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Abstract 

Quantum error correction (QEC) is vital for protecting 
quantum information against errors induced by quantum 
noise and decoherence, enabling fault-tolerant quantum 
computation. Here, we develop a SPICE-based classical 
emulator framework for simulating gate-based quantum error 
correction circuits for correcting bit-flip error and phase flip 
error. Here, we construct a SPICE-based classical emulator 
framework to simulate gate-based quantum error correction 
circuits, specifically designed to correct both bit-flip and 
phase flip errors. In our framework, a collection of LC-
oscillators emulates the process behavior quantum gates. 
Each quantum state is perfectly described by the phase and 
amplitude of each oscillator. Our framework is scalable to any 
quantum error correction system with any arbitrary number 
of qubits since each gate process is perfectly achieved. Here, 
we have successfully conducted simulations for an individual 
bit-flip correction circuit and Shor’s nine-bit error correcting 
quantum circuit, demonstrating the capability of our 
framework to effectively address and repair random bit-flip 
and phase flip errors in gate-based quantum computing 
circuits.  
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1. Introduction 
With classical computing reaching its boundaries, 

scientists are actively exploring alternative computational 
paradigms, and quantum computation emerges as a 
particularly successful contender [1], [2]. Quantum 
computers exhibit superior efficiency, demonstrated by 
applications like Shor's factorization algorithm and Grover's 
search algorithm, showcasing their potential advantages over 
classical counterparts [3]–[5]. The key to this efficiency lies 
in the structure of Hilbert space, where quantum states 
represent linear superpositions of classical binary states over 
a scalar field. As the number of qubits increases, Hilbert space 
expands exponentially, providing quantum computers with 
significantly enhanced computational capabilities [6]. This 
quantum advantage is exemplified by their ability to solve 
certain problems, such as quantum material simulation [7], 
millions of times faster than classical computers. However, 
Quantum computers are inherently susceptible to errors due 
to various factors such as environmental noise, and imperfect 
operations on qubits [8]–[10]. Unlike classical bits, which are 
binary and deterministic, qubits exist in superpositions of 
states, making them more fragile and susceptible to errors 
[10]. This has direct implication on the performance of 
quantum computing as it causes issues such as quantum 
decoherence, logical errors, superposition disruption, etc., 
directly affecting the computing accuracy. Besides, error 
correction systems also require substantial computing 
resources posing additional practical challenges [11]–[14]. 

Researchers are making efforts to address quantum errors 
through the development of quantum error correction codes 
and fault-tolerant quantum computing architectures. Various 
approaches such as surface code [15]–[17], topological qubits 
[18], and error-mitigation techniques [12] are being sought to 
simprove the resilience of quantum computers against errors.  

In recent times, electric circuits have garnered significant 
interest for their capability to replicate complex physical 
behavior such as topological physics [19] (i.e., topological 
edge states and corner modes) [20]. There have also been 
some efforts to emulate basic quantum behavior in electric 
circuits. It has been shown that a group of LC resonators can 
classically emulate the characteristics of all the universal 
quantum gates [21]. Based on this insight, in one of such 
recent works, a novel framework for emulating quantum 
circuits using LC oscillators has been introduced [22]. The 
dynamics of a set of LC oscillators are precisely tuned to 
accurately emulate the quantum gate processes within the 
circuit. The proposed framework can successfully emulate all 
the universal quantum gates required for universal quantum 
computation. In this manuscript, we propose an LC-
oscillator-based quantum circuit emulator framework for 
simulating quantum error correction circuits. This framework 
is designed for the simulation of quantum error correction 
circuits, specifically addressing two prevalent quantum 
errors: 1) bit-flip error, and 2) phase-flip error. Other types of 
errors such as gate error, measurement error, etc. are kept as 
a further scope of research in future.  

The organization of the paper is as follows. In section 2, 
we briefly discuss two types of quantum errors and their 
implications in quantum circuits. In section 3, we provide a 
brief overview of the LC resonator-based quantum gate 
simulation framework. In section 4, our proposed quantum 
error correction framework is elaborately discussed.  

