especially those that involve sequential
decision making, can be posed as multi-armed bandit problem.
These include clinical trials, online advertisement, routing in
communication networks, spectrum sharing in cognitive radio
wireless communication networks, personalized matching, and
many others. There are many works in the literature on MAB
[56]–[60]. The popular EXP3 algorithm was proposed by [55],
[57], and was inspired by prior work on weighted majority
algorithm [61] and Hedge algorithm [62]. Online learning
algorithms are efficient in time and space complexity where
they best fit to address the problem of secure spectrum sharing
in IoT networks. Some other multi-armed bandits work related
to our paper are, MAB with feedback graph [60], restless
MAB [63], distributed stochastic online learning [64], and
online learning against an adaptive adversary [59].

III. SECURE SPECTRUM SHARING FOR INTELLIGENT IOT
NETWORKS

In this section, we thoroughly study the problem of secure
spectrum sharing and reliable communication in the intelligent
IoT networks.

A. Learning-based Attack Policy in IoT Networks

We investigate the IoT wireless communication networks
security threats by designing and developing smart learning-
based dynamic attacking strategies. In our attacking strategy
design paradigm, we take into account the practical aspects

of an attacker including imperfect sensing, sensing delay, and
various observation capabilities.

1) Online Learning-based Attack Policy with Imperfect
Sensing and Delay

For learning, the attacker senses the frequency channels
and employs detection techniques such as matched filter, and
energy detection to identify any IoT user communication
on the channels [65]–[67]. However, imperfect sensing and
sensing delay are two of the indispensable drawbacks of
practical sensing systems which affect the attacker’s learning
quality, and efficiency. These shortcomings are due to the
inherent limitations of device hardware, and computational
complexities of sensing algorithms. In our previous works, we
have considered prefect channel sensing for a learning-based
attacker [15], [25]. However, in this paper, we approach the
problem by integrating sensing delay and accuracy into the
learning process of the attacker.

We model the attack policy with adversarial multi-armed
bandits where the rewards (i.e., degraded throughput) are
delayed and imperfect. Our problem best fits to this model as
it does not require the attacker to have prior knowledge about
the IoT users’ activity on the channels. Based on our model, at
each time, the attacker chooses one channel to launch an attack
seeking to minimize the network capacity, and another channel
to imperfectly sense. Through this imperfect observation, the
attacker either receives a delayed reward equivalent to the
normalized degraded throughput or zero, depending on whether
it identifies an IoT user on the channel or not. Within this
policy, we model the sensing accuracy as a Bernoulli process
with its parameter indicating the success rate of actual reward
observation. Sensing delay is as well integrated in the model
based on which the attacker will observe and update its policy
with some delay. Note that existing frameworks of delayed
reward in multi-armed bandits [68], [69] cannot be applied
to solve our problem as they are designed for stochastic
settings, whereas our problem setting is non-stochastic. This
non-stochasticity is due to unknown IoT and licensed users
activities, as well as, the attacker’s attack pattern.

Regret is the metric defined for performance evaluation
of online learning-based algorithms where it measures the
difference between the accumulated reward achieved by the
proposed algorithm and that of the optimal static policy in
hindsight [55]. Obtaining a regret with a sublinear order in
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Fig. 3: Time-varying feedback graph, K=6 channels (blue:attacked, yellow:observed, white:not attacked and observed channels).

time T (i.e., limT→+∞
R(T )
T = 0), indicates the attacker

converges to attacking the channels with more active IoT
users, consequently being effective to degrade the network
capacity. The performance of the proposed attack policy can
be formulated and measured by its regret as follows:

R(T ) = max
j⊂[K]

T∑
t=1

xj(t)−
T∑

t=1

(
1− pit−τ

(t− τ)
)
xit−τ

(t−τ),

(III.1)
where we divide the spectrum bandwidth into K frequency
channels [K] := {1, 2, . . . ,K}. The sensing random delay is
denoted by τ . it ∈ [K] denotes the channel index chosen by
the attacker at time t. The observed delayed reward is denoted
by (1 − pit−τ (t))xit−τ (t − τ) ∈ [0, 1], with it−τ , xit−τ , and
pit−τ

(t−τ) indicating the attacked channel, actual reward, and
the probability of the actual reward observation, respectively.
The normalized reward will characterize the degraded network
capacity due to the attacker’s imperfect sensing and delay. This
analysis indicates that compared to the prefect situation, both
imperfect sensing and delay inflate the regret.

2) Random Observation Policy with Time-varying Feedback
Graphs for Learning-based Attack Policy

For effective learning, the attacker needs to make enough
observation/sensing on all the channels. On the other hand,
the attacker’s learning rate does not necessarily improve by
merely making more observations; rather it depends on the
observation policy, as well. Modeling with feedback graphs, the
attack performance may be optimal, sub-optimal, and even it
may not learn at all, depending on the observation policy [60].
Unlike our previous work [15] which is based on a single
sensing policy with a fixed number of observations, in this
subsection, we investigate the random number of observations
along with various observation policies governing the attack
policy to design an effective and efficient attacker.

