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Abstract—The emerging unmanned aerial vehicle (UAV) such
as a quadcopter offers a reliable, controllable, and flexible way
of ferrying information from energy harvesting powered IoT
devices in remote areas to the IoT edge servers. Nonetheless,
the employment of UAVs faces a major challenge which is the
limited fly range due to the necessity for recharging, especially
when the charging stations are situated at considerable distances
from the monitoring area, resulting in inefficient energy usage. To
mitigate these challenges, we proposed to place multiple charging
stations in the field and each is equipped with a powerful energy
harvester and acting as a cluster head to collect data from the
sensor node under its jurisdiction. In this way, the UAV can
remain in the field continuously and get the data while charging.
However, the intermittent and unpredictable nature of energy
harvesting can render stale or even obsolete information stored
at cluster heads. To tackle this issue, in this work, we proposed
a Deep Reinforcement Learning (DRL) based path planning for
UAVs. The DRL agent will gather the global information from the
UAV to update its input environmental states for outputting the
location of the next stop to optimize the overall age of information
of the whole network. The experiments show that the proposed
DDQN can significantly reduce the age of information (AoI) by
3.7% reliably compared with baseline techniques.

Index Terms—UAV, IoT, DRL, Energy Harvesting

I. INTRODUCTION

The emerging energy harvesting technology [1]–[3] that har-
vests energy, such as solar, wind, and thermal radiations, from
the ambient environment has become increasingly appealing
due to its low maintenance cost, sustainability, ubiquitous
accessibility, and eco-friendliness. Those promising features
enable various IoT applications to benefit remote areas such as
forests, farmlands, and oceans where electrical infrastructures
are generally inaccessible. However, due to limited power
budget and line-of-sight (LOS) obstacles, energy harvesting-
powered IoT devices in remote areas are inaccessible to the
backbone of the IoT network, and hence cannot upload critical
data collected to the backbone of the IoT network for further
study and decision-making.

To address this issue, emerging unmanned aerial vehicles
(UAV) [4]–[8] such as quadcopters offer reliable, control-
lable, and flexible methods of ferrying information from IoT
devices in the remote area to the IoT edge servers, which
can connect to the backbone of IoT networks regardless of
topology. Nonetheless, the employment of UAVs faces a major
challenge which is the limited fly range due to the necessity for
recharging, especially when the charging stations are situated
at considerable distances from the monitoring area, resulting
in inefficient energy usage.

To mitigate these challenges, we can strategically place
multiple charging stations in the field and each is equipped

with powerful energy harvesters such as large solar panels.
This ensures that UAVs can remain in the field continuously
to minimize the energy wasted during transit. Moreover, con-
sidering the UAV’s elevated position to circumvent LOS obsta-
cles, by further integrating long-range communication modules
with suitable protocols, the UAV can enhance communication
reliability and distance and is capable of communicating
with the IoT server directly. However, given the complexity
of knowing/foreseeing the availability of IoT devices for
communication under energy harvesting scenarios, effective
communication between the UAV and all IoT sensor nodes
remains extremely challenging. In this case, we will enable
the charging station as the data cluster head to collect data
from the sensor node under its jurisdiction so that the UAV
can get the data while charging.

While the proposed solution looks promising, due to the
vast monitoring area size and limited energy harvesting power
budget of cluster heads for charging the UAV, there will be
a significant amount of delay in the arrival of UAVs at each
cluster head. As a result, the information gathered on cluster
heads may become stale or even obsolete before the UAV
arrives. To tackle this issue, in this work, we proposed a Deep
Reinforcement Learning (DRL) based path planning for UAVs,
where a unique DRL agent with shared structure but different
inferences will be deployed on each charging station to serve
as the decision maker of path planning of UAVs for the next
destination. The DRL agent will gather the global information
from the UAV to update its input environmental states for
outputting the location of the next cluster head to optimize the
overall age of information of the whole network. To the best
of our knowledge, this is the first work implementing DRL
for self-charging UAVs to conduct autonomous path planning.
In a nutshell, the contribution of this work is as follows.

1) Development of a Novel Framework: We introduce the
AoI-Aware UAV Data Aggregation System, a pioneering
framework designed to minimize the AoI with a collab-
orative effort of air-ground IoT devices.

2) Innovation in Path Planning: We present a Deep Re-
inforcement Learning (DRL)-based algorithm and ADF
algorithm specifically tailored to optimize real-time path
planning for data aggregation.

3) Comprehensive Experimental Validation: Solid exper-
imental evaluations are conducted to demonstrate the
performance of the proposed solution.

