
Learning Client Selection Strategy for Federated
Learning across Heterogeneous Mobile Devices

Abstract—The rapid growth of Internet of Things have yielded
a remarkable increase in the volume of the data generated on
client devices. This technological trend coincides with the rise
of machine learning applications, which leverage user-generated
data for large scale model training. In this context, Federated
Learning (FL) has become a popular model for facilitating
model training across edge devices in a decentralized fashion.
However, the statistical diversity presented in the client data
and performance heterogeneity existed among the user mobile
device can seriously impact the accuracy of the result model
and system performance of FL. This article first illustrates the
state-of-the-art FL algorithms and investigates the major issues
presented in the FL implementation, and then presents a novel
FL algorithm that jointly optimizes both the model performance
and implementation efficiency for the FL systems. Specifically, we
propose an intelligent FL client selection scheme by leveraging
the recent advance of Reinforcement Learning (RL) in solving
complex control problems. The proposed solution, termed Intel-
liFL, can greatly improve both the accuracy performance and
system performance of FL under the training environment with
heterogeneous client devices.

I. INTRODUCTION

The emergence of Internet of Things (IoT) applications
such as autonomous driving, smart homes, and augmented
reality has led to a explosive growth of data generated on
client devices. Subsequently, these applications leverage this
tremendous volume of data to train their large-scale deep
neural network (DNN) models, in order to provide better
application performance and user experience. In order to train
these large-scale DNN models, a naïve solution is to perform
centralized DNN training by sending all client data to the cloud
server. However, this is both inefficient and prone to privacy
and security threats. To address these limitations, Federated
learning (FL) has been proposed as new learning paradigm
in which multiple client devices communicate with a coordi-
nating server to jointly train a single global model without
exposing the raw user data [1]. During the training process,
each client device will first receive a copy of the global DNN
model, and then perform local DNN training with its private
user data. After the local training process is finished, the DNN
model updates will be sent to the central server. The central
server in the cloud will aggregate the DNN updates to produce
an updated version of the global DNN model. This process
repeats until the global DNN model is converged. Unlike
the centralized training scheme, FL naturally addresses the
scalability and privacy issues, and hence has gained significant
attention in recent years.

Despite its benefits, however, the accuracy and performance
(in terms of training time and resource cost) of FL is highly

dependent on its operating environment. This is especially
the case when running FL over mobile devices1. In prac-
tice, the heterogeneous computing and network resources on
mobile devices often causes stragglers that can significantly
slow down the FL training process, and severely impair the
performance of the delay-sensitive FL applications. This issue
is further exacerbated by the uneven distribution of client
data size, as a client with more data would require higher
local training time. Moreover, FL operation often incurs high
communication cost, mainly due to sending the weight updates
from mobile devices to the central server. On one hand, the
client devices usually have limited bandwidth and high com-
munication costs. On the other hand, the ever-growing DNN
model complexity requires the client to deliver increasingly
larger model updates, which further increases the network
resource consumption. The limited bandwidth resource and
heterogeneous processing powers of the mobile devices greatly
constraints on the design space of the FL system. Finally,
from the accuracy perspective, the underlying statistical het-
erogeneity on the client devices leads to non-independent and
identically distributed (non-IID) local training data, which can
severely slow down the convergence of the global DNN model
and degrade the accuracy performance [2]–[4].

In order to expand practicality of FL for real-world appli-
cations, it is of paramount importance to design an efficient
FL solution that can simultaneously mitigate all the afore-
mentioned problems. However, designing such a solution is
challenging because of (1) the dynamic FL system condition,
(2) the intractable convergence behavior of the FL training,
and the complicated interplay between these two factors. In
this work, we leverage the recent advances in Reinforcement
Learning (RL) and propose an FL framework called IntelliFL
(Figure 1). IntelliFL explores the tangled interactions among
the client devices and central server and exploits the recent
statistics on the device performances and training behaviors,
then produces the efficient client selection and DNN map-
ping decisions based on the designated objective functions
imposed by the FL application designers. IntelliFL offers an
elastic resource management framework to handle the resource
heterogeneity among the client devices, leading to superior
performance in terms of both system implementation and
prediction accuracy.

