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Abstract—Graph Neural Network (GNN)-based Network In-
trusion Detection Systems (NIDS) have recently demonstrated
state-of-the-art performance on benchmark datasets. Neverthe-
less, these methods suffer from a reliance on target encoding
for data pre-processing, limiting widespread adoption due to
the associated need for annotated labels—a cost-prohibitive
requirement. In this work, we first summarize related work
on GNN-based NIDS, discussing their limitations. Moreover,
we propose a solution involving in-context pre-training and the
utilization of dense representations for categorical features to
jointly overcome the label-dependency limitation. Our approach
exhibits remarkable data efficiency, achieving over 98% of the
performance of the supervised state-of-the-art with less than 4%
labeled data on the NF-UQ-NIDS-V2 dataset. Furthermore, we
also shed light on the avenues for future research in this direction.

Index Terms—Computer networks, intrusion detection, ma-
chine learning, graph neural networks, NIDS, few-shot learning,
self-supervised learning, IoT

I. INTRODUCTION

A Network Intrusion Detection System (NIDS) [1] monitors
the traffic on a computer network to detect anomalous or
malicious activities. Undetected intrusions pose threats to the
confidentiality, integrity, and availability of computer systems
[2]. Unlike Host Intrusion Detection Systems (HIDS) [3],
which focus on monitoring system telemetry on individual
hosts, NIDS takes a distinct approach. It observes and analyzes
the traffic passing through a dedicated point in the network
as illustrated in Fig. 1, triggering alerts to downstream threat
management when abnormal or suspicious traffic is detected.

With the rise of the Internet-of-Things (IoT), comprised of
compute-constrained and low-power devices that are typically
unable to run dedicated HIDS, there is a growing demand for
centralized intrusion detection systems, such as NIDS [4].

A traditional signature-based NIDS compares network
forensics to a set of predefined rules and patterns to identify
traces that might indicate an attack or intrusion. The rules need
to be hand-crafted for each deployment environment and are
fundamentally unable to detect novel or zero-day attacks [2].

More recently, research has focused on intrusion detection
as a classification problem in Machine Learning (ML) [4]–
[6]. ML-based detectors can be trained to recognize baseline
patterns in network traffic, enabling them to identify threats
beyond known examples. Synthetic datasets [7]–[11] have
been utilized to evaluate ML solutions for NIDS, as real traffic
data is difficult to make public for security concerns [12].
Additionally, real traffic data contains a minuscule proportion
of malicious examples, which can still be cost-prohibitive to
label. Such imbalance between benign and malicious activities
can also pose challenges to model training [13].
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Fig. 1. A monitoring deployment of NIDS, centralizing intrusion detection
by monitoring the network of activities [2].

Recently, intrusion detectors based on Graph Neural Net-
works (GNNs) [14]–[17] have achieved state-of-the-art perfor-
mance on synthetic benchmarks. GNN-based NIDS construct
graph representations of the unit of activity they monitor.
Such graphs can represent low-level activities like packet
behavior [18] or high-level network flow connections such as
Hypertext Transfer Protocol (HTTP) requests [8]. The latter
consider topologically related activities (e.g., other network
flows sharing a common source or destination node) while
detecting intrusion on a single record of network activity (e.g.,
network flow). This enables the classifiers to better detect
coordinated attacks or those involving a chain of actions, such
as Distributed Denial of Service (DDoS) [19] and Man-In-
The-Middle (MITM) [20] attacks.

Supervised [14], [18], [21], [22] and unsupervised [15], [23]
GNN-based NIDS have been proposed. In supervised methods,
the classifier predicts the labeled class for each training
example. In unsupervised methods, the model learns to encode
data distribution without specific label guidance, subsequently
using these encodings to establish decision boundaries.

A. State-of-the-Art and their Limitations

While GNN-based NIDS have achieved state-of-the-art per-
formance, they suffer from the following limitations.

