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Abstract—As Large Language Models (LLMs) are increasingly
deployed to support a broad spectrum of applications, enhancing
inference efficiency and minimizing costs have become critical
areas of focus. To address these challenges, researchers have
explored optimizing the Key-Value (KV) cache within LLMs.
However, existing approaches have not considered the potential
benefits of sharing KV caches across multiple requests in a
cluster environment. Addressing this gap, we introduce sLLM,
a novel system that integrates an efficient shared-memory-based
Semantic Load Balancer with a KV cache sharing mechanism.
This design significantly reduces the need for recomputation
during LLM inference, which enhances inference performance.
Our evaluation of the sLLM system showcases its effectiveness:
the Semantic Load Balancer achieves up to a 7× reduction
in latency when dispatching requests, while the system as a
whole can decrease the Time-To-First-Token (TTFT) for LLM
inferences by 30− 58%.
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I. INTRODUCTION

Transformer-based Large Language Models (LLMs) have
gained significant attention due to their ability to generate
human-like text. These models, trained on vast datasets, are
transforming a wide variety of applications such as content
creation, coding, personal assistant, and more [1], [2]. As
LLMs are deployed in production to support real-world use
cases, the efficiency and performance of LLM inference be-
come critical for operation cost and user experience.

In many applications of LLM today, the questions given to
the LLMs, often referred to as ”prompts”, are made using a set
of standard templates. These prompt templates are used repeat-
edly for various requests. These templates provide a consistent
structure to the prompts to ensure accurate interpretation and
response, which is crucial for production applications. It has
been found that using these standard prompt templates helps
the LLM perform better for a wide variety of applications such
as healthcare, robotics, marketing, and computer networking.
[3]–[5]

The repeated use of templates or entire prompts in different
requests gives rise to the following question: Can we reduce
the unnecessary re-computation across requests during model
inference to reduce the inference latency and cost?

Previous research explored various methods to reduce re-
dundant computation for LLM inference [6], [7]. One popular
approach is the use of a Key-Value (KV) cache. Most LLMs
are autoregressive, where one token is generated at a time
based on previous tokens. Here a token is a word, part of a
word, or even punctuation. The KV cache technique involves

storing and reusing the key-value attention states of known
tokens to reduce the need of having to recompute the attention
states of all the tokens when generating the next new token.
Existing works have looked into optimizing the KV cache
to improve performance by using techniques such as paged
attention [7] and compression [8], [9]. However, these works
only consider leveraging the KV cache for a single LLM
inference request in a single machine. In other words, the KV
cache is kept only during the inference of a single request
and destroyed once the request is completed. In a cluster
environment, these inference servers work individually and do
not collaborate and share the KV cache. As a result, existing
techniques do not consider leveraging the shared text between
requests in a cluster environment to further improve inference
performance.

To this end, we propose sLLM, a system that aims to reduce
the inference latency in large-scale clusters by reusing KV
cache across multiple requests. sLLM achieves this by effi-
ciently and semantically load-balancing the inference request
to the most appropriate inference server. Each inference server
process uses a shared KV cache that is kept across requests
to minimize the recomputation of the key value attention
states of previously seen tokens. One of the key challenges
here is the performance of the semantic load balancer. A
semantic load balancer does not simply forward the request to
a server, but instead also looks into the data to decide the best
server selection. Thus it is more challenging to maintain high
through and low latency. To tackle this challenge, we build
the semantic load balancer on top of lock-free shared memory
data structures, to allow multiple load balancer processes to
operate in parallel with high-performance read/write access to
the shared forwarding information.

The sLLM system is implemented using Rust and Python
and has undergone extensive testing on a server cluster with
real-world traces. The evaluation results demonstrate the high
performance of the system. Compared to utilizing Redis for in-
memory caching of forwarding information in load balancers,
our semantic load balancer achieves 6X higher throughput and
7X lower latency. Overall, by sharing the KV cache across
multiple requests, our sLLM system significantly reduces the
time-to-first-token(TTFT) inference latency by 30-58%.
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Fig. 2. Ours: Operation of transformers with shared KV across requests

II. BACKGROUND AND RELATED WORKS

A. LLM and Transformer Basics

Most of the popular LLM models, such as GPT [10],
LLama [11], OPT [12], are built based on the transformer
architecture [13]. At its core, the transformer model relies on
a mechanism known as ”attention”, which enables the model to
focus on different parts of the input sequence when producing
an output, thereby capturing the context more effectively.
During the inference process of an LLM model, the input
prompt is first tokenized into tokens, each representing a
word, part of a word, or punctuation. These tokens each go
through an embedding layer to create a word embedding. Next,
embeddings (including positional encoding) would be used as
input to the LLM’s attention layer, where each embedding
is sent through three separate networks (often with a fully
connected layer) to obtain a key, value, and query. We then
compute the dot product of each query and its preceding
token’s keys to obtain the ”importance” of each of the pre-
ceding tokens. Subsequently, the output is normalized and
multiplied by the values of all the preceding tokens to obtain
the output of the attention layer. Notice that an LLM model
often contains multiple attention layers, thus the output of an
attention layer is used as an input to the next attention layer.
Then last transformer layer output is processed to complete
the generation of the next token. Figure 1 shows the high-
level ideas of this inference procedure.