The rest of the article is organized as follows. We first
summarize the recent development in FL and illustrate the

1In this article, we will use the term "mobile device" and "client device"
interchangeably.



Local 
model

Local 
dataset

Local 
model

Local 
dataset

Local 
dataset

Local 
model

Local 
dataset

Client
Devices

Client Statistics

Cloud
Global DNN modelClient Statistics

...

Latency:0.3, comm cost:6, loss:0.4

Latency:0.1, comm cost:3, loss:0.6

Latency:0.9, comm cost:8, loss:0.1MARL agents

global
dataset

Test accuracy on global dataset

Client Statistics

Trained submodel

Initial submodelDNN mapping

DNN mapping DNN mapping

DNN mapping
Client Statistics Client Statistics

Client Statistics

Global 
DNN

MARL 
Execution

Local 
Training

IntelliFL WorkflowIntelliFL Framework

Model
aggregation

Fig. 1: The left part of the figure shows the overall architecture of IntelliFL system, the right part of the figure depicts the
IntelliFL workflow during each training round.

major research challenges of the FL design, we also give a
background introduction on Multi-agent Reinforcement Learn-
ing (MARL) and Hierarchical DNN in Section II. We then de-
scribe the overall problem in detail together with the proposed
IntelliFL framework in Section III. After that, we will present
the evaluation results of IntelliFL in section IV. We conclude
the paper with a discussion on the open issues for future FL
research in section V.

II. MAJOR CHALLENGES IN FEDERATED LEARNING

A. Statistical Heterogeneity on Local Training Data

As an extension of distributed learning, FL allows the
DNN models to be trained in a distributed fashion with
client privacy protection. The first FL framework, Federated
Averaging (FedAvg) [1], uses a central server to send the
global DNN model to a set of selected clients, which then
perform local Stochastic Gradient Descent (SGD) and return
their model updates to the central server.

However, the heterogeneity on the local training data will
induce non-IID data distribution among client devices, this
underlying statistical diversity will further cause inconsistency
in the client weight updates and severely undermines the
accuracy of the global DNN model after applying the aggre-
gated weight updates on the global DNN model [2], [4]–[6].
To improve the accuracy performance of FL in the non-IID
data scenario, FedProx [4] restrains the divergence between
the local model and global model by introducing an extra
regularization term in the FL training objective. Scaffold [3]
adopts the variance reduction technique to correct the local
updates so that the local model will not deviate too much
from the global model. Although these two approaches achieve
decent improvement on the global model accuracy, the result
accuracy is still much lower than that from the DNN trained
using the IID dataset.

Another promising approach to alleviate the disparity among
local objective functions is to detect and eliminate the biased
model updates during the aggregation, because these outliers
can hurt global model accuracy. To detect these biased model

updates, CMFL [7] counts the total number of local weight
values whose sign is opposite from the corresponding weight
value in the global model, and uses this total count as an
indicator of the bias degree for the local model. However,
this requires additional operations in the client devices in
order to count the differences on the weight signs and further
increases the workload of the resource-limited client devices.
FedMarl [8] utilizes the training loss after the first round of
local training (termed probing loss) to measure the degree of
bias on the local DNN weights. The training loss naturally
reflects the degree of inconsistency between the local DNN
data and the global model weights. Furthermore, the training
loss is generated as an intermediate result during the local
DNN training process, therefore no additional operation is
required. In this work, we utilize the training loss to measure
the degree of the bias.

B. System Heterogeneity on Local Client Devices

Aside from the diverse local training data, the heterogeneous
computing resources of the client devices can also degrade the
overall FL system performance [9]. During the FL operation,
a straggler device can significantly increase FL training la-
tency, making FL unsuitable for delay-sensitive applications.
To tackle this problem, Oort [10] prioritizes the use of the
clients who can offer the greatest improvement on the global
model accuracy and the capability to run training quickly. A
heuristic utility function is proposed to evaluate the clients,
and only the clients with a high utility score will be selected
for local training. Although Oort outperforms some baseline
algorithms in terms of accuracy and processing latency, its
utility function is still not optimal and more sophisticated
solutions are left to be developed. To reduce the training
latency, another solution is to partition the DNN model into
multiple parts, and assigning one or more parts of DNN for
local training based on the computing capability of each client
device. For example, HeteroFL [11] partitions the global DNN
model and assigns the submodel to the clients based on their
computing capability. The trained submodels are then sent
from each client and are aggregated into a single global DNN



