
LLM-FIN: Large Language Models Fingerprinting
Attack on Edge Devices

Abstract—The deployment of Large Language Models (LLMs)
into edge and embedded devices marks a transformative step
in integrating Artificial Intelligence (AI) into real-world ap-
plications. This integration is crucial as it enables efficient,
localized processing, reducing reliance on cloud computing and
enhancing data privacy by keeping sensitive information on
the device. In the domain of machine learning (ML) security,
concealing the architecture of LLMs is imperative. Shielding the
architecture protects intellectual property and thwarts malicious
attempts to exploit model-specific weaknesses. Our research
proposes an efficient fingerprinting method tailored to identify
the architectural family of LLMs specifically within edge and
embedded devices. Uniquely, our technique hinges on analyzing
memory usage patterns, one of the few accessible data points in
a secured edge environment. Employing a supervised machine
learning classifier, our methodology demonstrates remarkable
efficacy, achieving over 95% accuracy in classifying known LLMs
into their architectural families. Notably, it also exhibits robust
adaptability, accurately identifying previously unseen models. By
focusing on memory usage patterns, our approach paves the way
for a new dimension in understanding and securing AI on edge
devices, balancing the need for open functionality and essential
confidentiality.

I. INTRODUCTION

The integration of Large Language Models (LLMs) into
edge computing has revolutionized sectors like healthcare,
autonomous vehicles, and smart homes by enabling on-device,
real-time data processing, thus enhancing efficiency and data
privacy [1], [2]. However, this advancement brings challenges,
notably the resource limitations of edge devices and the
heightened need to secure AI models against vulnerabilities
and attacks [3], [4]. LLMs, critical in modern AI, face risks
regarding their proprietary architecture and sensitivity in var-
ious applications. Strategies to protect these models include
concealing their inner workings to prevent intellectual property
theft and reduce susceptibility to attacks [5]. Fingerprinting
techniques, identifying unique model characteristics, have be-
come crucial in safeguarding AI security, especially for LLMs
on edge devices [6]. These techniques detect unauthorized use
and are pivotal in the evolving landscape of AI model security
and integrity [7].

The landscape of fingerprinting in AI, particularly in the
context of model architecture detection, has seen various
innovative approaches [8]–[10]. Despite these advancements,
there remain notable gaps in the existing research. Many of the
current methods, such as those relying on cache-based [9] and
power side-channel attacks [10], necessitate either direct phys-
ical access to the device or specific conditions like manipula-
tion of shared resources. This requirement significantly limits
the applicability of these techniques in real-world scenarios

where such access is not available or feasible. Additionally,
the focus on shared resources like cache or power traces often
makes these methods vulnerable to simple isolation or access
restriction defenses [11], [12]. These limitations highlight the
need for more versatile and non-intrusive methods that can
operate effectively under a broader range of conditions and
against more sophisticated defense mechanisms.

In our research, we introduce a new and efficient attack
method targeting prominent and cutting-edge LLM families.
These models are specifically tested on NVIDIA Jetson family
edge devices, known for their robust performance in edge
computing. Our attack methodology is distinctive in its exe-
cution, consisting of two critical steps. Firstly, we employ the
’tegrastats’ tool on an Nvidia Jetson Nano device to gather
comprehensive global system traces while an LLM model
is operational. This process involves meticulously selecting
the most relevant features from the collected time-series data,
focusing on aspects that are most indicative of the model’s
architecture.

The second phase of our approach involves training a
machine learning classifier on this carefully labeled dataset.
The classifier’s objective is to accurately fingerprint the victim
LLM’s architecture, paying particular attention to RAM usage
as a key feature. A noteworthy aspect of many model families,
including those we are investigating, is the presence of variants
that, while sharing a similar foundational architecture, may
have adaptations such as additional layers tailored for specific
tasks by developers. This diversity necessitates an examination
of the transferability aspect of our attack. We delve into how
effectively our attack can be applied to variants within these
model families, particularly those that the attacker’s classifier
has not been previously trained on.

A key advantage of our method lies in its non-intrusive
nature. Unlike previous methods that required manipulation
of shared resources, our technique passively collects global
memory-usage traces. This strategy not only enhances the
feasibility of the attack in real-world scenarios but also
circumvents common defensive measures such as resource
isolation. Additionally, our methodology’s reliance on global
memory-usage data, as opposed to more sensitive or restricted
data, presents a less invasive yet effective means of model
architecture identification.