We propose an observation policy for the attacker based
on time-varying feedback graphs. According to this policy,
the attacker dynamically selects an observation policy, as well
as a random number of m channels to observe, as shown
in Figure 3. In the beginning, since the attacker has no
prior knowledge about the IoT users’ activity, it leverages its
maximum observation capability to observe as many channels
as possible. However, over time, as the attacker learns the IoT
users’ activity, the attacker will observe fewer channels based
on the policy such that the attacker will converges to observing

a single channel uniformly at random. The proposed policy
eliminates the redundant and unnecessary channel observations
which is the case with fixed number of observations. Regarding
observation policy, we propose to consider various types of
policies such as uniformly at random, round-robin, bandit,
loopless clique, etc., and utilize them as expert advise by
assigning weights to each policy which will be updated at
each time. The proposed policy provides a unified and efficient
observation strategy for IoT spectrum sharing networks. This
encompasses both the incorporation of random observations
and the application of expert advice, resulting in an observation
policy designed to optimize attack performance.

B. Learning-based Defense Mechanisms in IoT Networks

In this subsection, we study learning-based defense mecha-
nisms by an IoT user considering its practical aspects including
channel switching delay and the performance of an IoT device
against an adaptive learning-based attacker. Furthermore, we
investigate the intelligence capabilities of IoT devices and their
impact on the resiliency of defense mechanisms.

1) Online Learning-based Defense Policy for IoT with
Channel Switching Delay

A learning-based IoT device dynamically selects various
channels to evade the attacker and transmit data on the higher
throughput channels to maximize the network capacity [70],
[71]. Due to hardware limitations and imperfections, switching
from a certain frequency channel to another incurs an overhead
in terms of delay while the radio takes time to actuate
and settle [29]. This delay results in throughput loss and
ultimately network capacity degradation which is non-negligible
in practice [30], [34]. Our goal is to design an effective
learning-based defense policy for the IoT user that strikes an
optimal balance between throughput maximization and channel
switching delay minimization.

We model the problem as an adversarial multi-armed bandits
with switching costs wherein not only it requires a careful
trade-off between “exploitation” and “exploration” for effective
defense, but also to account for channel switching delay. We
adopt the method proposed in our previous work [8], [72],
a randomized switching policy which follows a stochastic
Bernoulli process. In this method, at each time, the IoT user
will choose to stay on the same channel with probability 1−δ(t)
and it will switch with probability δ(t). The parameter of the
Bernoulli distribution depends on the number of channels K,
and should be decaying with time as t−α. The choice of α is
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crucial – a slow decaying δ(t) would allow frequent switching
and help with exploration, at the expense of potentially not
exploiting high throughput channels and incurring additional
switching delays. On the other hand, a fast decaying δ(t) may
hurt exploration and, therefore, overall throughput by resulting
in a poor defense policy.

We define the IoT user’s reward (normalized throughput
v∈ [0, 1]) on channel i at time t as follows:

xi(t) =

{
v, if no attack on channel i,
0, if channel i is under attack.

(III.2)

The IoT user will incur a normalized throughput loss c(t) for
switching between channels over two consecutive times. We
define the regret of the IoT user with channel switching delay
after T rounds, as follows:

R(T ) = max
j⊂[K]

T∑
t=1

xj(t)−

(
T∑

t=1

xit(t)−
T∑

t=1

c(t) 1{it ̸=it−1}

)
,

(III.3)
where it∈ [K] indicates the channel index chosen for attack.
We evaluated the performance of the proposed technique in
our previous work [8], [72] by conducting theoretical analysis
on its regret lower and upped bounds. The proposed algorithm
to solve this problem is minimax optimal if the results match.
We found α = 1/3, such that δt proportional to t−α, will
offer an optimal trade-off between exploration and exploitation
yielding optimal defense policy [72], [73]. We proposed an
online learning algorithms for IoT with and without channel
switching costs, where their regret performances are proved
sublinear order-optimal in time as T 2/3 and T 1/2, respectively,
offering throughput-optimal for IoT spectrum sharing network.
In addition, we provided numerical analysis, to validate the
theoretical analysis. Our analysis can be adopted to measure
the IoT device’s throughput under various artificially injected
attack signals over multi channels and compare the real-world
performance results of defense with and without channel
switching delays on the throughput loss. This provides an
optimal spectrum access policy for the IoT users in a practical
adversarial IoT network which maximizes the network capacity.

2) Stochastic Game-Theoretic Analysis of Learning-based
IoT user and Attacker

Both IoT user and the attacker apply learning-based spectrum
access policies which makes them adaptive to each other’s
strategy. We are interested in computing the asymptotic
degraded throughput by the attacker to study any possible
equilibrium between the IoT user and the attacker. Wang et
al. [26] studied the outcome of two adaptive opponents and
showed they achieve Nash equilibrium. This analysis has been
done based on the assumption of ideal wireless communication
channels with fixed time-invariant channel states; whereas,
in practice the channel state information may follow any
unknown stochastic process. The stochasticity of the channels

introduces non-trivial new challenges in analyzing and deriving
the equilibrium.

