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Abstract—Hyperdimensional Computing (HDC) has obtained
abundant attention as an emerging non von Neumann computing
paradigm. Inspired by the way human brain functions, HDC
leverages high dimensional patterns to perform learning tasks.
Compared to neural networks, HDC has shown advantages such
as energy efficiency and smaller model size, but sub-par learning
capabilities in sophisticated applications. Recently, researchers
have observed when combined with neural network components,
HDC can achieve better performance than conventional HDC
models. This motivates us to explore the deeper insights behind
theoretical foundations of HDC, particularly the connection and
differences with neural networks. In this paper, we make a
comparative study between HDC and neural network to provide
a different angle where HDC can be derived from an extremely
compact neural network trained upfront. Experimental results
show such neural network-derived HDC model can achieve up to
21% and 5% accuracy increase from conventional and learning-
based HDC models respectively. This paper aims to provide more
insights and shed lights on future directions for researches on
this popular emerging learning scheme.

I. INTRODUCTION

In recent years, machine learning has achieved tremendous
success in a diverse range of domains, even surpassing the
capability of human beings. However, such huge progress
on machine learning comes with the drastically growing
model complexity and the ever-increasing computation re-
sources [16]. On the other hand, as machine learning has been
continuously pushed to the edge such as embedded systems
or (near-)sensor devices, the computation resources allocated
for learning is significantly less than centralized servers or
data centers [15]. To address this challenge, researchers seek
for non-conventional computing paradigms, and Hyperdimen-
sional Computing (HDC), is one example seen as a promising
alternative of conventional machine learning models [9]. The
key idea of HDC is to leverage the computing capabilities
of distributed representation of high dimensional numerical
vectors referred to as Hypervectors (HV) [7]. Specifically,
HDC is formulated to leverage HVs and their associated
vector arithmetic to present, represent, and process information
from different modalities [18]. Related studies show that
HDC is able to achieve high energy efficiency on a diverse
set of applications, including speech recognition [6], human
activity recognition [14], [8], NLP [17], [12] and anomaly
detection [19].

One major obstacle preventing HDC to be applied for a
broader range of applications is its relatively lower learning
capability. For example, for a very basic benchmark of MNIST,
the baselines of HDC solutions can only achieve less than
95% accuracy [13], [3], which is much lower than a basic

LeNet-like network [11]. On the other hand, the application
datasets which HDC shows advantage on are mostly small and
relatively easier to differentiate. Therefore, such a limited set
of applications when evaluating HDC algorithm is unlikely to
justify the benefits of HDC and enable its practical use.

On the other hand, researchers endeavor to introduce tech-
niques from neural networks into HDC for performance en-
hancement. For example, a fixed random connection neural
network layer can be added into the HDC flow to achieve
better performance [2]. Perceptrons specific for HDC are also
proposed and further combined with other techniques such
as drop-out [1]. HDC is also found similar to binary neural
networks based on which loss functions are also defined so that
HDC can be trained with back propagation [3]. Those related
works reveals deeper connections between HDC and neural
network and also motivate us to further explore the HDC
foundations. This paper, specifically, present a comparative
study to show the similarities and differences between HDC
and neural networks. The main contributions are as follows:
• We present a recap of HDC preliminaries applied in the

majority of related works, which we recognize as the
“canonical” HDC flow. We then make a comparison be-
tween the HDC model and a two-layer “neural network”1,
including both the architecture and the learning process.

• Experiments using two datasets of MNIST and CIFAR-
10 show that HDC models can be directly transformed
from a neural network which outperforms SOTA HDC
models by 5% to 21% in accuracy. This paper provides
an alternative angle to assess the learning capabilities of
HDC and insights on future directions of enhancing and
optimizing this promising computing scheme.

II. RECAP OF HDC

In this section, we present a recap of the basic concepts in
HDC such as the notions like HVs, HDC operations, HDC
memories and similarity metrics, as well as the canonical
flow of using HDC to develop a classifier including encoding,
training, retraining and inference.