The remainder of this paper is organized as follows. Sec-
tion II describes work that is closely related to this research.



Section III conducts system modeling which describes the
relationship between the major considerable factors of the
air-ground IoT system. After that, Section IV formulates
the DRL model for UAV’s path planning to minimize the
overall age of information of the IoT devices. Section V
conducts experimentation to demonstrate the performance of
DRL agents. Finally, Section VI concludes this work.

II. RELATED WORK

In this section, we will summarize the existing works that
are related to our research. In a brief overview, we will discuss
the research method to reduce the age of information (AoI) for
sensing and deep reinforcement learning-based path planning
for UAVs conducting data ferry.

A. Age of Information
The assessment of metrics is often highlighted as a primary

feature when constructing research. [9] examines the age of
information (AoI) in a network by providing a custom metric
that is used to train an RL algorithm. Further, they construct
a metric for the energy efficiency of the UAV to monitor the
performance of the network. These metrics are used to train
the UAV and provide information for model evaluation. Next
in [10], age is used for path planning and data acquisition. This
produced time-based metrics for training their reinforcement
learning algorithm. The application of these metrics was
applied to configure the algorithm that controlled the UAV and
drove performance. Finally, [11] utilizes the AoI and energy
efficiency as metrics to determine the performance of their
proposed algorithm. This is to ensure the timely acquisition
of data while maintaining the power efficiency of the model.
Similarly, this paper utilizes AoI and data collection as the
primary force behind model reward. These will be explained
further in the description of the algorithm.

B. Deep Reinforcement Learning
RL and DRL have seen growth in the last few years

as forerunning models in AI research. Specifically, neural
networks in DRL have shown potential in a variety of learning
applications. In [12], Double Deep Q Networks (DDQN) were
implemented for trajectory and data harvesting on a UAV-
assisted IoT network. As an extension of Q Learning (QL)
DQN and DDQN have been deployed frequently for their
ease of use and logical similarity to Q Table learning models.
In [13], the research is directed towards developing faster
training methods for DRL models by pruning weights. This
is to make DRL more efficient in future applications and
lessen the time component required for training. They compare
this technique to the performance on standard QL techniques.
What’s more, [14] utilized a DQN to minimize the AoI of
a system and explain their process for constructing it. In
the paper, a focus is put on defining the state and action
spaces before explaining the model. Finally, [15] applied a
similar DQN model to the data collection of a network to
optimize energy efficiency. To that extent, they identify the
Partially Observable Markov Decision Process (POMDP) and
formulation of their DQN.

Fig. 1: Self-Sustaining Air-ground IoT Systems

III. SYSTEM MODEL

As depicted in Figure 1, the proposed framework consists
of three components, including an EH-powered IoT device,
Cluster Head (CH) that also plays as a charging station for
UAV, and UAV. A single UAV is deployed to gather data from
energy harvesting (EH)–powered IoT devices. We will model
the key physical features of each component.

A. Ground Communication Model

We placed M EH-powered IoT devices at random locations
across the environment, selecting random locations to ensure
comprehensive coverage. Utilizing the K-Means algorithm, we
deploy N cluster heads, placed at the centroids of each sub-
area. The locations of m is noted as (xm, ym). These cluster
heads are entrusted with the responsibility of aggregating
data from the EH-powered IoT devices within their respective
clusters. The EH-powered IoT device and cluster head are
labeled with m and n, respectively. The time step is identified
with t. During each time step t, a random quantity of Dm,t

data units is stored in the memory of device m, mimicking
environmental interference that may corrupt the data. CH will
prepare a channel for the data uploading of its respective clus-
ter members. Ambient Back Scatter Communications (AmBC)
is adopted for the communication between the EH-powered
IoT device and CH as published in Liu et. al. [16]. This
utilized Long Range Wireless Access Network (LoRaWAN)
as the carrier signal. The data transmitted for any period is
determined by Equation 1.

Dtrans = Rmax × (1−BERtype)× ttrans (1)

In which the data transmitted Dtrans is determined by the
reported optimal transmission rate Rmax, the average bit error
rate depending on the type BERtype and the time the data was
transmitted ttrans.

