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Abstract—In today’s world, embedded systems and
microcontroller-based modules have become increasingly
integrated into our daily lives. However, the security of
these embedded devices and the assurance of hardware
authenticity have raised concerns within the expanding
realm of the Internet of Things (IoT). In this study,
we established an experimental environment to observe
the disturbance of SLC flash memory programming for
the purpose of designing a physical unclonable function
(PUF). Our findings revealed that intra-page disturbance is
more easily generated compared to inter-page disturbance.
Additionally, we observed a pairing pattern where adjacent
pages are paired in a (2n, 2n+1) manner, and disturbances
only occur within a pair. Finally, we discovered that as
the page number increases from 0 to 63, it becomes
progressively more challenging to detect the initial bit flip
within a page, thereby making it more difficult to achieve
a stable disturbance state.

I. INTRODUCTION

Authentication has emerged as a potential solution
to address the integrity concerns in the IoT ecosystem.
As traditional methods of distinguishing and identifying
individuals based on physical traits became increasingly
challenging, biometric authentication stepped in to fill
the gap [1]. Similarly, electronic devices such as RFIDs
often share a similar physical appearance. The primary
distinguishing factor among them lies in the unique
identification (ID) stored in the chip memory. However,
the vulnerability of this ID makes it susceptible to attacks
and compromises. PUF is a technique used to establish
a digital fingerprint on physical semiconductor devices.
This fingerprint is highly unique and remains mostly
unaffected by variations in temperature, humidity, or
stability. Research that investigates PUF from volatile
memories and non-volatile memories can be found in [2]
and [3] respectively.

In electronic devices, memory plays a crucial role
in storing information. With the advantages like lower
power consumption, faster write and erase times (high
access speed), and a low cost per bit, NAND flash stands
out as one of the most widely used among all. These
qualities make NAND Flash a preferred choice in many
electronic devices such as USB drives, media players,
digital cameras, and smartphones.

With the introduction of PUF, IoT security, especially
in healthcare domain [4], [5], can be enhanced as PUF
provides a unique, unclonable ID. Additionally, if data
is stored with PUF encryption on memory, the data is
secured as it is not possible to decrypt without the PUF.
Moreover, PUF can generate random output values, and
there are numerous applications of a good and reliable
random number generator. This function is unpredictable
for even an attacker with physical access to the system.
Also, It is impossible to produce a copy of the same
physical system even when the functionality is known.
PUFs offer a unique signature [6], [7], which comprises
the bits that remain stable regardless of the number
of read and write operations performed on a particular
memory cell. This extracted signature serves as a mean
to authenticate a chip and generate a random number
suitable for cryptographic key generation.

In this paper, we specifically conducted a novel PUF
extraction using the Samsung NAND Flash Memory
(K9F1G08U0E) and the Flexible Memory Controller
(FMC) interface of the experimental discovery board
(STM32F429ZIT6). The software utilized was STM-
CUBE32IDE, and we employed the C programming
language. Our work focused on exploring various new
program disturb algorithms and applying them to the
NAND flash for PUF extraction purposes. We also
evaluated the performance of these algorithms during the
extraction process.

II. RELATED WORKS

Shijie et al. [8] introduced a PUF-based key gener-
ator specifically designed for NAND flash chips. Their
approach involved proposing three distinct methods for
extracting raw PUF output numbers. These methods
included utilizing a position map, partial programming,
and partial erasure techniques to identify and select reli-
able keys from the PUF output. Prabhu et al. [9] tested
seven NAND flash-based PUFs that leverage program
disturb, read disturb, and program operation latency.
They conducted experiments involving fourteen devices
to evaluate the proposed PUFs. The evaluation process
employed Pearson correlation as a metric to assess the



robustness of the generated signatures. The results indi-
cated that NAND flash PUFs based on program latency
and program disturb exhibited the highest utility and
effectiveness among the tested approaches. They have
observed that NFPUF based on program disturb is the
best one to distinguish between different chips but takes
more time for extraction and NFPUF based on program
latency is the fastest among all PUFs. Cai et al. [10]
demonstrated the effects of two-step programming on
MLC NAND flash. Their work exposed the dangers of
two-step programming and how it could be exploited.
The process of two-step programming involves program-
ming a single cell’s LSB and MSB at different times.
Most of the existing work is limited to analyzing and
generating PUF for a single NAND flash chip either SLC
or MLC. In this paper, we will observe SLC Single Page
Program disturbance with different approaches.