The efficacy of our approach is underscored by its im-
pressive accuracy. Our results demonstrate that by analyzing
a combination of GPU and CPU loads along with RAM
memory usage, we can achieve an accuracy rate of 96% on
trained models. This high level of precision in identifying



known models is a testament to the robustness of our method.
Additionally, our experiments on transferability, which focus
on the applicability of our technique to variants of model
families not previously encountered by the classifier, highlight
RAM usage as a pivotal factor in distinguishing between
different LLM architectures. Even with unseen model variants,
the attacker’s classifier achieved a success rate of about 92%,
further emphasizing the effectiveness of our approach.

II. BACKGROUND AND RELATED WORKS

Prior research has explored diverse side-channel data to
achieve a range of attack goals, such as identifying model
architectures [13], discerning model inputs [14], and extracting
model parameters [15]. Common sources of side-channel
leakage in these studies include cache [9], memory access
[15], electromagnetic (EM) emissions and power consumption
[16], timing information [14], and GPU statistics [17]. These
sources have been foundational in advancing understanding
and methodologies in the field of model security.

In a pioneering study by Duddu et al. [18], they demon-
strated the feasibility of extracting a model’s details by sending
queries to it and monitoring the time it takes to execute
these queries. This approach harnessed information about the
execution duration to estimate the depth of the model. This in-
sight substantially narrowed down the possible configurations,
facilitating the accurate prediction of the targeted model’s
architecture.

One notable work in the GPU domain is by Wei et al.
[17], who introduced an innovative attack known as Leaky
DNN . This technique leverages the penalties incurred during
GPU context-switching to deduce the architecture of a victim’s
model. A critical aspect of this approach is its reliance on
access to shared GPU profiling data, which plays a pivotal
role in the attack’s execution. To reconstruct the layers of the
Deep Neural Network (DNN), the authors employed a Denial
of Service (DoS) strategy. This method deliberately slowed
down the progression between the layers of the DNN model,
thereby facilitating the successful extraction of the model’s
architectural details.

Another significant contribution is documented in the work
by Patwari et al. [13]. Here, the authors put forward a method
that utilizes shared memory traces from embedded GPUs on
edge devices to identify a model’s architectural framework.
It’s important to highlight, however, that this approach is
specifically tailored to conventional ML models. Its applica-
bility is somewhat limited, as it did not study the state-of-the-
art models. This insight into the adaptability of the method
underscores the ongoing need for security measures in the
realm of LLM.

In their research, Hong et al. [8] implemented the
Flush+Reload Side-Channel Attack (SCA) technique to de-
termine the architecture of Deep Neural Networks (DNN) by
monitoring specific function calls during the inference process.
Similarly, Torrellas et al. [9] used both Flush+Reload and
Prime+Probe methods to observe special functions, which

TABLE I: Comparison with state-of-the-art
Methodes GPU

profiling trace
Shared

memory info
LLM
aware

Access restr.
resistance

Target of prediction
(Accuracy)

[17] Yes Yes × × Model (95.2%)
[8] No Yes × ✓ Model (97.4%)
[9] No Yes × ✓ Model (No report)

[13] No Yes × ✓ Family (99%)
[20] Yes No × × Family/Model (100%)

Our work No Yes ✓ ✓ Family/Model (96%)

aided in deducing the structure of the model. These ap-
proaches, however, are susceptible to cache partitioning. For
successful cache-based fingerprinting attacks, precise timing
mechanisms and access to a shared cache are essential. Sev-
eral countermeasures against such attacks, as documented in
previous studies, focus on exploiting cache behaviors to protect
sensitive data from unauthorized extraction [19].

Power side-channel analysis attacks exploit the variable
power consumption in CMOS-based digital circuits, a phe-
nomenon closely related to the switching activity factor. Batina
et al. [10], for instance, harnessed power and electromagnetic
(EM) side channels to reverse engineer the architecture of
models. It’s important to note, though, that gathering EM
or power traces for such attacks generally requires physical
proximity to the targeted device. This requirement often poses
a significant challenge, as physical access is not always
feasible.

On the other hand, EZClone [20] offers a different approach
by identifying model architectures through analyzing GPU ker-
nel features, utilizing the PyTorch profiler. This method stands
out for its resilience against isolation defense techniques.
Nonetheless, it requires detailed access to shared profiling
resources, making it potentially vulnerable to defenses that
restrict such access.