B. UAV Data Aggregation Model

After the ground data aggregation, CH will transmit data to
the UAV by utilizing the carrier LoRaWAN signal. As with
AmBC, LoRaWAN was selected for its low-power draw and
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long-range capabilities. The amount of time transferring can
be determined using:

ttrans =

{
T − tHS , if Dstored ≥ Dmax(
T × Dn

Dmax

)
, otherwise

(2)

where transmission ttrans is found with the step size T , the
time to establish connection and for protocol backend tHS ,
the remaining data currently stored by the cluster head Dn

and the maximum data that can be transmitted in one step
Dmax. Additionally, the age of information for the data is:

age =

{
Tpacket − Tstep, if age > Tthreshold

Tthreshold, otherwise
(3)

where age is determined using the step at which the last packet
was transferred from the cluster head to the UAV Tpacket, the
current step Tstep and the established threshold Tthreshold.
By optimizing the traverse path of UAV with DRL, we aim
to minimize the peak AoIpeak and average AoIavg age of
information for the collected data, as shown in Eq. (4). AoIavg =

∑N
i agei

N
AoIpeak = argmaxi(agei)

(4)

C. Energy Model

EH-Powered IoT Devices. EH-powered IoT devices m are
initialized with solar panel size Fm and battery capacity Bm.
The pvlib function “irradiance” returns the spectral irradiance
at the specified Geographic coordinates that are identified by
the label of devices, date, and time [17]. At every step, the
energy harvested by the solar cell is adjusted by converting the
spectral irradiance from pvlib into power density and resulting
power supplied to the system. Excess power at every step is
stored in the battery for instances in which the interference
causes the cost of data harvesting and communication to
exceed the energy harvested at that step. The harvested energy
of m is equal to:

Pharvest = Acell × (1− Isolar)×
∫ high

low

(TSI dλ) (5)

in which Acell is the area of the solar cell at device m, Isolar
is the interference of shade as witness by device m, and
the integral on the total solar irradiance TSI is taken from
the lowest wavelength to the highest wavelength specified for
the solar cell. The TSI is obtained from pvlib’s irradiance
function. The energy cost of m is given by:

Pcost =

τ∑
j=0

(R[n]× t) (6)

in which for each respective operation, its power draw is
determined by the rate at which it draws power R[n] and the
time in which it utilizes the process in the time step t. τ labels
the total number of time steps for the corresponding opera-
tions. The rate at which an operation draws power is taken
from the specifications for that element, such as LoRaWAN

communication specifications for transmitting, receiving and
idle power draw.
UAV. Define Buav as the maximum onboard energy. UAV will
recharge by docking on the CHs. For cluster head n with the
current battery level Bn. The harvested energy of UAV is:

Pcharge = tcharge ×Rcharge, Pcharge ≤ Buav (7)

where tcharge is the time spend charging and Rcharge is the
charging rate as specified by the UAV specification for which
we chose to model the UAV on. The energy consumption of
UAV consists of propulsion and communication. Therefore,
the on-board energy of UAV is:

Bcurrent = Bstored + Pcharge − (Pmove + PLoRaWAN ) (8)

in which the Bcurrent is the current battery at the end of the
step, Bstored is the battery at the start of the step and Pmove

and PLoRaWAN are the costs of movement and LoRaWAN
communication, respectively.

IV. AOI MINIMIZATION FOR SELF-SUSTAINING
AIR-GROUND IOT SYSTEM

To minimize the age of information (AoI) for globally
collected data, we developed Deep Reinforcement Learning
(DRL)-based path planning and ADF algorithm for UAV nav-
igation. The DRL algorithm strategically determines the next
charging station to target, optimizing the UAV’s navigation
process. However, given the intricate nature of communica-
tion networks, we have augmented the DRL with the ADF
algorithm. This supplementary algorithm adeptly addresses
emergencies and constraints that may arise, ensuring the
UAV’s navigation strategies remain robust and adaptable. We
first delve into the exceptional cases handled by the ADF
algorithm before delving into the detailed design of the DRL-
based algorithm.

A. ADF Algorithm

Case 1: UAV Energy Constraints. Taking into account the
constraints imposed by the UAV’s limited on-board energy
capacity, the UAV is programmed to initiate a return flight
whenever its on-board energy reserves Puav fall below the
threshold value Puav thresh. In such instances, the ADF algo-
rithm directs the UAV to dock with the current target CH.
Case 2: Data Overload. Each CH possesses a finite storage
capacity for data. If any CH exceeds its storage threshold,
denoted as Dthresh, the ADF algorithm orchestrates the UAV
to navigate directly to that CH for data transfer.
Case 3: Null Action. During the gap time required for
data preparation and sensing by EH-powered IoT devices, the
UAV’s services are not required. In such instances, the ADF
algorithm proactively assigns a CH as the target destination
for the UAV’s break period.
Case 4: Unbalance Service. To mitigate the risk of the DRL
agent consistently selecting outdated CHs, the ADF algorithm
intervenes by directing the UAV towards unserviced CHs.
The details are described in Algorithm IV.1.
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Algorithm IV.1: ADF:AoI-aware Data Ferry
Input: {1, 2, . . . , N}, (xn, yn)∀n ∈