III. BACKGROUND

A. NAND Flash

The NAND flash cell is made of a floating gate
transistor, where the electrons held by the floating gate
decide the threshold voltage (Vth) of the cell. Normally,
to switch on an NMOS transistor we need Vg > Vth.
During the program stage, if we inject electrons in the
floating gate, we will require a relatively higher voltage
(Vg) to offset the negative charge of electrons and turn
on the channel (Vg−Vδ > Vth). If there are no electrons
captured in the floating gate, a relatively small gate
voltage is sufficient to make Vg > Vth and turn on
the transistor. NAND Flash memory is a non-volatile
storage technology that retains data even without power.
A metal-oxide-semiconductor known as the Floating gate
provides additional charges to the memory cell, which
helps in preserving the stored data in the absence of
power. Distinguished by the number of bits stored per
cell, NAND flash storage is available in various types,
including SLC (Single-Level Cell), MLC (Multi-Level
Cell), TLC (Triple-Level Cell), QLC (Quad-Level Cell),
and 3D NAND. NAND Flash memory organizes data
into blocks, with the block being the fundamental unit for
erase operations, while the page serves as the basic unit
for write operations. Each page comprises a data area and
a spare area. Flash memory organization is described in
Figure‘1.

B. PUF within NAND Flash Memories

The dense packing of flash cells makes process vari-
ations in feature geometry have a notable impact on the
interaction between neighboring cells and the behavior
of individual cells. As a result of these variations, certain

Fig. 1: Flash Memory Organization

cells may exhibit varying levels of susceptibility to
write/read disturbances and wear. PUFs offer a dis-
tinctive signature consisting of stable bits that remain
unchanged regardless of the number of read and write
operations performed on a specific cell. This unique
signature serves multiple purposes: it can authenticate a
chip, verify its integrity, and generate a random number
suitable for cryptographic key generation. The variations
in signatures occur between blocks and pages within
the chip. Consequently, the chip can possess multiple
extractable unique signatures in different locations.

C. PUF Generation Techniques

Various techniques exist for deriving raw PUF output
values from NAND Flash memories. Firstly, Program
disturb, a block gets wiped out first, followed by con-
tinuous programming of a single page within that block.
The pages adjacent to the programmed page must be read
between each programming sequence to detect errors
induced by the Program disturb. For every bit on the
neighboring page, the count of programming instances
required to generate the first bit error is documented.
This information collectively forms the signature. The
extraction of a signature necessitates one erasure and
numerous programming operations, but these procedures
do not compromise the reliability of the chip. The
disadvantage of program disturb technique is that it
causes irreparable damage to the page, and it is quite
slow.

The second technique is known as Read disturb.
With this method, the entire block is initially erased
and subsequently programmed with random data. After
this, each page is read multiple times, often reaching
several million reads in order to generate a read-disturb.
Following every 1,000 read cycles, every page in the
block is examined for potential errors. If an error is
detected on a page, the bit, the page, and the error’s
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cycle are all recorded. This procedure is repeated up to
10 million times. As a result, the read cycle counts for
all the bits within the block are utilized as the signature.
While the Read disturb method is less destructive and
generates less signature noise compared to the Program
disturb method, it is a slower process. Another technique
is called the Program operation latency; each bit is
programmed individually on a page, keeping track of the
latency for each operation. The benefit of this method is
its speed, as well as the fact that it does not result in
wear and tear on flash device.