1) Challenges in Categorical Feature Handling: Many
GNN-based NIDS [14]–[16] boast state-of-the-art performance
on heterogeneous synthetic datasets [8], [10], [11]. These
dataset are dubbed heterogeneous for their inclusion of fea-
tures associated with different network protocols such as
HTTP, secure sockets layer, and the internet protocol suite
(TCP/IP). These features are usually categorical and contain
rich semantics for traffic behavior [8], [24]. However, current
state-of-the-art GNN-based methods either drop or reduce
these categorical features to scalar-valued target encodings,



which computes the empirical correlation between categories
and labels during pre-processing. Such practice potentially
loses vital information for intrusion detection, which could
lead to poor generalization under distribution shift.

2) Label Dependency: Obtaining and maintaining an ac-
curately labeled dataset representative of the target domain
can be cost-prohibitive, posing a central challenge in NIDS
research [12]. As an example, recreating a dataset such as
ToN-IoT [8] would require an organization to identify and
label 216, 043 malicious flows within their own environment.

Unsupervised methods offer a solution to the challenge
of requiring labeled data for ML model training. However,
existing GNN-based unsupervised methods, such as Anomal-
E [15], preprocess categorical features using target-encoding.
This method computes the empirical correlation between cat-
egories and label classes, thus still relying on labels.

B. Our Contributions

In this study, we investigate approaches for representing
categorical features in GNN-based NIDS to mitigate label-
dependency limitations. Initially, we examine the representa-
tion of these features using dense vector embeddings, as they
are more expressive than scalar target encoding. However, we
find that directly learning such embeddings through super-
vised learning leads to poor performance in some settings,
evidenced by a performance gap in F1-score of approximately
7%. Subsequently, we introduce in-context pre-training and
fine-tuning, a training procedure that initially trains a GNN
encoder on unlabeled data from a network before fine-tuning
on a small sample of labeled data from the same network,
by theorizing that the initial Self-Supervised Learning (SSL)
would better initialize the weights before supervised training.
We show that this technique not only improves performance
compared to target encoded representations but also achieves
remarkable data-efficiency.

Key-results: Considering the ToN-IoT [8] and
NF-UQ-NIDS-V2 [11] datasets (discussed in Section III-A),
we observe that the pre-trained model retains over 95% of its
performance on the full dataset when fine-tuned on less than
4% of the labeled data. In-context pre-training thus offers
an alternate solution to the label dependency issue through
few-shot learning. Additionally, pre-trained GNNs can be
easily adapted for multi-way classification with a tractable
amount of labeled examples, whereas unsupervised methods
have only been shown suitable for binary classification.

The paper’s structure is as follows: Section II summarizes
related works in NIDS, and Section III provides an overview
of benchmarks, GNNs, and SSL. Section IV introduces in-
context pre-training and fine-tuning methods with dense rep-
resentation, Section V details experimental configurations and
results, and Section VI concludes and discusses future works.

II. RELATED WORKS IN GNN-BASED NIDS

This section surveys GNN-based NIDS approaches, includ-
ing supervised and unsupervised methods, and briefly touches
on cross-domain NIDS related to label dependence.

A. Supervised GNN-based NIDS

E-GraphSAGE [14] is the first general-purpose GNN-based
NIDS. The method proposed a simple GraphSAGE-like [25]
model that propagates edge feature information across the
neighborhood. E-ResGAT [16] proposed a graph attention
network with residual connections operated on line graphs
(a graph transformation that convert nodes to edges and vice
versa) and showed that the residual connection significantly
improved the performance on minority classes. State-of-the-art
performance is attained by [21], which proposed a three-layer
GNN consisting of two spectral layers as the first and last
layer and a spatial aggregation in the middle. NE-GConv [22]
is a GNN-based NIDS that incorporates both node and edge
features. In [26], the authors considered the temporal evolution
of network traffic and proposed a NIDS system based on
spatio-temporal GNNs. In [17], classification performance is
improved by training a supervised model alongside unsuper-
vised objectives that consider the traffic quantity at each node.

In [18], the authors proposed a Graph2Vec+ random forest
NIDS, performing flow-level classification by constructing
graphs for packet burst behavior [27]. By focusing on low-
level packet behavior rather than extracting statistical features,
the system achieves high data efficiency, retaining over 95%
performance with only 10% of the training data.