A. Notions of HDC

1) Hypervector: Hypervector (HV) is the fundamental
“building block” of HDC. HVs have three most important
properties. First, HVs are high dimensional numerical vectors,

1Typically, neural networks have at least 3 layers. In other related works,
a network with first layer fixed can also be referred to as “Extreme Learning
Machines” [5]. However we use the term “Neural Network” throughout the
paper for explanatory purposes and consistency.



which are usually higher than 10,000 dimensions where each
dimension is a number. This provides an extremely large space
for HVs to represent information. Second, the HVs are usually
randomly initialized and the numbers generated follows i.i.d.
randomness. Because of the high dimensionality of HVs, this
can ensure that two randomly initialized HVs can be (almost)
orthogonal to each other. Third, HVs are holographic which
means that within an HV, all the dimensions are recognized
equally as to their contributions and there is no any dimension
that is more important than others. In other words, the HV
needs to be treated as a whole and not micro-coded. An HV
of D dimensions can be denoted as Eq. 1, where vd is the
number at the d-th dimension.

V⃗ = (v1, v2, ..., vD) (1)

2) HDC operations: There are three types of HV operations
that are most frequently used in HDC:
• Addition +: takes two HVs as operands and performs

element-wise addition on the numbers at the same dimen-
sion. Addition is usually used to aggregate the information
of two HVs from the same modality and create a superpo-
sition of them.

• Multiplication ×: also takes two HVs as operands but
performs element-wise multiplication on the numbers at the
same dimension. Contrary to addition, multiplication is usu-
ally used to combine information from different modalities
and create new information of another modality based on
these two.

• Permutation ρ: takes one HV as the operand and perform
cyclic rotation (shift). Permutation is usually used to reflect
temporal or spatial patterns of information.
Note that all the three HV operations do not modify the

dimension of HV operands, i.e., the input and output HV of
each operation are in the same dimension.

3) HDC memories: Memories in HDC are a specific cluster
of HVs which serve different functions in developing a model.
Specifically, there are two types of memories: item memory
and associative memory. Item memory is related to the input
data, accommodates item HVs that are generated based on the
input features. Assume the input sample has M modalities of
features and each feature can have N possible values, then the
item memory of each modality of feature can be generated as
Im = {I⃗1, I⃗2, ...I⃗N}. On the other hand, associative memory is
related to the output of the model, namely making predictions.
If the classification task has C classes, then the associative
memory is configured as A = {A⃗1, A⃗2, ...A⃗C}, in which each
HV A⃗c inside the memory is the representation of a class.
Associative memory is usually initialized with zero numbers.

4) Similarity metrics: Since each HV represents a specific
information, there is a natural need of metrics that could
represent the similarity between information that two HV
respectively accommodate. Hamming distance and cosine sim-
ilarity are the two mostly used similarity metrics. Hamming
distance is for calculating the similarity between binary or
bipolar HVs while cosine similarity can be used for HVs

in different data types. We show the calculation of cosine
similarity δcos in Eq. 2 as an example. A higher similarity
indicates that the two HVs compared share more information
in common.

δcos(V⃗a, V⃗b) =
V⃗a · V⃗b

||V⃗a|| × ||V⃗b||
(2)

B. HDC Model Development

A canonical flow of developing an HDC model features four
major phases: Encoding, Training, Inference, and Retraining.

1) Encoding: Encoding is the basic phase of HDC model
development. During encoding, the input samples are “en-
coded” into their representative HVs using a set of application-
dependent HD operations Φ and the item memories. For
example in Eq. 3, assume the input sample has M features:
F⃗ = {f1, f2, ..., fM}, the values of each feature fm is used as
indices to fetch corresponding item HV in the item memories
Im. After encoding, the realistic features are now in the form
of high-dimensional representations, namely the HVs which
are used in all the other three phases of model development.

V⃗ = Φ(I1.index(f1), I2.index(f2), ..., IM .index(fM )) (3)

2) Training: Training is the phase where associative mem-
ory is trained using the encoding HVs from the training
samples. As noted in Eq. 4, all the sample HVs sharing the
same label c are summed to the corresponding class HV A⃗c

in the associative memory. This is to collect and aggregate
information to build a representative HV for each class.