Table I provides a comparative analysis of our research with
existing studies in the field. Building upon previous studies,
our research introduces an approach to classifying LLM ar-
chitectures on edge devices. We focus on categorizing these
applications into specific targeted model architecture families.
Our method is characterized by its non-intrusive nature: it
passively and remotely gathers only the global memory-usage
side-channel traces from a black-box victim LLM application.
This strategy eliminates the need for physical access to the
device or any alterations to shared resources like the cache.
We utilize these traces within a supervised learning framework,
aimed at accurately classifying the network architecture. To
the best of our knowledge, our research is pioneering in its
attempt to utilize fingerprinting techniques for the extraction
of LLM architecture information. This advancement not only
contributes to a deeper understanding of model architectures
but also significantly enhances the capabilities of adversarial
attacks. Our approach marks a critical step forward in the
realm of cybersecurity, particularly in the context of safeguard-
ing edge-deployed deep learning applications.

III. THREAT MODEL

Our methodology is structured within a closed-world frame-
work, where the hypothetical attacker is assumed to have
prior knowledge about the potential architectures of LLMs
and the specifics of the edge device on which these models



Data Collection Training Fingerprinting Classifier Deployment

Pool of Large 
Language 

Models

Offline Phase Online Phase

System Traces

tegrastats

Feature 
Selection

Supervised 
Learning

Victim Device running 
Large Language Models

Malicious App

Collect System Traces

Predict LLM Family

Sentence Inputs

Fig. 1: Attack pipeline for the LLM architecture fingerprinting.

are operational. This advanced knowledge enables the attacker
to craft a specialized, labeled dataset. This dataset is then
used to train a classifier through supervised learning methods,
conducted in an offline setting. The ultimate goal of the
adversary in this scenario is to identify the specific LLM
architecture employed by the victim (’fingerprinting’), setting
the stage for more effective and targeted downstream attacks.

The foundation of our proposed fingerprinting attack rests
on four key assumptions:

1) Knowledge of the Victim’s Platform: The attacker is
presumed to have detailed knowledge of the victim’s hard-
ware platform. This allows the attacker to replicate a similar
environment, running LLMs on a comparable device to gather
timing data that closely mimics the victim’s device behavior.

2) Single Model Operation: It is assumed that the victim’s
device runs only one ML model at any given time. This as-
sumption is crucial as it ensures that the timing data collected
is solely representative of the specific model in operation,
without interference from concurrent processes.

3) Familiar Model Families: The adversary’s hypothesis
includes the assumption that the victim’s ML model belongs to
one of the known model families. However, the attacker does
not need prior knowledge of the model’s hyper-parameters or
any specific customizations. The models in question could
have been fine-tuned for particular tasks, but this does not
deter the fingerprinting process.

4) Adversary’s Privilege Level: The attacker operates with
user-space privileges, commonly referred to as Ring 3 priv-
ileges. This level of access implies that the adversary does
not have deep system-level control but can execute standard
user-level operations, which are sufficient for conducting the
fingerprinting attack.

These assumptions create a structured environment in which
our attack methodology can be effectively applied, allowing
for the precise identification of LLM architectures and paving
the way for more sophisticated adversarial strategies.

IV. FINGERPRINTING METHODOLOGY

A. Attack Overview
In our study, we focus on the use of resource utilization

information as a tool to fingerprint prominent LLM architec-

tures, particularly those sourced from Hugging Face [21]. A
standard Machine Learning model inference pipeline typically
encompasses several key steps:

Loading LLM Hyperparameters: This step involves initializ-
ing the model with its predefined settings and configurations,
which dictate its behavior and performance. Loading Inputs
for the LLM: Here, the specific data or inputs that the LLM
will process are loaded into the system. Inference Task: This
critical phase involves conducting a forward pass of the input
through the model to generate outputs. It’s where the actual
’thinking’ or processing of the model occurs. Our research is
visually summarized in Figure 1, which outlines the structure
of our proposed LLM fingerprinting attack. This approach is
divided into two distinct phases:

1) Offline Phase: In this preliminary phase, the adversary
observes the victim’s LLM operations, capturing relevant
information. The data gathered during monitoring is then
processed (through steps like normalization and smoothing)
to create a refined, labeled dataset. This dataset serves as the
foundation for training a classifier specifically designed for
fingerprinting purposes.