IV. SETUP AND IMPLEMENTATION

A. Hardware Setup

The STM32F429I and NAND Flash are connected
using female jumper wires. Among the 16 required
connections to the NAND Flash, there are 8 data pins, 6
control pins, Vcc (Voltage supply), and GND (Ground).
The same 8 data pins on the NAND Flash are used
to transmit command, address, and data. The 6 control
pins on the NAND Flash include: CLE (Command Latch
Enable), ALE (Address Latch Enable), R/B (Ready/Busy
Output), WE (Write Enable), RE (Read Enable), and
CE (Chip Enable). Power is supplied to the NAND
Flash from the microcontroller by connecting the Vcc
3V of the microcontroller to the Vcc of the NAND
Flash, and the GND of the microcontroller to the GND
of the NAND Flash. The corresponding FMC (Flexible
Memory Controller) pins from the microcontroller are
connected to the control and data pins of the NAND
Flash. This integrated development environment includes
the STM32CubeMX graphic tool and STM32CubeIDE.

B. Software Setup and Configuration

STM32CubeIDE, an integrated development environ-
ment, is utilized for the creation of software code in the
C programming language. It comes equipped with the
STM32CubeMX graphic tool, which allows for board
visualization, pin selection, and configuration. Further-
more, STM32CubeIDE offers the capability to generate
definitions and library files that correspond with the pins
configured via the graphic tool.

As a part of the setup process, we first initialize
the Hardware Abstraction Layer (HAL), followed by
the configuration of the System clock. Subsequently,
other peripherals such as GPIO, FMC, and USART1
are initialized. Next, we create an instance of a NAND
Controller and configure the required setup values. These
values include SetupTime, WaitTime, NandBank, ECC-
computation, BlockSize, PageSize, and more.

C. Erase and Read Operations

Before programming the page, an erase operation be-
gins by issuing an Erase setup command (60h), followed
by the row address. While setting the R/B pin to low, the
Erase confirm command (D0h) then initiates the internal
Block Erase operation. In the Write Status bit (I/O 0),
a value of 0 indicates that the erase operation has been
completed, whereas a value of 1 signifies an error in the
erase operation. The read operation is initiated with the
opcode 0x00 while setting the CLE pin to HIGH, and
the CE pin to LOW. Then the row and column address
is provided. After signaling the completion of writing
the address by using the opcode 0x30, the device now
knows which bytes to read from its flash array. The data
from the address is loaded onto the page register and
sent through each of the 8 I/O pins to be read by the
STM32F4 micro-controller.

D. Program Operation

At the page level, the program operation is initiated by
issuing a Serial data input command (80h), followed by
column and row addresses. Subsequently, the transmitter
buffer, which comprises the data to be written on the
page is set and passed in the next cycle. The NAND
instance is initialized with parameters such as frequency,
setup timing, and hold timing. A Read operation is
performed to verify the data that has been written. The
column and row addresses are passed in the following
4 cycles. The data is then read in the subsequent cycle.
The output of the Read Page operation is stored in the
receiver buffer, which holds the data that has been read
from the page, thus initiating the programming process.
While setting the R/B pin to low, the status of write
operation is checked by issuing command 70h.

V. METHODOLOGY AND APPROACH

A. Algorithm

After evaluating various methods for signature ex-
traction, we elected to utilize the Program disturb tech-
nique for our project. We decided based on the higher
frequency of disturbance observed in cells compared
to the Read disturb method. Program disturb appears
earlier, usually around ten thousand iterations, while
Read disturb doesn’t show significant disturbance within
ten thousand iterations; more iterations are needed to
detect Read disturb. Hence, we opted for the program
disturb method.

B. Procedure

We identified stable bits within the NAND Flash
memory in a variety of ways: on the same page, on the
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adjacent page, and across all pages within the block.
The algorithm 1 and 2 outlines the NAND flash ID
extraction using single page program disturb and multi
page program disturb respectively. It is important to note
that Error Correction Code (ECC) needs to be disabled
so that it would not automatically correct any errors and
interfere with our process.

1) PUF observing the same page: Firstly, regarding
the method of locating stable bits on the same page, we
began by erasing block zero and programming page one
with the value AA in hexadecimal. We then tracked the
bit changes happening on the same page by comparing
the bit values on that page with AA. If the value differed,
it signified that the bit was not stable. If not, they were
deemed stable bits and were stored in an array. This
process of programming and the subsequent steps were
repeated over ten thousand iterations. By the end of these
iterations, we had stable bits that could generate a PUF.
The technique is described in Algorithm 1.