A = {
∑

A⃗1,
∑

A⃗2, ...,
∑

A⃗C} (4)

3) Inference: Inference is the phase where associative
memory is used to predict the class of unseen test samples.
During inference, the unseen samples are still encoded using
the same item memory as training. The encoded HV of the
unseen sample is often referred to as the query HV V⃗?. As
shown in Eq. 5, the similarity between query HV and every
class HV in the associative memory is calculated and the class
with the highest similarity is then determined as the predicted
label l for this unseen sample.

l = δcos(V⃗?,A).argmax() (5)

4) Retraining: Retraining is an optional phase of fine-
tuning the trained associative memory to achieve higher per-
formance of model. During retraining, the model iterates over
the encoded training samples and make inference to obtain
the prediction labels using the trained associative memory.
Then the prediction label is compared with the ground truth
label to identify if there is a discrepancy. If so, the associative
memory is updated as Eq. 6 describes: the encoded HV of the
sample is subtracted from the class HV of the wrong prediction
and added to the correct class. This is to reduce the wrong
information from the mis-classifications and instead enhance
the information of the correct class.
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Fig. 1. Architectural Comparison between HDC and neural network

A⃗wrong = A⃗wrong − V⃗

A⃗correct = A⃗correct + V⃗
(6)

In the following sections, we depart from the canonical no-
tions of HDC as well as flow of developing an HDC classifier.
Instead, we make comparisons on both the architecture and the
learning process between a two-layer neural network and the
HDC model and show that an HDC model can be potentially
derived from a trained network as such.

III. HDC VERSUS NN: ARCHITECTURE

A. Item Memory vs. Input Layer

We first formulate the item memory and the encoding
process as the processing of the input layer inside a neural
network. As noted in Sec. II-B, the input to the encoding
phase is the sample and the output of is the HV with a specific
(pre-defined) dimensionality. This resembles the classical input
layer of a neural network that takes the samples then produce
intermediate layer outputs. The encoding is conventionally
application or task dependent, however the set of the HDC
operations mostly features the three types of HDC operations
as introduced in Sec. II-A. Therefore, such a set can be
constructed by a combination of linear mappings, namely the
forward pass of a linear layer.

Without loss of generality, we assume the encoding process
uses the commonly used record-based encoding, as Eq. 7: the
samples HV is obtained by adding up the item HVs indexed
from the item memory multiplied by the feature value. This
is actually a matrix multiplication between the input feature
vector and the item memory. Therefore, we can connect this
to the linear layer of neural network which can be described
as Eq. 8, where x and y are the input and output of the
layer, and W and B are the weights and biases respectively.
From the perspective of HDC, the weights are essentially the
item memory and the biases are set to 0. If the encoding
process features more HV operations beyond multiplication,
then biases can be used and multiple such layers can be
cascaded.

We can also find the counterpart of activation functions in
neural networks in HDC. After the encoding of input samples,

HVs are often bipolarized or binarized, where the numbers
larger than 0 are set to 1 and numbers smaller than 0 are
set to -1 (or 0). Such bipolarization or binarization, similar
to the activation functions in neural networks, provide non-
linearity to HDC so that HDC models can be used to perform
classification tasks, which is similar to the kernel trick [4]
in other machine learning algorithms such as support vector
machines. In this paper specifically, we apply hyperbolic
tangent activation (tanh) after the input layer of the neural
network which has the similar effect of bipolarization.

V⃗ =

M∑
m=1

I.index(fm)× fm (7)

y = WTx+B (8)

B. Associative Memory vs. Classifier Layer

We also formulate the associative memory as the classifier
layer, i.e., the output layer of a neural network. As introduced
in Sec. II-B, the inference process of HDC is the iterative
similarity calculation between the query HV and each class
HV in the associative memory. Recall the definition of cosine
similarity at Eq. 2, we can ignore the ||V⃗a||×||V⃗b|| and simplify
the calculation into the vector product. This further transforms
the inference process into another matrix multiplication and
can subsequently be regarded as a linear layer just like the
classifier in a neural network. The activation function after
the classifier layer is softmax as it resembles argmax in
HDC inference which is used to locate the class with highest
similarity, but is differentiable.