2) Online Phase: This is the phase where the actual attack is
carried out. The attacker utilizes the classifier trained during
the Offline phase. This classifier is now adept at real-time
fingerprinting of the LLM architecture. By implementing this
classifier, the attacker can accurately identify the architecture
and family of the ML model in use during runtime.

By adopting this two-phase strategy, an attacker is posi-
tioned to effectively conduct a runtime fingerprinting attack.
This attack is aimed at pinpointing the specific LLM architec-
ture and family, providing crucial insights for more targeted
and potent downstream adversarial actions.

B. LLM Selection
To construct our comprehensive offline fingerprinting

database, we employed the Hugging Face library along with
its inference pipeline. This approach enabled us to gather
precise timing data for a selection of widely-used Hugging
Face pretrained LLMs. The specific models we chose for this
study are detailed in Table II. These models are primarily
designed for tasks like sentence similarity assessment or text



classification. Each model we selected was categorized into
distinct model families. This categorization was based on
their respective architectures as stated in the Hugging Face
model cards or as found on the models’ official websites. For
instance, some of the model families we identified include
BERT and DialogRPT. This classification of LLMs into model
families is a strategic step in our research. It allows us to
develop and train a Machine Learning (ML) classifier with a
specific focus. The purpose of this ML classifier is to be a
critical tool in the subsequent online attacking phase.

In the online attacking phase, the trained ML classifier’s role
is to efficiently extract timing information from a target device.
This device is presumed to be running an LLM program that
the classifier has not previously encountered. The classifier’s
objective is to accurately determine the model family of
the unseen LLM program based on the timing information.
This identification is a pivotal element in our research, as it
provides essential information that can significantly enhance
the effectiveness of subsequent adversarial attacks. By under-
standing the model family of the LLM running on the victim’s
device, we can tailor our adversarial strategies more precisely,
increasing the likelihood of a successful attack.

C. Inference Pipeline Design

Our inference pipeline is meticulously structured, incor-
porating fundamental components that are consistent across
various LLM inference applications. These essential compo-
nents include the loading of data, the importation of model
weights, and the execution of inference tasks on data streams.
Specifically, the pipeline processes the hate speech dataset,
comprising 10,945 entries sourced from Stormfront forum
posts.

The design of the inference pipeline, however, exhibits
slight variations when applied to text classification models
compared to sentence similarity models. In the case of text
classification models, our approach leverages the pipeline
abstraction layer offered by the transformers API. This
layer facilitates the loading of pretrained models from the
Hugging Face library. Subsequently, these models undertake
sequential inference on a subset of 2,000 sentences extracted
from the dataset.

Conversely, the inference pipeline for sentence similar-
ity models integrates the SentenceTransformers API for
model loading. This pipeline computes tensor encodings for
100 distinct batches, each containing 100 sentences. Following
this, it calculates the cosine similarity for sentences within
each batch, ultimately deriving a sentence similarity score for
every pair within the same batch.

The rationale behind using different sentence quantities
for the two model types stems from the observation that
text classification models generally exhibit slower inference
speeds compared to sentence similarity models. Our objective
is to standardize the duration of both the model loading and
inference phases across varied models as much as possible.
This standardization ensures a more uniform comparison and
analysis.

TABLE II: Pool of LLM models used in Model set 1

Model Set 1 Family Task
all datasets v4 MiniLM-L12 MiniLM

Sentence
similarity

all-MiniLM-L12-v2
all-mpnet-base-v2 MPNetmulti-qa-mpnet-base-cos-v1
gtr-t5-base T5sentence-t5-base
finbert BERT

Text
classification

bart-base-mnli
twitter-emotion-deberta-v3-base DeBERTa
DialoRPT-depth DialogRPT
distilbert-base-uncased-finetuned-emotion DistillBERT
bertweet-base-sentiment-analysis RoBERTaroberta-hate-speech-dynabench-r4-target

Furthermore, we opted for a batch size of 100 sentences
for sentence similarity models. This decision is important,
as it facilitates the calculation of similarity scores among a
larger array of sentence pairs. Such a setup more accurately
reflects the real-world application scenarios of sentence simi-
larity models, where they frequently process extensive sets of
sentence pairs to discern their comparative similarities.

D. Data Collection

In our research, we employ the ’tegrastats’ utility as a key
tool for data collection during the operation of LLM inference
pipelines. The process for each pretrained LLM we investigate
is methodically structured as follows:

1) Initiating Tegrastats: Before running any LLM inference
code, we initiate the tegrastats program as a background pro-
cess. This setup ensures that tegrastats is actively monitoring
and recording the system’s performance metrics from the very
start of the LLM’s operation.