2. Bit Flip Error and Phase Flip Error 
A bit flip error in quantum computing refers to the alteration 
of the state of a qubit from 0 to 1 or vice versa in any stage of 
the computation. Pauli X-gate is used to perform a bit flip 
operation. 

|0〉  |1〉 
 

|1〉  |0〉 
 

𝛼𝛼|1〉 + β|0⟩ 𝛼𝛼|0〉 + β|1⟩ 
 

This error can arise due to environmental factors or 
imperfections in quantum gates, leading to the corruption of 
quantum information. 
On the other hand, a phase flip error involves a change in the 
phase of a qubit's quantum state. Pauli-Z gate is used to 
perform a phase-flip operation.  
 

|0〉  |0〉 
 

|1〉  -|1〉 
 

𝛼𝛼|0〉 + β|1⟩ 𝛼𝛼|0〉 − β|1⟩ 
 



This alteration disrupts the superposition of quantum states, 
impacting the accuracy of quantum computations. Phase flip 
errors can occur independently or in conjunction with other 
types of errors, posing challenges for maintaining the 
integrity of quantum information. Bit-flip error and phse-flip 
error can also occur in conjunction, which can be represented 
by Pauli-Y matrix. Addressing and correcting these errors are 
essential components for ensuring the reliability and accuracy 
of quantum computations. 

3. LC Oscillator-based Quantum Gate Simulation 
Framework 

The quantum state of a qubit can be represented by the 
oscillation of an LC oscillator. The amplitude and relative 
phase of the oscillation can represent the amplitude and phase 
of the quantum states. For a system of N-qubits, 2N identical 
LC oscillators are needed to completely represent the 
resultant quantum states. The oscillators can be inductively 
coupled to represent inter-dependency of the resultant 
quantum states. Motohiko Ezawa has shown that, by carefully 
imposing perturbation to the circuit elements, quantum gate 
processes can be perfectly mimicked [23]. The perturbation 
in the capacitance can be expressed as:  

                𝐶𝐶(𝑡𝑡) =  𝐶𝐶0
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The perturbation in the coupling inductance governs the 

interplay between different resultant quantum states which 
can be expressed as:  
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In both cases, the time t1 and t2 determine the perturbation 
period and the parameters L0 and C0 determine the 
perturbation amplitude. These parameters govern the 
oscillation dynamics and the interplay between the quantum 
states represented by the LC oscillators. Adopting this 
theoretical proposition, Islam et al., has developed a SPICE-
based scalable quantum circuit emulator framework for gate 

[22]-based quantum circuit simulation. Here, each gate 
process is performed by imposing precise perturbation in a 
time-multiplexed manner. Being a simulation framework, this 
framework is scalable to higher number of qubits and 
complex gate-based quantum circuit. We use this framework 
to simulate two types of quantum error correction circuits 
which will be discussed in the following section. 

4 Quantum Error Correction by LC-resonator-
based Classical Emulator Framework 
Figure 2(a) depicts the schematics of a quantum encoder 
circuit. In this configuration, the qubit |𝜓𝜓〉 is transmitted 
alongside two encoded ancilla qubits through a CNOT gate. 
|𝜓𝜓〉 is encoded with two ancilla qubits performed by the 
CNOT gate. Instead of sending|0〉 or |1〉, the encoder sends 
|000〉 and |111〉 states to enhance robustness. A noise or error 
is introduced between the encoder and rest of the circuits. The 
encoded data is processed in the syndrome detection circuit 
to calculate the syndrome. If |000〉 or |111〉 is detected, then 
syndrome is calculated as |00〉 which translates to no bit-flip 
error. In other cases, different syndromes are detected as 
summarized in Fig. 2(b). These syndromes are utilized in the 
bit-error correction circuits to perform Toffoli gate operation 
in the flipped bit. If the probability of a single bit-flip is p, 
then, the probability of bit-flip error becomes 3𝑝𝑝2(1 − 𝑝𝑝2) 
which is less than p, if p<0.5. This way, the probability of an 
erroneous detection of flipped bit is reduced. Figure 2(c) 
displays the simulation waveform obtained from the quantum 
circuit simulation conducted in HSPICE. With a total of 5 
qubits, inclusive of ancillas, the complete representation of  
the quantum system requires the utilization of 32 identical LC 
oscillators. The execution of  CNOT or Toffoli gate 
operations is performed in the relevant oscillators in a time-
multiplexed manner by introducing a precalculated 
perturbation in the coupling inductances as given in equation 
(2). The Toffoli gate is defined by the matrix, 

 
Figure 1: (a) Sample quantum circuit consisting of all the universal quantum gates. (b) A collection of LC oscillators 
representing an n-qubit quantum system. Each oscillator consists variable capacitance and coupling inductance. (c) The quantum 
states are represented by the amplitude and phase of the oscillations in the LC oscillators. 
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The Toffoli gate operation completely transfers the 

oscillation to the adjacent LC oscillator. After the BEC 
operation, the resultant quantum state becomes |00010〉 
which indicates that our LC-oscillator-based framework has 
successfully performed the bit-error correction process and 
recovered the flipped ancilla bit by Toffoli operation keeping 
the other two bits intact.  