Layer 4

Layer 3

Layer 2

Layer 1

Output 1

Output 2

Input

[0.8, 0.1, 0.1]
dog, cat, bird

[0.6, 0.2, 0.2]
dog, cat, bird

(a)

Layer 2

Layer 1

Layer 2

Layer 1

Layer 4

Layer 3

High 
speed

Medium
speed

Low
speed

(b)

Fig. 2: (a) Layerwise partition is applied on a four-layer DNN
model, which produces two exit points. Both exit points can
generate inference results. (b) During the FL operation, a
submodel will be assigned to each client devices according to
their computing capabilities. A device with higher processing
power will be given the entire DNN for local training, while a
slow device will be eliminated from the local training process.

model in the cloud. HeteroFL provides a solution to jointly
optimize both the model accuracy and FL system performance.

To partition the DNN model, one effective partition scheme
is layerwise partition [12]. Figure 2 shows an example of
applying layerwise partition on a DNN with four layers. An
early exit is introduced at the end of the second layer, as
shown in Figure 2a. During the FL execution, the faster
device will be assigned with the entire DNN model to train,
whereas the slower devices will only be assigned with a
two-layer submodel or even be eliminated from the local
training process, as shown in Figure 2b. This enables the
load balancing on the computational workloads across the
client devices, which further reduces the processing latency
and communication cost of FL.

III. INTELLIFL SYSTEM FOR RESOURCE-EFFICIENT
FEDERATED LEARNING IMPLEMENTATION

A. Problem Statement

In this section, we present the FL optimization problem
in detail. Assume layerwise partition is applied to the global
DNN model D with m(1 ≤ m ≤ M) exit points (including
the original DNN output), and denote Dm the submodel with
the exit point m. Let A(m) represent the final test accuracy of
Dm over the global test dataset. In addition, let Tm,n denote
the processing time needed for training Dm locally at client
n(1 ≤ n ≤ N), and denote Bm,n the total communication
cost of sending Dm from client n to the central server. Our
FL optimization problem can be described as follows:

max
Q

E
[
w1

M∑
m=1

A(m)− w2

R∑
r=1

Tproc,r − w3

R∑
r=1

Bcomm,r

]
s.t.

M∑
m=1

qr,m,n ≤ 1, ∀1 ≤ n ≤ N, 1 ≤ m ≤ M

(1)

where Tproc,r = max
n,m

Tm,nqr,m,n and Bcomm,r =∑M
m=1

∑N
n=1 Bm,nqr,m,n are the total processing time and

total communication cost of training round r, respectively. The
expectation is taken over the stochasticity of the local training
data at each client. qr,m,n ∈ {0, 1} is a binary variable, where
qr,m,n = 1 if client device n is assigned with submodel Dm

at the training round r. Also, let Q = {qr,m,n} represent an
R×M×N matrix of qr,m,n. At training round r, a client n can
not be assigned with more than one submodel. Finally, w1, w2

and w3 indicate the relative importance of the objectives,
which are determined by the FL application designer.

Due to the intractable convergence behavior of the FL
training over the non-IID client data, the dynamic variation on
the mobile device performance and the complicated interaction
between the above objectives, it is challenging to solve this
problem using hand-tuned heuristic solutions directly. We
instead model the problem as a MARL problem and reply on
the MARL agents to generate the optimal control decisions.

B. An Overview on Multi-agent Reinforcement Learning

In recent years, Multi-agent Reinforcement Learning
(MARL) has achieved success in many distributed learning
tasks such as autonomous driving, swarm robotics, traffic
control etc. In cooperative MARL, a group of agents shares
the common objective function, they are trained jointly to
collaborate and act in a proper way to generate the maximum
team reward. In this work, we consider a standard MARL
setting. At each timestamp, each MARL agent receives an
input state and produces an action based on the input state.
After all the agents in the team have performed their actions,
a global reward will be assigned to them based on the team
performance. The MARL agents are usually trained using a
simulated training environment, in which the goal training is
to shape the DNN presented in each MARL agent in order to
maximize team reward during the MARL execution. Next, we
will describe the detailed FL system design.