IV. HDC VERSUS NN: LEARNING

We have already present the architectural comparison be-
tween an HDC model. To make a further step, we also analyze
in this subsection that the learning process of HDC is also
similar to the back-propagation. We address that three critical
characteristics of HDC learning process grant its advantages
such as energy efficiency, but on the other hand limit the po-
tential of the learning capability of high dimensional patterns
for more complicated and difficult datasets.

First, for the canonical HDC model, the item memory is
usually fixed. From the perspective of neural network, it means
that only the classifier layer of the formulated neural networks
is trainable while the input layer is “freezed”, which resembles
the “Extreme Learning Machine” [5]. The item memory will
not be updated during the training and retraining process.
For neural network, it means the gradients are not back-
propagated to the input layer and will stop at the classifier
layer, which is similar to fine-tuning a retrained network
model. Second, HDC training and retraining also features a
“coerce” version of back-propagation, which is different from
gradient descent: Unlike neural networks that the weights
of each neuron can be updated individually and freely, for
HDC, the weights representing associative memory can only
be updated together, limited by the set of encoded HVs
available from the training set. We recognize such training
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Fig. 2. Derive an HDC model from a trained neural network.

is an “approximate back-propagation” as the encoded HVs
of each training sample contribute to rather a limited vector
space. Third, HDC learning rate is much higher than that of
neural networks. The canonical HDC training and retraining
uses a learning rate of 1, this explains why HDC training is
much faster than the neural networks as the accuracy could
saturate after much less epochs.

V. EXPERIMENTAL RESULTS

In this section, based on the comparison and analysis we
present above, we show an experimental study that HDC
model can be derived from a trained neural network which
can surpass accuracy of conventional HDC models. As pre-
sented in Fig. 2, a two-layer neural network is trained using
conventional neural network training strategies. After training,
the weights of each layer is fetched and then duplicated as the
item and associative memory during encoding and inference.

A. Experimental Setup

We use the MNIST dataset [11] as our benchmark dataset
because it is one of the datasets that HDC performs much less
than state-of-the-art that most of the HDC models can only
achieve less than 95% accuracy [13]. We also use CIFAR-10
dataset [10] which SOTA HDC can only achieve around 45%
accuracy [3].

We use a typical configuration of HDC with the dimension-
ality of 10,000. For MNIST, we use the record-based encoding
as introduced in Eq. 7, which translates into a neural network
model with two layers as specifies by Fig. 1. For CIFAR-
10, as the input image has three channels (R, G and B),
therefore we modify the record-based encoding as Eq. 9 so
that each channel is encoded separately like MNIST dataset.
After encoding all the 3 channels, the HVs representing each
channel are added together each two so that different channel
information can be mixed together.

We also compare the performance with two baselines:

• HDC-base: This baseline is the HDC model trained using the
canonical (record-based) encoding, training, and retraining
process which can be found in the majority of HDC related
literature.

• LeHDC: This baseline is implemented according to the
learn-able HDC frameworks proposed in [3].

⃗VRG = V⃗R + V⃗G

⃗VRB = V⃗R + V⃗B

⃗VGB = V⃗G + V⃗B

V⃗ = ⃗VRG + ⃗VRB + ⃗VGB

(9)

B. Training of Neural Network
We implement the neural network using PyTorch frame-

work, the HDC network architecture can be concisely defined
as a sequential model of PyTorch with just a few lines along
with the required activation functions. For example, the code
for defining HDC model for MNIST dataset is shown in
Listing 1 as an example. We train the neural network with
Adam optimizer and use learning rate 0.001 and the training is
terminated if inference accuracy does not substantially increase
after consecutive epochs.