Figure 3 depicts Shor's nine-bit error correction circuit, 
which tackles both bit-flip and phase-flip errors[24]. Here, the 

Hadamard gate is used to convert a phase-flip to a bit flip. The 
Hadamard gate is defined by the matrix,  
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√2
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The gate matrix can be expressed as, UH = 𝑒𝑒−𝑖𝑖𝑖𝑖
4 𝑈𝑈𝑖𝑖
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. 

Hence, in our framework, we implement the Hadamard 
operation by sequentially performing a 𝜋𝜋

2
-phase shift gate 

process, mixing gate process, then a second 𝜋𝜋
2
-phase shift gate 

process followed by a 𝜋𝜋
4
-phase shift process. As we can see in 

Fig. 3 at the preliminary stage of this circuit, phase flip 
correction takes place while the subsequent part of encoding 
section addresses three-qubit bit-flip code. Here, Hadamard 
gates allow correction of phase-flip errors by parity checks. 
It's noteworthy that this correction operates on a distinct basis, 
expressed as HZH = X, where the Z gate represents a phase 
flip error, and the X gate corresponds to an individual bit-flip. 
We simulate the circuit in our framework in a time 

 
Figure 2: (a) Bit error correction circuit. (b) Syndromes calculated for each case of random bit error. (c) Waveform for the 
resulting quantum states at different stages for |ψ〉 = |0〉. 
 

L 0
 

SyndromeCase

00No Error

11
|ψ〉

= Ancilla 1
≠Ancilla 2

10
|ψ〉

= Ancilla 2
≠Ancilla 1

01
|ψ〉

≠ Ancilla 1
= Ancilla 2 Encoding Syndrome Calculation

Noise / Introduced Bit error
Bit-error correction

Time (A.U.)

Vo
lta

ge
 (V

/V
0)

|00000〉

|01000〉

|01010〉 (Syndrome = |10〉)

|01011〉

|00011〉

|00001〉

|00000〉

|00010〉

|00000〉

|ψ〉

{
A

nc
ill

a 
Q

ub
its

{BE
C

Q
ub

its

Syndrome |A1A2〉

Noise/ Flip-bit error

(a) (b)

(c)



multiplexed manner as shown in Fig. 4. We perform a phase 
flip operation by introducing a Z-gate as shown in Fig. 3. The 
phase-flip is converted to a bit-flip and the phase is 
successfully retrieved as the final quantum state is 
|100100100〉. Our innovative framework successfully 
addresses both random bit-flip and random phase-flip errors. 

5. Conclusion 
 We have developed a quantum circuit simulation 

framework for quantum error correction using SPICE. In this 
framework, a set of LC resonators accurately represents a 
system with any number of qubits. Within this framework, a 
collection of LC resonators serves as a precise representation 
of systems featuring varying qubit numbers. By fine-tuning 
the resonator capacitances and coupling inductors, we can 
effectively emulate universal gate processes. Utilizing the 
SPICE-based emulator framework, we can proficiently 
simulate two categories of quantum error correction circuits, 
successfully locating and rectifying both random bit-flip and 
phase-flip errors. What sets our emulator apart is its modular 
and scalable design, allowing seamless expansion for larger 
quantum systems with an increased number of qubits. Each 
quantum state is accurately portrayed through identical LC 
resonators, showcasing the versatility of our approach. Unlike 
hardware implementations, our simulation-driven 
methodology eliminates concerns tied to hardware 
complexity. This provides a straightforward controllability 
over inductor and capacitor values in the circuit simulation, 
contributing to the efficiency and adaptability of our quantum 
error correction framework.  
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Figure 4: Simulated waveform for phase error correction circuit for an initial state |𝜓𝜓〉= |1〉. 
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