2) PUF observing the adjacent pages: The second
approach bears similarities to the first, but this time we
are reading from the adjacent pages. In this method,
we erased block zero, and then programmed page two
with the hexadecimal value AA. Subsequently, we read
from the adjacent pages, which are page one and page
three. For these adjacent pages, we compared their bits
with the value FF (FF is the value resulting from the
erase operation, which sets all bits to ones). If the value
remains the same, it indicates stability. However, if it
changes, the bit is considered unstable. We then stored
the stable bits in an array, and continued comparing them
through each of the ten thousand iterations. During each
iteration, we wrote to the same page, page 2, and read
bits from page 1 and page 3.

3) PUF observing a number of pages: In the final
approach, we erased block zero and programmed all
pages with the value AA. We then selected page one
and programmed it again with AA ten thousand times.
Subsequently, we read the adjacent pages, which are
page zero and page two, and compared their bit values
with AA. If there was any change, the bit was deemed
unstable; otherwise, it was considered stable and stored
in an array. We then proceeded to the next page, page
two, and programmed it ten thousand times with AA.
The adjacent pages, page one and page three, were then
read, and the values were compared with AA. If there
was no change, they were added to the stableBits array.
We applied the same steps to all 64 pages in the block.
The technique is described in Algorithm 2.

Algorithm 1: NAND Flash ID Extraction Using
Single Page Program Disturb

Result: Read the flipped bits
while While true do

for i← 1 to 64 do
Write 0xAA to every byte of the page 0;
Read page 0 and store to a buffer;
Print 128 bytes of buffer through USB CDC

stack;
Delay 100 ms

end
end

Algorithm 2: NAND Flash ID Extraction Using
Multi-page Program Disturb

for i← 1 to 64 do
Erase Block
for j ← 0 to 10k do

Program Page i is programmed by 0XAA if
(j+1) % 1000 then
end
Read page (i-1), i, and (i+1)

end
end

VI. EXPERIMENTAL RESULTS

A. PUF Identification

1) PUF observing the same page: Algorithm 1 has
been implemented on the Discovery board to showcase
single-page program disturbance. This technique was
tested on two different NAND Flash devices. Both
devices used the same page programming and observed
the page for program disturbance. The number of iter-
ations conducted on both devices was 10,000. During
the experiment, stable index bytes were identified for
each NAND Flash device. The number of stable bytes
identified differed between the two devices, and the
indexes of the stable bytes varied as well. Interestingly,
through the experiment, it was observed that after ap-
proximately 306 iterations, the bits began to flip and the
situation deteriorated significantly thereafter. The above
observation is explained as follow:

Flash memory can only transition from a state of 1 to 0
during the write process. Once it has reached the state of
0, it can only be switched back to 1 through an erasure.
Initially, each cell of the flash memory is programmed
with 1s, and then repeatedly overwritten with 0xAA to
each byte. In an ideal scenario, the constant read output
would be 0xAA. However, after several iterations, some
bits unavoidably flip from 1 to 0 and remain so. Since
we did not implement an erase operation at each step,
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these irreversible bit flips accumulated over time, leading
to an increasingly disordered state.

2) PUF observing the adjacent pages: After execut-
ing 10,000 cycles of writing and reading, we successfully
determined the count of stable bytes. To evaluate if the
results were unique, we carried out similar operations
on two different devices. The outcome showed that all
the bytes on page number two in both devices remained
stable. However, only a finite number of bytes were
stable on page number 4.

3) PUF observing a number of pages: We utilized
Algorithm 2 to examine both intra-page and adjacent-
page disturbances across pages 1 to 64. However, in this
study, our evaluation was confined to 7 pages. Table I
shows the iteration point at which program disturbs on a
page starts to affect itself and its neighboring pages. We
can see that, disturbances from page 1 starts affecting
Page 0, which occurs within less than 1,000 write iter-
ations. Interestingly, Page 2 remains undisturbed. This
leads us to infer that disturbances only occur in paired
pages. However, this characteristic is dependent on the
physical layout of Samsung’s SLC NAND flash memory
and the proximity between two of every three pages.