B. Unsupervervised GNN-based NIDS

Anomal-E [15] is the first unsupervised GNN-based NIDS.
It learns meaningful representations for edges by applying
Deep Graph Infomax (DGI) [28], a contrastive self-supervised
learning algorithm that maximizes the mutual information
between local and global representation of the communication
graph. The learned edge embeddings are then fed to tradi-
tional unsupervised classification methods such as isolation
forest and Cluster-Based Local Outlier Factor (CBLOF) [29]
for intrusion detection. In [23], the authors proposed AR-
GANIDS, where an Adversarially Regularized Graph Auto-
encoder (ARGA) [30] and its variants are first pre-trained on
unlabeled data. The learned embeddings from the encoder are
then used to train a random forest to classify network flows.

Both approaches [15], [23] train unsupervised models with-
out subsequent fine-tuning, neglecting the optimization of pre-
trained model weights through supervised learning.

C. Cross-Domain NIDS

The widespread adoption of supervised ML-based NIDS
has been hindered by the overall lack of available data.
This is in part due to obstacles such as organizations being
discouraged from sharing their expert-labeled data due to
security concerns [12]. One strategy to overcome this lim-
itation is to develop ML models that can generalize across
various deployment domains. In [31], the authors demonstrated
that current ML-based NIDS perform poorly across different
domains of network traffic. Subsequently, [32] proposed train-
ing domain-generalizable ML-based NIDS by utilizing only
domain-invariant features.



TABLE I
COMMONLY USED NOTATIONS

Symbol Definition
G = (V, E) Graph G with nodes V and edges E

x
(k)
u Vector representation of node u at layer k

hu, huv Final node/edge representation (embedding)
dx, de GNN node/edge hidden dimension

a Aggregated message
K Total # of GNN layers
xi One feature of input x
ei One-hot vector
euv Features of edge (u, v) ∈ E
N (u) The set of all nodes v such that (v, u) ∈ E

γ(k), ϕ(k),
⊕

Update, message function, aggregation operator
fθ, qξ Encoder & decoder in SSL
D Data sample
S Similarity function in DGI
s Graph summary

C(G) Corrupted graph
h̃uv finaledge representation from the corrupted graph
ω, φ Embedding/interaction function

W,W1,W2,Ws Weight matrices

III. BACKGROUND

This section provides essential background information on
NIDS dataset benchmarks, GNNs, and SSL. The commonly
used notations across the paper are defined in Table I.

A. Heterogeneous NIDS Benchmarks

By utilizing various sources of network activities, heteroge-
neous NIDS datasets allow intrusion detectors to construct a
more comprehensive and multi-dimensional understanding of
network dynamics, which could allow the NIDS to adapt to
new and emerging threats by considering a broad spectrum of
indicators and behaviors [33].
ToN-IoT [8] was the first to propose a heterogeneous

NIDS dataset. ToN-IoT’s heterogeneity is reflected by the
inclusion of 40 features across various network protocols.
Specifically, the dataset contains connection features from
Transmission Control Protocol (TCP) or User Datagram Pro-
tocol (UDP) at the transport layer, statistical summaries of
TCP/IP activities at internet and transport layers, secure
sockets layer states also at the transport layer, and Domain
Name System (DNS) and HTTP activities (application layer).
ToN-IoT consists of 9 attack types, including backdoor,
cross-site scripting (XSS), password cracking, MITM, Denial
of Service (DoS), DDoS, scanning, ransomware, and injection
attacks. There are 461, 043 total records in the dataset.
NF-UQ-NIDS-V2 [11] designs 43 standardized Net-

Flow [34] features across four datasets: UNSW-NB15 [7],
ToN-IoT [8], CSE-CIC-IDS2018 [9], and BoT-IoT [35].
The authors compile NF-UQ-NIDS-V2 by extracting the
newly designed features from the raw packet capture files
from the four aforementioned datasets. Like ToN-IoT, the
new feature set contains various network protocols such as
TCP, IP, UDP, the Internet Control Message Protocol (ICMP),
and secure sockets layer. In addition, the dataset includes
other internet and application layer protocols such as DNS and

the File Transfer Protocol (FTP). NF-UQ-NIDS-V2 contains
75, 987, 976 records in total with 20 attack categories.