2) Running LLM Inference Code: Once tegrastats is up and
running, we proceed to execute the LLM inference code. Dur-
ing this phase, tegrastats continues to collect detailed system
data, capturing the dynamics of the device as it processes the
LLM tasks.

3) Stopping Tegrastats and Data Storage: Immediately after
the completion of the LLM inference code execution, we halt
the tegrastats program. The collected data, which effectively
represents a time series log of the system’s performance during
the LLM operation, is then saved as a text file. This file serves
as a detailed record of that specific execution’s system metrics.

4) Repetitive Execution and Data Collection: Each LLM’s
inference pipeline is executed a total of 45 times to gather
comprehensive data. However, to ensure quality and con-
sistency, we only retain the tegrastats logs from the last
40 executions. These logs collectively form our time series
dataset.

5) High-Resolution Data Sampling: To achieve the finest
granularity in our data, the tegrastats program is configured
to sample hardware information at its maximum capability,
which is a rapid 1 millisecond (ms) sampling rate. This high-
resolution sampling allows us to capture the most detailed and
accurate representation of the system’s performance during
LLM operations.



 

Fig. 2: Comparative overview of total RAM utilization for two LLM families, monitored using Tegrastats on Jetson Nano.
Memory consumption trends show distinctions among different Families. For illustrative purposes, the time axis is not scaled.”.

E. Training the Fingerprinting Classifier

The primary goal of our fingerprinting classifier is to utilize
resource utilization data to accurately predict the architecture
and family of Large Language Models (LLMs) when they are
operational on edge devices. To accomplish this classification
task, we have employed the Sktime Python library [22], a
recent and valuable addition to the open-source ecosystem.
Sktime is notable for its compatibility with scikit-learn and
its specialized capabilities for handling time series data.

Within the Sktime framework, we opted to use the
ROCKET model (Random Convolutional Kernel Trans-
form), as referenced in Dempster et al. [23]. The ROCKET
model is renowned for its high accuracy and efficiency in
processing time series data.

The dataset required for the ROCKET model is structured
in a specific format:

1) Input Samples: The data should be arranged in a three-
dimensional numpy array, with the dimensions representing
(instance, feature, time point). Each instance in this array
corresponds to an individual sample, and each sample com-
prises multiple features captured over various time points.
In our context, each resource usage trace (like CPU and
Memory utilization) is treated as a separate feature. 2) Labels:
The labels for these input samples are provided in a one-
dimensional numpy array. Each element in this label array
corresponds to the class or category of the LLM architecture
for the respective sample in the input data.

This data format is particularly suited for processing by the
Sktime library. For the ROCKET model, we configure a
hyperparameter: the number of random convolutional kernels,
which we set to 3,000. This setting is pivotal for the model’s
performance.

To ensure the classifier is robust and can generalize well,
especially considering it will be used on the same device as
the victim’s but with potential minor variations, we implement
a normalization step. Resource usage values are normalized to
a range between 0 and 1. This normalization process is crucial
as it allows our classifier to focus on identifying patterns
or shapes in the data, rather than being influenced by raw
numerical values.

V. EVALUATION

A. Experimental setup

1) Device Specification: For our experiment, we utilized
the Jetson Xavier NX device. This device is built with a 6-
core NVIDIA Carmel processor based on ARM architecture,
features a Volta GPU with 384 CUDA cores and 48 Tensor
cores, and is equipped with 8GB of 128-bit LPDDR4x mem-
ory. The Jetson Xavier NX boasts an AI task capability of up
to 21 TOPS, enhanced by its robust components. We set up
the environment of the Jetson Xavier NX using Jetpack SDK
version 5.1. This SDK includes Jetson Linux 35.2.1, based on
Ubuntu 20.04, and integrates CUDA 11.4. The Jetson Xavier
NX offers flexible power mode settings, including 10W, 15W,
and 20W, which correspondingly affect the performance of
its CPU and GPU. In the 10W mode, the GPU operates at
800MHz, while in the 15W and 20W modes, it reaches up
to 1100MHz. The CPU in the Jetson Xavier NX allows for
adjustable core activation: in 10W mode, it can be set to 2
cores at 1.5GHz or 4 cores at 1.2GHz; in 15W and 20W
modes, it can operate with 2 cores at 1.9GHz, or 4 to 6 cores at
1.4GHz. Our fingerprinting experiments were conducted using
the default 15W power mode with 2 active CPU cores.