{1, 2, . . . , N}, PUAVthresh, Dthresh

1 if No CHTarget then
2 CHtarget = argmin Distance{uav,n}
3 else if PUAV ≤ PUAV thresh then
4 UAV returns back to CHtarget

5 else
6 if Dn ≥ Dthresh then
7 CHtarget = n
8 else if ∀CH ∃{CH|CHaoi = 0} then
9 CHtarget = {CH |CHaoi = 0}

10 else
11 CHTarget = rand{QA(s) ∥ Rand(A)} ## N
12 return CHTarget

B. DDQN-based AoI Minimization

State. The environment state is encapsulated within a (N +
1) × 3 matrix, where each row represents the state of a CH,
denoted by sn = {n,Dn, agen},∀n ∈ 1, 2, . . . , N . Here, Dn
signifies the total data contributed to Duav by the CH, while
agen denotes the Age of Information (AoI) computed using
Eq. (3) for that CH. An additional row, appended to the matrix,
characterizes the real-time status of the UAV, represented by
s0 = {0, Duav, PUAV}. Here, Duav corresponds to the total data
collected during the simulation, while PUAV reflects the on-
board energy reserves of the UAV. The state varies at each
time step t. Therefore, we omit the label on t.
Action. In contrast to the popular model that outputs coor-
dinate locations or a trajectory for the UAV to follow, this
model outputs a specific CH a = N ∈ {1, 2, . . . , N} for the
UAV to target next. This is to ensure scalability and reduce
complexity when the model makes a decision on the next target
while limiting the amount of environmental input required for
the model to make such a decision.
Reward. Five factors contributed to the reward function:
AoIavg, AoIpeak, distribution of data, Duav , and termination
by crash. Using these metrics and accumulated data, the reward
functions were designed to represent the environment response
to the model. Further, the reward for the average AoI can be
determined by the average and peak metrics as formulated in
Eq. (9).

rAoI = 1− 2× AoIpeak −AoIavg
Tthreshold

(9)

After defining the reward of average AoI, we will further
formulate the reward for peak AoI in Eq. (10) which uses
the peak and threshold. Here, Tthreshold was to encourage
the hourly service of all CHs. Taking the difference between
the peak and the average for the reward is to ensure that the
peak is drawn closer to the average AoI. The reward from this
equation is used further to drive the peak AoI away from the
threshold value.

rpeak = 1− 2× AoIpeak
Tthreshold

(10)

Next, the distribution of data was determined using the
percentage of data collected at each cluster head over all time.

Algorithm IV.2: Training:ADF Training Process
Input: Simulated Network Environment env

1 QA ← initialize DQN
2 QB ← initialize DQN
3 Bmem ← empty Deque
4 s← env(reset)
5 while step ≤ max steps do
6 a = QA(s)
7 s′, r, d← env(a|s)
8 Bmem ← {s, a, s′, r, d}
9 if len(Bmem) ≥ batch size then

10 Update QA

11 if step % hard update timer = 0 then
12 QB ← QA

13 s← s′

This is done by finding the range of the percent contribution of
each cluster head to the total accumulated data and subtracting
from one as shown in Eq. (11).

rdistri = 1− 2× DDist

Duav
(11)

where Duav is the total data accumulated by the UAV and
the metric for distribution Ddist which can be formulated
as in Eq. (12) by using the total contributed data from each
CH. Here Dmax and Dmin are the maximum and minimum
amounts collected, respectively.

DDist = Dmax −Dmin (12)

The reward is calculated as a weighted sum of the rewards
defined above, as illustrated in Eq. (13), where δ, β, and ζ
represent the respective weights assigned to each term.

reward =

{
− 100, if UAV crashes
δrAoI + βrpeak + ζrdistri, else

(13)

Training. We adopt DDQN as underlying for DRL agents
training. Algorithm IV.2 described the training process. The
algorithm utilized during training was constructed using con-
ditional statements and a DRL model.