Earlier datasets, like UNSW-NB15, CSE-CIC-IDS2018,
and BoT-IoT, primarily contain statistical features summariz-
ing generic network connections. UNSW-NB15 has 40 out of
49 numeric features, while CIC-IDS-2018 and BoT-IoT
exclusively consist of numeric features. In contrast, ToN-IoT
and NF-UQ-NIDS-V2 are predominantly composed of cate-
gorical features describing protocol activities. ToN-IoT has
31 out of 40 categorical features, and NF-UQ-NIDS-V2 has
15 out of 43 categorical features.

B. Graph Neural Networks (GNNs)

A key feature of GNNs is their capability to learn rich
representations of graphs through message passing across a
graph’s topological structure. More specifically, this means
combining the representation of each node with an aggregation
of neighboring node features to generate a new representation
for the node at each layer. This process is usually done
multiple times through the different layers of GNN. Formally,
this message passing framework is defined by three abstract
functions at each layer: message function ϕ(k), aggregation
operator

⊕
, and update funciton γ(k). One can compute the

next layer representation by the following formula.

x(k)
u = γ(k)

x(k−1)
u ,

⊕
v∈N (u)

ϕ(k−1)
(
x(k−1)
u , x(k−1)

v , evu

)
(1)

Here, x(k)
u ∈ Rdx is the hidden representation of node u at the

k-th layer. Usually, x(0)
u is the node’s feature vector associated

with node u. The message function takes edge features evu ∈
Rde and the hidden representations of any neighbor v of u as
input. The aggregation operator combines all messages from
the neighboring nodes N (u). γ(k) is the update function that
outputs the next layer hidden node representation by taking
the aggregated message and the node representation from the
previous layer. Different GNNs mainly differ based on the
selection of the message, update, and aggregation functions.

1) E-GraphSAGE: E-GraphSAGE [14] encodes edge in-
formation in node representations by propagating both node
and edge information in its message function. Formally, the
message function of E-GraphSAGE is defined as

ϕ (xu, xv, evu) = W1[xv; evu], (2)

where [xv; evu] is the concatenation of vector xv and evu
and W1 is a learnable matrix. Note that the message function
output in E-GraphSAGE is invariant to the input central node
xu. The aggregation operation simply averages the messages:

a :=
⊕

v∈N (u)

ϕv =
∑

v∈N (u)

ϕv (3)

Finally, the aggregated message is combined with center node
xu to compute the next layer of representation,

γ(xu, a) = σ(W2[xu; a]), (4)



where σ is a non-linear activation function. Equation 2 and 4
together ensure that the updated node representation includes
information from the center node representation xu, edge
features euv , and the neighboring node representations xv .

In E-GraphSAGE with K layers, the final layer node
embeddings hu := x

(K)
u of neighboring node representations

are concatenated to form edge embeddings huv = [hu;hv].

C. Graph Self-Supervised Learning (SSL)

SSL is an ML paradigm that trains models by fitting the
inherent structure or characteristics within the data through a
self-supervised objective LSSL without any annotated labels.
In the context of network intrusion detection, SSL allows the
model to learn meaningful representations from the ubiquitous
unlabeled traffic data without explicit labels for different types
of intrusions. Graph SSL methods employ an encoder fθ to
transform input data into a latent representation and a decoder
qξ to convert the latent representation into a training signal on
data sample D with the help of the objective function. Graph
SSL can be formulated as the following optimization problem;

θ∗, ξ∗ = argmin
θ,ξ

LSSL(fθ, qξ,D). (5)

The output embedding from the optimized encoder fθ∗ can
be used as input features for downstream classifiers [15], [23]
or the encoder can be further trained for the same purpose.