To approach this problem, we propose to utilize techniques
from both stochastic optimization [74] and game theory [38],
[75] to form an online repeated two-player zero-sum stochastic
game between the IoT user and attacker. We define the game
by an stochastic K ×K payoff matrix denoted by G(t).
The IoT user computes a mixed channel selection strategy
according to probability vector of p to choose channel it for
data transmission. The attacker, as well computes a probability
vector of z as its mixed channel selection strategy to choose
channel jt to launch the attack signal. The IoT user then
gains the quantity Gitjt(t), while the attacker loses the same
quantity. In this game, the IoT user aims to maximize its
expected total gain r(p, z, t) = pTG(t)z, while the attacker
aims to minimize its expected total loss. Due to the stochastic
quantities in the payoff matrix, the game value V (t) will be
an stochastic process expressed as

V (t) = max
p

min
z

r(z,p, t) = min
p

max
z

r(p, z, t). (III.4)

To evaluate the IoT user and the attacker’s performance,
we propose to utilize stochastic simulation-based optimization
methods. The method requires extensive simulations to compute
the asymptotic achievable (degraded) network capacity by the
IoT user (attacker) to find any possible equilibrium stationary
strategy for various models of stochastic channels with an
acceptable confidence interval. This study enables us to evaluate
the asymptotic network capacity, and subsequently to obtain a
deeper insight on the defense mechanism performance when
the IoT user faces an adaptive opponent. In the proposed game
model if the channel states are considered to be fixed G(t) = 1,
then the game will recover the results of the well-known online
repeated zero-sum game where the empirical distribution of
channel selection for the IoT user and attacker will converge
to the uniform distribution over K channels (i.e., the Nash
equilibrium stationary strategies p=z= 1

K ).

3) IoT Intelligence Capabilities in Defense Mechanisms

Intelligent IoT devices are equipped with various cognitive
capabilities including channel access policy, number of sensors,
sensing accuracy, memory, power resources, computational
complexity, processing speed, etc., where each of them plays a
key role in the IoT device’s adaptability and resiliency against
the attacker. We have previously investigated extraction of the
intelligence factors of cognitive radios and the cognitive load
associated with each intelligence factor [31], [32]. In this paper
we provide a workflow which can be utilized to construct a
relationship between the intelligence factors and the cognitive
IoT device’s resiliency in adversarial environment.

We propose a data-driven methodology to find the least
required cognitive capabilities for any intelligent IoT device
such that it guarantees the minimum required network capacity
while the network is under attack. Figure 4 demonstrates the
workflow of the proposed method. According to this workflow,
we propose to first identify the cognitive capabilities of a
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Fig. 4: Proposed workflow: Computing intelligence factors to guarantee the minimum required network capacity.

pool of intelligent IoT devices and derive their intelligence
factors (latent factors) by applying statistical factor analysis
method [31]. To derive these factors, we suggest to design var-
ious environments modeling different wireless communication
networks and apply Item Response Theory [76] to quantify the
level of hardness of each environment. Next, the performance
of each IoT device against the optimal attacker is assessed
by measuring key parameters such as throughput, delay, and
interference level in the designated environments. Subsequently,
based on the outcomes, the intelligence capabilities of the IoT
devices are updated, and the same process is repeated until the
minimum required network capacity is attained.

This methodology can be validated by conducting exten-
sive numerical analysis and simulations using statistical data
analysis techniques [43], [54], [76]. A large pool of artificial
intelligent IoT devices with various cognitive capabilities along
with various wireless communication environments under attack
can be generated. Then, to coduct the analysis, we propose
to utilize SPSS software [54] to perform factor analysis; SAS
software [77] for item response theory analysis, as well as
AMPL and CVX open source optimization toolboxes [78]–[80]
to solve the optimization problems.

IV. CONCLUSION

We systematically surveyed spectrum sharing IoT networks
and introduced an innovative set of strategies for future studies
to improve the security of spectrum sharing within the IoT
networks. By leveraging multidisciplinary approaches that
integrate online machine learning, stochastic optimization,
and game theory, these strategies offer robust communication
among IoT users in wireless networks. We introduced two
spectrum sharing attack policies, considering practical aspects
of IoT device capabilities. Three defense mechanisms were
explored, employing various methods such as utilizing online
learning with channel switching costs, implementing a game-
theoretic approach between IoT users and attackers, and
establishing a framework for the intelligence capabilities of IoT
devices to enhance defense mechanisms. As the demand for
interconnected devices continues to grow, our proposed policies
present a strategic and comprehensive solution to address the
challenges associated with spectrum sharing. This paves the
way for more resilient and secure IoT communication systems
in the future.
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