C. IntelliFL System Design

The architecture of IntelliFL is shown in the left part of
Figure 1. The right part of Figure 1 provides an overview
of the IntelliFL workflow. The MARL agents are pretrained
offline and deployed on the central cloud server to make online
decisions. The global DNN model is also stored in the central
cloud. During each FL training round, each client device first
delivers the client statistics (e.g., training loss, processing
latency, etc) to the cloud, which will be used as the input of the
MARL agents. The size of client statistics is tiny compared
to the DNN model, and therefore will not impair the total
communication cost. After receiving all the client statistics, the
MARL agents will then generate the DNN mapping decision,
and the central server will then deliver the corresponding DNN
submodels to the client devices. After receiving the initial
submodel, the client device will perform the local training
using their private data. After the local training processes are
finished, the resulting DNN submodels will be uploaded to the
central server.



Agent 1

...
...

Agent 2

...

Agent N

...

States

Actions

MARL 
agents Rewards

...

EnvironmentK
-m

ean C
lustering

... ...

Fig. 3: The training process for the MARL agents.

D. MARL Agents Training Process

In IntelliFL, each mobile device n relies on the MARL agent
at the central server to decide its local DNN architecture. To
train the MARL, each MARL agent takes its input state sr,k
and infers its DNN mapping decision ar,k. Based on the deci-
sion, the MARL agents then receive a team reward gr based
on the test accuracy improvement on the global model and
changes on the total processing latency and communication
cost. The MARL agents are then trained to maximize the team
reward. The MARL training process is highlighted in Figure 3.

1) Design of the Input States: The input state of the
MARL agents involves the historical information on the client
device performance and local training statistics. Specifically,
it contains the following components:

1) Historical information on the training loss with the local
client dataset.

2) Historical information on processing latency for training
the DNN model.

3) Historical information on DNN mapping decisions for
the prior training rounds.

4) Size of the local DNN model.
5) The size of the local training dataset.
6) The current training round index.
The training loss is used to estimate the degree of bias

on the local DNN weights, the processing latency is used
to evaluate the computing capability of a mobile device,
and local DNN model size is utilized to assess the amount
of the transmitted information from a mobile device to the
central cloud, which is related to the communication cost.
Additionally, the information on the past mapping decision,
local training dataset and current round number will also
impact the FL system performance and model model accuracy.

2) Design of the Agent Actions: After receiving the input
states from the clients, the MARL agent k will generate a one-
hot action vector ar,k with a length of M+1, where M is total
number of exit points in the global DNN model. Setting the
i-th element of ar,k to one indicates a submodel with the i-th
exit point. The additional element in the action vector is used
to indicate the situation that the MARL agent is eliminated
from the local DNN training.

3) Design of the MARL Reward: The reward function needs
to reflect the impact of the current DNN mapping decision
on the test accuracy of each submodel, processing latency
and communication cost of the entire FL system. During the
MARL training stage, we record the changes on the above
information between the consecutive training rounds r and
r−1. The MARL reward can then be generated by computing
the weighted sum of the changes with the weights w1, w2 and
w3 described in equation 1.

4) Scalable IntelliFL Implementation: As the number of
client devices increases, it is not scalable to associate each
client device with a dedicated MARL agent for generating the
mapping decision. To reduce the number of MARL agents
implemented in the cloud, we categorize the input states sr,n
from the clients n into K clusters using the k-means clustering
algorithm. The center of each cluster s′r,k will be used as the
input state of the K MARL agents. All the clients in the same
cluster will share the same DNN mapping produced by the
associated MARL agents.