Existing GNN-based NIDS research has considered two
types of graph SSL techniques: contrastive and generative.
Both methods learn to encode the input graph into a lower-
dimensional embedding with the encoder fθ. However, con-
trastive methods supervise the encoder training with a dis-
criminative decoder qξ that maximizes the difference between
the embeddings of positive and negative examples, while
generative methods do so by using the decoder to reconstruct
the input from the embedding. At the time of writing, two
SSL-based NIDS has been proposed: Anomal-E [15] and
ARGANIDS [23]. The former leverages DGI [28], a con-
strastive SSL technique, while the latter employs ARGA (and
its variants) [30], a generative SSL technique. Our experi-
ments do not consider ARGANIDS as it is not suitable for
reconstructing one-hot input features. Consequently, we only
describe Anomal-E in details in this section.

1) Anomal-E: DGI learns meaningful representation of
graphs by maximizing mutual information between the local
and global representations of a graph. In practice, this is
achieved by maximizing the similarity S between the graph
summary s and edge embeddings huv on the original graph
G and minimizing the similarity between the same vectors on
a corrupted graph C(G).

LAnomal-E = − 1

2n

n∑
i=1

∑
(u,v)∈E

log (S(s, huv))

+ log
(
1− S(s, h̃uv)

)
,

(6)

The edge embeddings huv and h̃uv are outputs from an E-
GraphSAGE encoder fθ on the original graph G and corrupted
graph C(G), respectively. The graph summary s is defined as
the sum of edge embeddings:

s =
∑

(u,v)∈G

huv. (7)

The corruption function C in Anomal-E randomly permutes
the edge features between edges of the input graph. The
corrupted graph serves as an negative example that does not
belong to the input distribution. By optimizing the objective
in Eq. (6), Anomal-E learns to separate the embeddings
of original graphs and corrupted graphs in the Euclidean
space. Such method uses the contrast between self-generated
examples as training signal, thus dubbed contrastive methods.

Finally, the similarity function in Anomal-E is defined as

S(x, y) = xTWsy (8)

where Ws is a learnable matrix.

IV. PROPOSED METHOD

Here, we initially define dense vector representation within
the context of intrusion detection and provide examples of
implementing such representations for both numeric and cat-
egorical features. Subsequently, we discuss the necessity of
in-context pre-training for dense representation models.

A. Dense Vector Representation

Recent heterogeneous NIDS datasets include high-level
protocol features, which contain rich semantics that describe
network dynamics. Consider the following DNS features in
a ToN-IoT example [8], describing a DNS request for the
IPv4 address of Google home page that is not rejected and
successfully returned:

dns_query("google.com"),dns_qtype("A"),

dns_rcode("NOERROR"),dns_rejected(FALSE),

The features contain individual semantic meanings, while
construct a more contextual meaning together. To capture both
layers of meaning, we propose learning an embedding function
ω, which maps each feature to a high-dimensional vector
representation, and an interaction function φ, which models
the dynamics between features.

An embedding function of feature i is a function ωi :
Xi ↪−→ Rdi from the feature space Xi to the Euclidean
space. di is the size of individual feature embeddings. De-
fine ω(x1, x2, . . . , xr) = (ω1(x1), ω2(x2), . . . , ωk(xr)). An
interaction function φ : Rr×d0 → Rde takes all embedded
features {ωi(xi)}i≥1 as input and combines them to output
a single vector of size de. We use de denote the size of the
embedding because we mainly consider GNNs that operate
on edge features in this paper. In ML literature, the composite
function φ ◦ ω is often parameterized jointly and referred to
as a feature map. We parameterize them separately as they
serve different purposes. Next, we introduce two common
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Fig. 2. Proposed training pipeline with in-context pre-training, demonstrated using Anomal-E [15] as the SSL technique. During the pre-training phase, we
train an encoder pθ and a decoder qξ . Subsequently, pθ is connected to a classification head and trained using labeled data.

practices in representation learning for embedding numeric
and categorical feature respectively.