1 def hdc(d_feature, d_HV, n_classes):
2 return nn.Sequential(
3 nn.Flatten(),
4 nn.Linear(d_feature, d_HV, bias = False),
5 nn.Tanh(),
6 nn.Linear(d_HV, n_classes, bias = False),
7 nn.Softmax(dim = 1))

Listing 1. Defining HDC Model for MNIST using PyTorch

C. Derive an HDC from NN
We derive an HDC model from a trained network by

extracting the weights of the input and classifier layers. For the
input layer, the size of the weight matrix is 10000×768, thus
each column can be considered as an item HV and the entire
weight matrix, with a transpose, is thus the item memory. For
the classifier layer as the weight matrix size is 10 × 10000,
the row instead can be considered as the class HV thus the
weight matrix can be considered as the associative memory.

We present an accuracy comparison of the two baseline
models and the HDC model transformed from the trained
neural network in Table I. We can observe that for the MNIST
dataset, the HDC model derived from neural network can
achieve about 96.7% accuracy which surpasses the baseline
by nearly 6% and the learning based LeHDC by about 2%.

For the even more challenging CIFAR-10 dataset, the canon-
ical HDC-base model can only achieve unacceptable accuracy
of 30%. For the LeHDC baseline, the accuracy can increase
to 46%. Although for this paper with HDC model transformed
from neural network, the accuracy is still only 51%, there is
already a 20% increase from the baseline.

As to computation cost, the HDC model transformed from
the neural network performs the same amount of computations
as the HDC-Base during inference, since they share the same
architecture. The overhead is on the training process since a
neural network needs to be trained to obtain the parameters
such as weights to be transformed into the HDC memory
elements. Additionally, since the neural network architecture
trained for transform is compact (as shown in Listing 1), the
training is also fast. With our experimental setup, it takes
around 4 and 7 minutes to achieve the reported accuracy even
when trained afresh.



TABLE I
ACCURACY COMPARISON WITH TWO BASELINE MODELS

HDC-Base LeHDC [3] This Paper

MNIST 90.93±0.52 94.74±0.18 96.71±0.37

CIFAR-10 30.28±1.90 46.10±0.20 51.08±0.79

D. Discussion

HDC resembles the architecture of a extremely compact
neural network with just 2 layers. Both the encoding of HV
and the inference can be accomplished by a typical fully
connected layer. The item memory and the associative memory
can be transformed from the weights of a trained neural
network in such an architecture. The training of HDC models
is also similar to the training of a neural network. Instead of
using back-propagation with gradient descent, HDC use HV
addition and subtraction to guide model to converge at the
direction of higher accuracy which is easier to implement.
We recognize this as a compromise to sacrifice some of the
canonical neural network training schemes for more energy
efficiency and acceleration.

The learning capability of HDC is capped by the corre-
sponding neural network architecture. From the experimental
results, although a two-layer neural network can achieve
acceptable accuracy on the MNIST, when the dataset becomes
much complicated and challenging like the CIFAR-10, such
shallow network structure cannot achieve an acceptable accu-
racy. This explains the reason that the current HDC models
mostly focus on simple applications or datasets and cannot
achieve comparable performance on more demanding tasks.

One major challenge of HDC is that the encoding process
is not application-agnostic. System designers are required to
spend manual effort to design, develop, and evaluate the
encoding process, which can often lead to sub-par results as
there may exist undiscovered encoding methods with better
performance and also prohibits the scalability and flexibility.
Neural network has the advantage over HDC as the weights
of neural network is individually trainable, however, in HDC
only the associative memory is trainable and the elements
inside each class HV is not individually trainable due to the
holographic representation of HVs.

VI. CONCLUSION

The tremendously increasing popularity of Hyperdimen-
sional Computing (HDC) has attracted researchers from var-
ious domains to invest their effort in this topic. The major
advantages of HDC are better energy efficiency, smaller model
size, and acceleration on heterogeneous platforms. In this
paper, we provide a new perspective of getting insights of
this emerging algorithm from the angle of neural networks.
Specifically, we present a comparative analysis and experiment
to illustrate the similarity between HDC and neural network
on architecture and learning process, and show that an HDC
model can be derived from a two-layer neural network. During
experiments, we illustrate that by training the neural network

upfront and then derive an HDC model based on the trained
network, we can achieve up to 21% accuracy improvement
from baseline HDC models and up to 5% improvement from
SOTA learning based HDC models.
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