IV. EVALUATION

To train the MARL agents, we perform extensive experi-
ments to collect the real traces on DNN training latency over
multiple mobile devices. We further build a training environ-
ment using the collected traces to simulate the FL system
operations. The MARL agents are first trained offline with
the simulated training environment, and the trained MARL
agents are then adopted by the IntelliFL system to make online
decision.

A. Building the Simulated Training Environment

We collect the training latencies on eight different mobile
devices with different processing powers, including Huawei-
TAG-TL100, iPhone8, Google Pixel XL, iPhone XR, iPad2,
Nexus 5, Amazon Fire 7 Tablet, and Samsung Galaxy Tab A
8.0. For each device, we measure the time for performing 5
epochs of training with different data sizes ranging from 20 to
60 samples. We developed our own DNN training platform on
the mobile devices based on the previous literature [13]. We
use three popular Convolutional Network Networks (CNNs),
including LeNet on MNIST dataset, VGG6 on CIFAR-10
dataset and ResNet-18 on Fashion-MNIST dataset. The batch
size is fixed at 20 for all the measurements. For each setup,
we perform the measurement for 200 runs and report an
average training time. For the devices with Android system,
the DNN models are first built with Keras and then converted
to TensorFlow Lite format before running on the client devices.
For iOS devices, we first build their DNN models using
PyTorch and convert the resulting model to CoreML format
with coremltools. We collect training latency data over the
above DNNs for each device type under each data size. We
observe that, even under the same training dataset size, the
training time varies significantly across different client devices.
For example, training VGG6 with 60 samples for five epochs
on Google Pixel XL takes only 5.2s, which is 2.2× faster than
Huawei-TAG-TL100. The difference in the local training set



size further exacerbates the diversity of the training time. For
instance, training VGG6 with 20 samples for five epochs on
iPad7 takes 1.1s, which is 8.1× faster than training VGG6
with 60 samples on Nexus5.

Based on the measured results, we then build a simulated
FL environment with 100 client devices to train the MARL
agents. To simulate device heterogeneity, each client device is
randomly assigned a device type and a training set size. To
simulate the non-IID training data at each client device, we
sort the training data by its label. For each client device, 80%
of its training data are from one random label, the rest of the
training data are sampled uniformly from the remaining labels.
The number of training data per device is generated according
to the power law [4]. We assume the communication cost Bm,n

is directly proportional to the size of the local DNN model
Dm uploaded from the client to the cloud. After receiving
the corresponding DNN models from the central server, each
client device will perform local training process for E = 5
epochs (as shown in the right part of Figure 1). The number
of training round T is set to T = 20, 15, 15 for VGG6, LeNet
and ResNet-18, respectively.

B. Training the MARL Agents

Each MARL agent consists of an MLP of two layers
with a hidden layer of 256 neurons. The MARL agents are
trained under two different settings on the relative importance
defined in equation 1. In setting A and setting B, we make
[w1, w2, w3] to [1.0, 0.2, 0.1] and [1.0, 0.4, 0.2], respectively.
Note that IntelliFL can work with any selection of the relative
importance w. During each training round r, the client devices
first deliver their statistics to the central server, the statistics are
then classified into K = 10 clusters using k-means clustering
algorithm. The MARL agents will then produce the DNN
mapping decisions for each client cluster. We apply two early
exit points on the global DNN model, so each MARL agent
has four possible actions to select:

1) Assign the entire DNN to the client device.
2) Assign the DNN with the first early exit to the client

device.
3) Assign the DNN with the second early exit to the client

device.
4) Eliminate the client device from the local DNN training

process.
We train the MARL agents with 300, 200 and 300 episodes

for LeNet, VGG6 and ResNet-18 until convergence. We notice
that all the MARL training processes converge with a high
reward, which indicates that the trained MARL agents will
generate a better overall performance on prediction accuracy,
processing latency and communication cost.