1) Linear Projection on Numeric Features.: Let x ∈ Rrnum

be a vector with r numeric features and W ∈ Rde×rnum . The
linear projection x = Wx defines an embedding function and
an interaction function. Let

[ωj(xj)]i = Wijxj , (9)

we have

xnum = Wx =
∑
j

Wijxj =

rnum∑
j=1

ωj(x) = φ(ω(x)) (10)

We see that linear projection embeds each feature xj as the
j-th column W:,j , scaled by xj , and combines each embedded
feature through summation. Next we show that projecting
one-hot encoding with a linear transformation yields similar
embedding and interaction for categorical features.

2) One-Hot Encoding for Categorical Features: Suppose
we aim to encode a vector of categorical features x =
(x1, x2, . . . , xrcat) ∈ X1 × X2 × · · · × Xrcat , where |Xi| = ci
is the number of possible categories for feature i. A common
method for encoding these features involves converting each
feature into a one-hot vector and then transforming the vector
using a linear projection:

vcat = We, (11)

where e = [eT1 ; e
T
2 ; . . . ; e

T
rcat

]T is a concatenation of one-
hot vectors ei of length ci and W ∈ Rde×c. c =

∑rcat

i=1 ci. We
claim that the transformation defines an embedding function
and an interaction function.

Write the weight matrix W as the concatenation of a column
of smaller matrices [W1;W2; . . . ;Wrcat

] where Wi ∈ Rde×ci .
By linear algebra, we have

xcat =

rcat∑
i=1

Wiei (12)

Let j(i) indicate the index of 1 in the one-hot vector ei.

xcat =

rcat∑
i=1

Wiei =

rcat∑
i=1

(Wi):,j(i), (13)

where (Wi):,j(i) is the j(i)-th column of matrix Wi. Thus,
each feature i is embedded as a vector, ωi(xi) = (Wi):,j(i),
and combined through addition.

3) Mixed Features: From the two examples above, we
observe that both numeric and categorical features can be
embedded as vectors through a linear projection. When the
input features comprise both numeric and categorical types,
we can define an interaction function that integrates both.
In our approach, we generate the final vector representation
of the features by concatenating the numeric and categorical
embeddings obtained previously, and then pass them through
a linear projection.

z = W [xnum;xcat]. (14)

B. In-Context Pre-training

Self-supervised pre-training has been shown effective in
few-shot learning [36] and improving model generalization
[37]. SSL can leverage the abundant unlabeled network traffic
data for pre-training. This allows the model to learn from the
inherent structure and patterns in network dynamics without
the need for explicit labels. During pre-training, SSL objec-
tives encourage the model to understand relationships and
context within the raw network traffic, as opposed to the its
correlation with labels. This leads to the learning of generic
representations that capture essential features and information,
making the model more capable of generalizing to unseen
instances. We show later in experiments that this ability to
learn generalizable weights is essential to applying dense
representation to GNN-based NIDS.

Conventional pre-training typically involves obtaining data
from a broader domain than that of the fine-tuning task.
However, defining a broader domain for intrusion detection



on a specific network is challenging. Instead, we propose in-
context pre-training, where the pre-training data is sourced
from the same network as the labeled data. Fig. 2 illustrates
the proposed process of training an intrusion detector with in-
context pre-training. This approach results in an ML-based
NIDS methodology that is less reliant on labeled data. To
train an intrusion detector for a specific network from scratch,
one first compiles a representative dataset consisting of raw,
unlabeled traffic from the network. After labeling a manage-
able subset of the traffic (see Section V for details on the
effort involved), one obtains a ready-to-use intrusion detector
through fine-tuning.

V. EXPERIMENTS

In this section, we outline our experimental configurations
and discuss the experimental results. We begin by introducing
the dataset on which we evaluate our methods. Then we
detail the process by which we pre-process our data. Finally,
we motivate our experiments by enumerating three research
questions, which are answered in conjunction with an analysis
of the experimental results.