B. Classifier Accuracy

To evaluate the adaptability of our attack and its proficiency
in classifying models not included in the training set, we
introduced an additional collection of models from the initially
chosen families (termed Model Set 2, as shown in Table III).
The efficacy of our classifier on both the initial group (Model
Set 1) and this new set (Model Set 2) is outlined in Table IV,
where we present the accuracy metrics for model and family
classification.

Figure 2 provides a visual representation of four distinct
data examples, fed into our classifier. Each example illustrates
RAM utilization (depicted on the Y-axis) of the edge device,
corresponding to different LLM models over consecutive
time points (shown on the X-axis). The accuracy of model
classification is relevant exclusively to Model Set 1, which
includes models used in the training phase. Our results show
that the classifier achieved an accuracy exceeding 96% in



TABLE III: Pool of unseen LLM models used in Model set 2

Model Set 2 Family Task
multi-qa-MiniLM-L6-cos-v1 MiniLM Sentence

similaritymulti-qa-mpnet-base-dot-v1 MPNet
sentence-t5-large T5
bart-fined-tuned-on-entailment-classification BART

Text
classification

deberta-base-mnli DeBERTa
DialoRPT-updown DialogRPT
Text classification model 1 pytorch DistillBERT
twitter-roberta-base-sentiment-latest RoBERTa

TABLE IV: Pool of unseen LLM models used in Model set 2

Family classification Model Classification
Feature CPU Memory CPU+Mem CPU Memory CPU+Mem

Set 1 75.6 91.2 96.7 68.7 89.4 92.0
Set 2 66.5 88.1 92.3 — — —

identifying the family of the architectures for the models in
Model Set 1. Impressively, it also accurately classified the
family of the previously unseen models in Model Set 2 with an
average accuracy of 92%. These results validate our classifier’s
capability in accurately categorizing both familiar and novel
model families, highlighting its transferability and practicality.

Our analysis indicates that the MiniLM family models ex-
hibit the highest classification accuracy, while the DialogRPT
family models are less accurately identified. Remarkably, the
MPNet architecture stands out for its distinctiveness, ranking
as the second most accurately classified model. We also
observed a consistent pattern of misclassification between
models RoBERTa and DistillBERT, a finding that aligns with
expectations considering their similar model characteristics.

It’s worth noting that ongoing refinement and optimization
of the classifier could address some of the observed misclas-
sifications, thereby improving its accuracy and robustness in
identifying ML model architectures. The high classification
precision for Model Set 2 emphasizes the attack’s generaliz-
ability, ensuring effectiveness even against models not present
in the training set. Such a feature enhances the real-world
applicability of our approach, particularly in scenarios where
adversaries might encounter unfamiliar ML models.

VI. CONCLUSION

This paper has presented an approach to fingerprinting LLM
architectures deployed on edge devices, addressing a critical
gap in the field of edge AI security. Our method, character-
ized by its non-intrusive nature, successfully leverages global
memory-usage side-channel traces to identify model archi-
tectures, thereby circumventing the limitations of previous
techniques of manipulation of shared resources. Our research
demonstrates that the combination of GPU memory and CPU
loads can be effectively used to achieve a remarkable accuracy
rate of 96.7% in identifying trained model architectures. Such
findings not only validate the efficacy of our approach but
also highlight the significance of memory usage patterns as
a reliable indicator in LLM architecture identification. We
believe this is a valuable insight for safeguarding intellectual
property and enhancing the security of AI models against
adversarial attacks. As the deployment of AI on edge devices

continues to grow, the importance of robust security measures
such as the one proposed in this paper becomes increasingly
paramount.

REFERENCES

[1] C. Fang, N. Miao, S. Srivastav, J. Liu, R. Zhang, R. Fang, A. Asmita,
R. Tsang, N. Nazari, H. Wang et al., “Large language models for code
analysis: Do llms really do their job?” arXiv preprint arXiv:2310.12357,
2023.

[2] Y.-Z. Lin, M. Mamun, M. A. Chowdhury, S. Cai, M. Zhu, B. S. Latibari,
K. I. Gubbi, N. N. Bavarsad, A. Caputo, A. Sasan et al., “Hw-v2w-
map: Hardware vulnerability to weakness mapping framework for root
cause analysis with gpt-assisted mitigation suggestion,” arXiv preprint
arXiv:2312.13530, 2023.