C. Performance Evaluation

We first evaluate the performance of IntelliFL in terms
of test accuracy, processing latency and communication cost.
In particular, we compare IntelliFL with several popular FL
algorithms, including: FedAvg [1], Oort [10], FedNova [14],
HeteroFL [11], FedProx [4], and FedMarl [8]. We train the

MARL agents using the simulated environment described
in Section IV-A, and evaluate the performance under the
same environment. For FedNova, the fast client will perform
more local training steps until the slowest client finishes its
training. The weight updates are then normalized based on
the total number of local training steps. For FedProx, we
utilize the optimal proximal term µ for each DNN, which gives
µ = 1, 1, 0.1 for LeNet, VGG6 and ResNet-18, respectively.
For HeteroFL, we use five computing complexity levels, the
hidden channel shrinkage ratio is set to 0.5. For FedMarl,
we set the weight of the objective function to 1.0, 0.3, 0.3,
respectively. For Oort, the exploitation factor, step window
and straggler penalty are set to 0.1, 5, 2 for all the tasks.

Table I lists the final test accuracies of the global model,
total processing latencies and communication costs for all
the algorithms. For IntelliFL, we report the test accuracy of
the entire DNN, since the rest algorithms do not support
the training of the hierarchical DNN model. As shown in
Table I, FedAvg, FedProx and FedNova make all the clients
transmit their local updates, and therefore there is no re-
duction in processing latency and communication cost. By
comparison, in Oort, FedMarl, HeteroFL, and IntelliFL, only
partial clients are allowed to deliver their local model to the
cloud server, which effectively reduces the FL processing
latency and communication overhead. We have the following
observation. First, IntelliFL, FedMarl and HeteroFL achieve
a much better performance on test accuracy, training latency
and communication cost than the rest algorithms on all the
three DNN models. For example, IntelliFL (setting A) obtains
an average of 22% and 12% savings on the processing
latency and communication cost, while achieving very high
test accuracies across all the three DNN architectures. Second,
we notice that the relative importance w1, w2, w3 plays an
important role on the performance of the IntelliFL system.
Specifically, by increasing the relative importance w2 and w3,
the overall processing latency and communication cost will
further decrease accordingly. This enables the FL application
designer to customize the IntelliFL system performance based
on their preferences.

D. Performance of MARL Agents under Dynamic Environment

The practical environment for FL implementation may differ
from the simulated environment that is utilized to train the
MARL agents. For example, in a mobile edge environment,
the mobile devices may join and leave the FL system over
time, leading to a dynamic FL system configuration. It is
impractical to train a separate set of MARL agents for each
scenario. In this section, we evaluate the generalizability of
the MARL agents. We train the MARL agents under the
simulated environment, and we demonstrate that the trained
MARL agents can still achieve a great performance under an
FL system configuration that is different from the simulated
environment.

We first evaluate the impact of the client devices in the FL
system on the IntelliFL performance. In particular, we first
train the MARL agents in a simulated environment with 100



heightModel FedAvg HeteroFL FedProx FedNova Oort FedMarl IntelliFL (setting A) IntelliFL (setting B)

LeNet
A: 94.40% A: 96.86% A: 95.85% A: 96.07% A: 96.09% A: 96.91% A: 96.90% A: 96.84%

L: 1.0× L:0.76× L:0.96× L: 0.98× L:0.82× L:0.73× L:0.68× L:0.60×
B: 1.0× B:0.80× B:1.0× B: 1.0× B:0.84× B:0.85× B:0.81× B:0.72×

VGG6
A: 43.49% A: 47.74% A: 47.32% A: 47.97% A: 48.11% A: 48.87% A: 49.33% A: 48.72%

L: 1.0× L:0.57× L:0.93× L: 0.91× L:0.60× L:0.54× L: 0.44× L:0.40×
B: 1.0× B:0.62× B:1.0× B: 1.0× B:0.78× B:0.44× B: 0.47× B:0.40×

ResNet-18
A: 94.70% A: 96.08% A: 95.73% A: 95.93% A: 96.02% A: 96.14% A: 96.23% A: 96.15%

L: 1.0× L:0.70× L:0.96× L: 0.98× L:0.71× L:0.66× L: 0.63× L:0.57×
B: 1.0× B:0.73× B:1.0× B: 1.0× B:0.79× B:0.77× B: 0.69× B:0.61×

TABLE I: Performance evaluation of IntelliFL. "A","L","B" denote the test accuracy, latency and communication cost, respec-
tively. The latencies and communication costs are normalized by the performance of FedAvg. We adopt two different settings on
the objective function to train the MARL agents of IntelliFL. In setting A and setting B, we make [w1, w2, w3] = [1.0, 0.2, 0.1]
and [w1, w2, w3] = [1.0, 0.4, 0.2], respectively.