A. Datasets

We choose the ToN-IoT [8] and NF-UQ-NIDS-V2 [11]
datasets due to their rich categorical features. ToN-IoT
comprises 65% normal flows and 35% malicious traffic, while
NF-UQ-NIDS-V2 contains 33.12% and 66.88% normal and
malicious flows, respectively. NF-UQ-NIDS-V2, compiled
from four simulated attack scenarios, presents a more chal-
lenging scenario than ToN-IoT in our experiments. Due to
memory constraints, we sub-sample both datasets to approx-
imately 130,000 training and 50,000 testing flows each. We
under-sample the majority classes to achieve a more balanced
label distribution.

B. Hardware Configuration

We run all experiments on an RTX 3070 GPU with 8GB of
memory. We use 16GB RAM and an Intel I5-12600K CPU.

C. Pre-processing & Graph Construction.

We utilize the standard features provided by [8] and [11].
Source port numbers are omitted from the feature set. Con-
sistent with [14], we employ uniformly randomly gener-
ated IPs in the IPv4 range to represent the source of the
flows. This encompasses any address from 0.0.0.0 to
255.255.255.255. We identify the flow destinations using
a combination of IP addresses and port numbers.

We pre-process the dataset leveraging various Python
packages. Numeric features are standardized with
StandardScaler in scikit-learn directly unless
the standard deviation of a feature is twice larger than the
mean, in which case we take the binary logarithm of the
feature first. All unbounded categorical features are dropped,
except for “DNS query” in ToN-IoT, which we convert to
a binary feature that indicates whether the query belongs to

Fig. 3. Full-data setting: F1-score of dense representation models (D) and
target encoding models (T) trained on all labeled data. For each model type,
we experiment with a pre-trained variant (-SSL) and one without. Decision
Tree (DT) is included here as a baseline.

Majestic Million top one million most visited domains1 at
the time of research. Subsequently, the remaining categorical
features, along with the added binary feature, are converted
to one-hot vectors as described in Section IV.

We construct the graph by using nodes to represent hosts
in the network and edges the flow between them. In line
with [15], both training and testing graphs are constructed as
undirected multi-graphs. The numeric features and categorical
features are concatenated and stored as edge features. The node
features of the graph are initialized as vectors of 1’s with a
length of 64.

D. Evaluation Metric

We evaluate intrusion detectors with F1-score, defined as:

F1 = 2× Precision× Recall

Precision + Recall
(15)

Precision represents the rate of correctly identifying true
instances among alerts, while Recall indicates the percentage
of true instances correctly alerted among all true instances. F1-
score, as the harmonic mean of Precision and Recall, provides
a summary of both abilities. We report the micro-F1-score,
which aggregates F1-scores across classes using a weighted
average based on the number of instances in each class,
summarizing the overall performance on a specific dataset.

E. Research Questions and Experimental Settings

Our experiments aim to answer the following questions;
Q1. How does dense representation models perform compared
to target encoding models?
Q2. Does in-context pre-training enhance GNN performance?
Q3. Does in-context pre-training result in a high-performing
NIDS solution even when labeled training data is scarce?

The research questions are answered in two experimental
settings, the full-data setting and the few-shot setting. In the
full-data setting, models are trained on all the available labeled
data. As we find the single F1-scores in this setting can be

1https://majestic.com/reports/majestic-million



close across different models, we report the F1-scores of 5
trials for each model variant. We present the trial results in
a box plot. In the few-shot setting, the models are provided
with at most 5,000 labeled examples, and further benchmarked
with a decreasing amount of labeled data. We sub-sample the
original training data with an under-sampler, which resulted in
a more balanced label distribution. This is to simulate the fact
that, when a small dataset is crafted manually, class balance
is usually attained.

F. GNN Architecture and Hyperparameters

Across our experiments, we use E-GraphSAGE as the back-
bone of the GNN models with two variation factors: 1) whether
the GNN embeds the input features with dense representation
or target encoding, and 2) whether E-GraphSAGE is pre-
trained with Anomal-E as an encoder. We use acronyms D
and T to represent the GNNs without pre-training that utilizes
either dense representation or target encoding embeddings
respectively, and D-SSL and T-SSL to refer to their pre-
trained counterparts. In addition, we include Decision Tree
(DT) as a baseline. In the the full-data setting, we benchmark
the five aforementioned models on both datasets. In the few-
shot setting, we only include the best-performing unpre-trained
GNN from the full-data setting as the representative of unpre-
trained GNNs.