Training occurred over 1e5 steps and was kept constant
for all models. The first 5e4 steps were allocated for pre-
training. The next 5e4 steps were documented and evaluated
within Section V. During this time, epsilon variables were
gradually adjusted 1 to 0.0001. During displayed periods of
evaluation, the epsilon variable, which is used to determine the
randomness of the action performed, was set to 1 for proper
evaluation of runtime performance.

V. EXPERIMENTS

In this section, we will first set up the experiment including
the data set and baselines. Then we will conduct an experi-
mental evaluation of our proposed method.
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Fig. 2: The average episode length at each evaluation period
for each of the three algorithms used.

A. Experimental Setup

In this paper, we utilize the pvlib library developed by
Sandia National Laboratory’s PVPMC [17]. This library was
developed to simulate the solar irradiance given at any geo-
graphic coordinates. The function of this library is to provide
solar metrics for the realistic simulation of solar harvesting.
The library extends to simulate the efficiency and positioning
of solar farms. We will also set up two baselines to compare
with the proposed DQNN. First, Q-Learning QL was imple-
mented for comparison versus its successor, the DQNN. Next,
a genetic algorithm was implemented using the PyGAD library
[18] to adjust the weights of the deep neural network.

Our environment was initialized with an environment of 1e8
km2 size in which 50 WS were randomly dispersed, 10 CHs
were placed and 1 UAV patrolled. WS were initialized with
2500 mm2 solar cells and 1-Ah, 10-hour-rate batteries. CHs,
by contrast, were initialized with 5000 mm2 solar panels and
2-Ah, 10-hour-rate batteries. AmBC specifics were determined
to be a max distance of 2 km incurring a 70 µA current
draw when transmitting data. In contrast, LoRaWAN was set
at a maximum distance of 5000 m and current draws of
1.6 µA idle, 14.22 mA receiving, and 38.9 mA transmitting.
Finally, the UAV had the specifications of 15 m/s speed, 6800
mAh battery capacity, 2.5-hour-rate charging, and 0.5-hour-
rate flight. The thresholds were chosen before running instead
of utilizing tunable parameter options. Puav thresh was set to
40% maximum battery capacity, Dthresh was set to 1 kB, the
maximum number of steps was set to 720 per episode and 1e5
for all training steps, a batch size of 64 steps, a deque size
of 2500, a Dscale of 1e4, Tthreshold = 60 minutes, the hard
update timer is set to 720 and the gamma is defined at 0.95.

B. Experimental Evaluation

1e5 steps was the time limit set for training divided be-
tween 5e4 pre-operation steps and 5e4 evaluation steps. The
experiments produced an average episode length of 112 to 114
minutes as seen in figure 2. With a maximum episode length of
720 minutes, this indicates the constraint that power has on the
system and the limitation it imposes upon the simulation. The
return also shows interesting trends as all models gravitated

Fig. 3: The average episodic return per each evaluation period.

Fig. 4: The average episode length at each evaluation for each
of the three algorithms used.

towards rewards between -7e3 and -10e3 as depicted in figure
3. Which indicates a potential focus for future work.

Utilizing the data metrics explained prior, the average data
collected per step reward can be seen in Figure 4. For this
metric, the algorithm shows 33% better results with the imple-
mented DDQN than with its closest competitor. This shows the
model prioritizing the total collection of data for maximizing
reward. The distribution in Figure 5 was determined by the
difference between the maximum data collected from a CH
and the minimum. All models performed well at minimizing
the bias between CHs with distributions ending between 25
and 26 Bytes of data difference.

Finally, the AoI is recorded in the last two Figures 6 and 7.
Figure 6 shows the average AoI across CHs and reveals the
effectiveness of the algorithm utilizing DDQN to minimize
this age by 1.8% beyond that of the other models. The ability
of the algorithm to handle AoI is further revealed in 7 by
showing the peak age of information almost 1.3% lower for
the algorithm implemented with a DRL model versus the other
models. Typically, DRL performs better with more training.
By increasing steps from 1e5 to 1e6, the algorithm could be
predicted to perform more optimally.

VI. CONCLUSION

In this paper, we discussed a complex simulation involving
power as the primary constraint on the simulation. Addition-
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Fig. 5: The average difference between most data contributed
by a CH and least during evaluation.

Fig. 6: The average AoI for each evaluation.

ally, metrics were defined that measure the data accumulation,
distribution, and age. Additionally, we define a model that
addresses these metrics and compare them to a baseline as
proof of its reliability. Future research will further explore
the application of DRL to this simulation and real-time UAV-
assisted IoT networks. Other directions into the production
of increasingly realistic simulations for the assistance of
developing models for real-time applications.
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