1.0

0.9

0.8

1.0

Original setting
150 client devices

50 client devices
16 device types

1.0
0.98

0.96
0.93

1.0

0.95
0.93

0.92

0.95
0.94 0.93

LeNet on 
MNIST

VGG6 on 
CIFAR-10

ResNet18 on 
Fashion-MNIST

N
or

m
al

iz
ed

 to
ta

l r
ew

ar
d

Fig. 4: Performance of IntelliFL under different system config-
urations. The results are normalized with the reward obtained
under the original system settings.

clients, and evaluate the performance of IntelliFL under an FL
configuration with 50 and 150 clients. We adjust the cluster
size of the K-mean algorithm to keep the total number of
MARL agents the same (K=10). Figure 4 (yellow and blue
bars) shows the total reward of the IntelliFL under different
numbers of client devices. Note that a high reward indicates
better overall performance in terms of test accuracy, processing
latency and communication cost. We observe that the MARL
agents can still achieve a great performance with different
numbers of clients. We then measure the performance of
IntelliFL by increasing the diversity on the client devices.
In addition to the eight devices adopted in the simulated
environment described in Section IV-A, we introduce eight
more synthetic device types, where each device type has a
synthetic processing time for local DNN training. This leads
to a total of 16 device types, and each of the 100 client
devices in the FL system is assigned with one of the 16
device types. The evaluation results presented in Figure 4 (red
bars) demonstrate that the superior performance of the MARL
agents can also translate across the device types. In summary,
the trained MARL agents can generalize well under different
system configurations without training the MARL agents for
each particular setting.

V. CONCLUSIONS

IntelliFL describes a reinforcement learning based FL
framework that aims at jointly solving multiple problems
across machine learning algorithm and FL system perfor-
mance. The evaluation results show that IntelliFL can outper-
form the benchmark algorithms in terms of model accuracy,
total processing latency and communication cost. Furthermore,
IntelliFL can also operate under dynamic system configura-
tions while maintaining superior overall performance.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[2] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[3] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and
A. T. Suresh, “Scaffold: Stochastic controlled averaging for federated
learning,” arXiv preprint arXiv:1910.06378, 2019.

[4] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine Learning and Systems, vol. 2, pp. 429–450, 2020.

[5] Y. Deng, M. M. Kamani, and M. Mahdavi, “Adaptive personalized
federated learning,” arXiv preprint arXiv:2003.13461, 2020.

[6] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khaz-
aeni, “Federated learning with matched averaging,” arXiv preprint
arXiv:2002.06440, 2020.

[7] W. Luping, W. Wei, and L. Bo, “Cmfl: Mitigating communication
overhead for federated learning,” in IEEE 39th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2019, pp. 954–964.

[8] S. Q. Zhang, J. Lin, and Q. Zhang, “A multi-agent reinforcement
learning approach for efficient client selection in federated learning,”
arXiv preprint arXiv:2201.02932, 2022.

[9] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in ICC IEEE International
Conference on Communications (ICC). IEEE, 2019.

[10] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort:
Efficient federated learning via guided participant selection,” arxiv.
org/abs/2010.06081, 2020.

[11] E. Diao, J. Ding, and V. Tarokh, “Heterofl: Computation and commu-
nication efficient federated learning for heterogeneous clients,” arXiv
preprint arXiv:2010.01264, 2020.

[12] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” in ACM SIGARCH Computer Architecture
News, vol. 45, no. 1. ACM, 2017, pp. 615–629.

[13] P. Senchanka, “Example on-device model personalization with Ten-
sorFlow Lite,” https://blog.tensorflow.org/2019/12/example-on-device-
model-personalization.html, 2019, [Accessed 01-May-2022].

[14] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the ob-
jective inconsistency problem in heterogeneous federated optimization,”
arXiv preprint arXiv:2007.07481, 2020.