The page distance is close enough to trigger bit flip-
ping, while the pairing distance is far enough to prevent
one pair from interfering with another. Pages tend to
become more resistant to bit flipping as their distance
from page 0 increases. While we lack exact information
about the physical layout of Samsung’s SLC NAND flash
memory, we hypothesize that page 0 is nearest to the
block’s voltage source (or plane), given that the page
pairs are stacked vertically. The speed at which program
disturbances occur is not only dictated by the physical
proximity of the pages, but also by the heat generated
from the voltage source. As we ascend the vertical page
stack, heat dissipation occurs, resulting in an exponential
increase in the number of iterations to generate program
disturbances. This increases the complexity of signature
extraction in the ensuing manuscript, a subject we will
delve into as we compare the signature extraction of
pages 1 and 2. Following data recording into log files, we
created a Python script to analyze the data and visualize
our findings through plots.

Our analysis confirmed that the pages are physically
programmed in pairs, conforming to the equation (2n,
2n + 1), where ’n’ represents the pair number (0 to 31).
Therefore, programming to page 0 only disturbs page 1,
programming on page 2 exclusively affects page 3 and
vice versa. Further analysis reveals that the instances of
program disturbances necessitate more iterations as we

Fig. 2: Estimating Bit Flip Pattern.

Fig. 3: Page 1 signature after 100k multi-page writes.

progress from page 0. This pattern is evident when we
plot Table I in Fig. 2. We have applied an exponential
curve fit to both inter- and intra- page disturbances,
which facilitates the estimation of when a given page
and its pair will experience their first bit flips.

The black colored entries in the heatmap from Fig. 3
shows bytes that have completely flipped. Meaning after
erasing the page, all the bits in a byte have changed
from 0xFF to 0x00. The white entries show erased bytes
that remained 0xFF after page erase. Using the non
black colored entries, we can use these markings to
show the bytes and bits of a page that have not flipped
from program disturbs. After 83k iterations, the signature
became stable. The colored entries in Fig. 4 represents
bit flips within a byte. In Page 2’s signature, it is quite
evident that all the bits in each of the 2,048 bytes do not
completely flip. Only a few of the 8 bits flip. We can use
the colored entries to show the bytes. Similar to page
1’s heatmap where the black colored entries represent
the flipped bytes and white entries show stable bytes,
we observe that 100k iterations is not enough program
writes to observe a stable signature specifically for page
2. Examples can be seen in Fig. 3 and Fig. 4. The higher
numbers are represented by warmer colors, which are
indicative of bits that were highly resistant to disturbance
and only flipped after running the experiment for high
number of cycles.
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Program on Page n Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7
First bit flip in Page n-1 <1 No bit flip 4 No bit flip 28 No bit flip 64
First bit flip in Page n <1 <1 1 3 5 7 15
First bit flip in Page n+1 No bit flip 2 No bit flip 13 No bit flip 39 No bit flip

TABLE I: Iteration points of disturbances on individual pages and their neighbors (in thousands).

Fig. 4: Page 2 signature after 100k multi-page writes.

VII. CONCLUSION

PUF can play a significant role in strengthening the
security of hardware and systems. The strength of a PUF
against attacks is directly linked to the uniqueness of its
generation process. In this paper, we employed various
techniques of program disturb to extract PUF from
NAND flash memory devices. The PUF was captured on
the same page, on adjacent pages, and across all pages.
As we observed, a large number of bits remain stable
even after 50,000 operations when performing bit-wise
operations on data read from a page. To manage this, we
designed an algorithm that can execute the outer loop for
1,00,000 writes and ascertain the number of stable bits
to an array after every 10,000 writes. Consequently, we
will have 10 arrays of stableBits [0-9]. By comparing all
of these arrays against each other, we can further reduce
the number of stable bits. We then utilize these stable
bit information to generate PUF. To proof the PUFs
uniqueness, we conducted our research on two different
NAND flash memory devices. The results from these two
devices were then compared to examine the signature
differences. We observed that PUF generated from both
devices are different and unique. This extracted PUF
could potentially be utilized as a key to strengthen
hardware authentication and system security.
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