We train all the GNNs using the Adam optimizer with a
fixed learning rate of 0.001. Each GNN architecture comprises
two layers with a hidden dimension of 128, resulting in an
output edge representation size of 256. We train the sklearn
implementation of DT using the gini criterion and set
max_splitting_size to 5. This set of hyperparameters
are picked to maximize validation performance.

G. Results & Discussion

1) Full-Data Results Fig. 3: D-SSL is the best-performing
among GNN models. SSL improves the dense representation
model on both datasets. It increases the mean F1-score by
8.32% and 0.87% and decreases the the variance by 82.45%
and 29.73% on ToN-IoT and NF-UQ-NIDS-V2, respec-
tively. Meanwhile, there is no consistent improvement in the
mean or variance of the F1-score for the dense representation
models across the two datasets.

Dense representation models performed comparatively bet-
ter on NF-UQ-NIDS-V2 than the other models, over-
performing DT by 4.27% on NF-UQ-NIDS-V2 in mean F1-
score compared to the 3.28% underperformance on ToN-IoT.
This phenomenon can be explained by the fact that DT and
target encoding models, unparameterized and less parameter-
ized than dense representation models, has an advantage on
simpler datasets like ToN-IoT, but struggle more on more
complex datasets like NF-UQ-NIDS-V2.

2) Few-Shot Results: The results in Fig. 4 depict the
performance in the few-shot learning setting. Across both
datasets, pre-trained models demonstrate the greatest resilience
to data scarcity. Remarkably, the top-performing models, T-
SSL and D-SSL, achieved F1-scores of 93.22% and 84.64%,

Fig. 4. Few-shot setting: Comparing pre-trained (target encoding, dense rep-
resentation) and directly learned models (E-GraphSAGE, DT) on ToN-IoT
(top) and NF-UQ-NIDS-V2 (bottom) with limited data. Note that we only
present the best-performing GNN model without pre-training in the plots.

respectively. These scores correspond to 99.8% and 95.11%
of the highest F1-scores attained in the full-data setting, using
only 3.7% of the original training data.

DT ranks second in performance on both datasets when
there are more than 500 labeled examples, while the second
best pre-trained model ranks second on both datasets when
there are less than 500 labeled examples. This indicates that
pre-trained models’ strength lies in learning representations
that is robust against the data scarcity. Furthermore, the fact
that DT outperforms certain pre-trained GNN models cast
doubts on whether current synthetic datasets challenge ML-
based NIDS enough.

3) Summary of Findings: Combining the results from the
two experiments, we can answer our research questions;
A1. While the dense representation GNNs outperform tar-
get encoding GNNs on NF-UQ-NIDS-V2, target encoding
proves superior on the simpler dataset without pre-training.
However, with in-context pre-training, dense representation
GNNs consistently outperform target encoding models.
A2. While in-context pre-training is typically avoided in
other deep learning tasks due to concerns about overfitting, it
consistently enhances the performance of dense representation
GNNs on our considered NIDS datasets.
A3. In our experiments, pre-trained models exhibit signif-
icantly greater data efficiency compared to other methods,
demonstrating their superiority by a large margin.



VI. CONCLUSION & FUTURE WORK

We have shown that, when pre-trained, dense represen-
tation is the superior method to embed features for GNN-
based NIDS. In addition, we demonstrate that in-context pre-
training yields data-efficient models that attain comparable
performance with just a fraction of training data compared
to previous state-of-the-art models. By proposing a few-shot
learning framework, we add to the body of work that addresses
the label-dependence of ML-based NIDS.

Future Work: This work only considers the most basic
GNN configurations and graph SSL techniques. We leave it for
future work to explore more advanced combination of GNN
architectures and graph SSL techniques. Moving forward, we
plan to evaluate our framework using real network traffic to
gather informative insights into model performance on more
realistic and complex distributions. It is also vital for future
work to incorporate the directionality of network flows in
future GNN-based NIDS.
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