[3] N. Nazari, C. Fang, S. M. PD, and H. Homayoun, “Don’t cross me!
cross-layer system security,” in 2023 60th ACM/IEEE Design Automa-
tion Conference (DAC). IEEE, 2023, pp. 1–2.

[4] H. M. Makrani, Z. He, S. Rafatirad, and H. Sayadi, “Accelerated
machine learning for on-device hardware-assisted cybersecurity in edge
platforms,” in 2022 23rd International Symposium on Quality Electronic
Design (ISQED). IEEE, 2022, pp. 77–83.

[5] N. Nazari, H. M. Makrani, C. Fang, B. Omidi, S. Rafatirad, H. Sayadi,
K. N. Khasawneh, and H. Homayoun, “Adversarial attacks against
machine learning-based resource provisioning systems,” IEEE Micro,
2023.

[6] H. Sayadi, Y. Gao, H. Mohammadi Makrani, J. Lin, P. C. Costa,
S. Rafatirad, and H. Homayoun, “Towards accurate run-time hardware-
assisted stealthy malware detection: a lightweight, yet effective time
series cnn-based approach,” Cryptography, vol. 5, no. 4, p. 28, 2021.

[7] H. M. Makrani, H. Sayadi, N. Nazari, K. N. Khasawneh, A. Sasan,
S. Rafatirad, and H. Homayoun, “Cloak & co-locate: Adversarial
railroading of resource sharing-based attacks on the cloud,” in 2021
International Symposium on Secure and Private Execution Environment
Design (SEED). IEEE, 2021, pp. 1–13.

[8] S. Hong et al., “Security analysis of deep neural networks operating in
the presence of cache side-channel attacks,” arXiv, 2018.

[9] M. Yan et al., “Cache telepathy: Leveraging shared resource attacks
to learn {DNN} architectures,” in 29th USENIX Security Symposium,
2020.

[10] L. Batina et al., “Csi nn: Reverse engineering of neural network
architectures through electromagnetic side channel,” in 28th USENIX
Security Symposium, 2019.

[11] R. J. Connor, T. McDaniel, J. M. Smith, and M. Schuchard, “{PKU}
pitfalls: Attacks on {PKU-based} memory isolation systems,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 1409–
1426.

[12] G. S. Mahmood, D. J. Huang, and B. A. Jaleel, “A secure cloud
computing system by using encryption and access control model,”
Journal of Information Processing Systems, vol. 15, no. 3, pp. 538–549,
2019.

[13] K. Patwari et al., “Dnn model architecture fingerprinting attack on cpu-
gpu edge devices,” in 7th EuroS&P. IEEE, 2022.

[14] G. Dong et al., “Floating-point multiplication timing attack on deep
neural network,” in SmartIoT. IEEE, 2019.

[15] W. Hua et al., “Reverse engineering convolutional neural networks
through side-channel information leaks,” in 55th DAC, 2018.

[16] Y. Xiang et al., “Open dnn box by power side-channel attack,” IEEE
Transactions on Circuits and Systems II, vol. 67, no. 11, 2020.

[17] J. Wei et al., “Leaky dnn: Stealing deep-learning model secret with gpu
context-switching side-channel,” in 50th DSN. IEEE, 2020.

[18] V. Duddu et al., “Stealing neural networks via timing side channels,”
arXiv preprint arXiv:1812.11720, 2018.

[19] D. Page, “Defending against cache-based side-channel attacks,” Infor-
mation Security Technical Report, vol. 8, no. 1, pp. 30–44, 2003.

[20] J. Weiss et al., “Ezclone: Improving dnn model extraction attack via
shape distillation from gpu execution profiles,” arXiv, 2023.

[21] https://huggingface.com.
[22] https://github.com/sktime/sktime.
[23] A. Dempster et al., “Rocket: exceptionally fast and accurate time series

classification using random convolutional kernels,” Data Mining and
Knowledge Discovery, vol. 34, no. 5, 2020.


	Introduction
	Background and Related Works
	Threat Model
	Fingerprinting Methodology
	Attack Overview
	LLM Selection
	Inference Pipeline Design
	Data Collection
	Training the Fingerprinting Classifier

	Evaluation
	Experimental setup
	Device Specification

	Classifier Accuracy

	Conclusion
	References