B. Autoregressive Process

From the above description, we can see that a single pass
through a transformer generates one token at a time. To
generate a complete response from the input prompt, modern
LLM models adopt an autoregressive process, which generates
text one token at a time based on all the preceding tokens

(including both input and generated tokens). This process is
run sequentially until the max number token is reached or an
end-of-sequence token is generated.

C. KV Cache

As a result, the autoregressive process requires us to execute
the transformer multiple times to obtain the final response
text, which involves a significant amount of recomputation. To
reduce recomputation, researchers created the Key-Value (KV)
cache to store the attention states. The KV cache essentially
stores the key and value vectors of the processed token, so
when the LLM model generates the next token, it does not
need to compute the key and value vectors of the previously
seen tokens. More specifically, when the LLM receives an
input sequence of tokens and starts to generate the first new
token, the LLM model needs to compute the key, value, and
query of all the tokens in all attention layers. Then based on the
autoregressive process, when the LLM generates the second
token, it only needs to compute the key and value vector of
the last generated token, because the keys and values of the
other tokens can be retrieved directly from the KV cache.
Figure 1 shows the process of the first token generation and the
second token generation in an autoregressive manner. Once the
LLM model completes the token generation for one request,
it usually discards the KV cache.

To accelerate LLM inference, researchers have looked into
various ways to optimize the KV cache. [7] tries to reduce
the memory footprint of the KV cache on GPUs. It uses pag-
ing techniques to improve memory management and reduce
internal and external fragmentation of KV cache. [8] tries
to improve inference performance by pruning non-important
entries in the KV cache. It proposes a KV eviction policy to
keep the KVs of the recent and most important tokens. [14] and
[9] also explore ways to compress the KV cache with pruning
techniques. Most of these works focus on optimizing the KV
cache of a single server to improve inference performance.
This study focuses on improving the inference performance
of an inference server cluster by efficiently load-balancing the
request across the servers.

D. LLM Inference Cluster Deployment

To deploy LLM or Machine Learning inference in a cluster,
it is a common practice to run multiple inference servers with
a load balancer in front of them to distribute the incoming
requests among the inference servers [15]–[17]. HA proxy
[18] and Nginx [19] are some of the popular choices for
load balancers. Some systems, such as [16], also develop their
specialized load balancing to support application requirements.
Although many of these load balancers are highly efficient,
they only support simple load balancing strategies, such as
round robin, least request scheduling, and batching. These
strategies do not look into the content of the request itself, so
they can not load balance the requests based on the content and
the conditions of the KV caches of the inference servers. In
our work, we aim to build a semantic load-balancing solution



that is aware of the incoming prompt and also highly efficient
and scalable.

III. METHOD

In this section, we provide the detailed design of our sLLM
system. We will first introduce the high-level system design,
the KV cache sharing mechanism, followed by the internal
design of the semantic load balancer.
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Fig. 3. sLLM High-level System Design Diagram

A. System Design

The high-level system design of the sLLM system is shown
in Figure 3. The system contains two types of components:

• Semantic Load Balancer: This component acts as the
initial recipient of inference requests. Its primary func-
tion is to analyze and direct each request to the most
appropriate LLM inference server. The selection criterion
is based on the availability of relevant cached keys and
values attention states that match the request’s context.

• LLM Inference Servers: These servers are the workers
of the system. Upon receiving a request from the Se-
mantic Load Balancer, an inference server executes its
LLM model to process the request and generate response
tokens. During this process, it utilizes and updates a KV
cache. This KV cache is shared across multiple requests
and multiple inference processes.

In practice, the workflow begins with the inference request
being sent to the Semantic Load Balancer. After processing
and determining the most suitable LLM inference server
(based on the cache state), the request is forwarded. The
chosen server then executes the LLM model, generating a
response while simultaneously updating the shared memory
KV cache with new attention states. Finally, the response is
relayed back to the Semantic Load Balancer, which in turn
delivers it to the user. The Semantic Load Balancer also caches
the response from the inference server to facilitate future
lookups. This architecture is able to leverage the KV caches
residing in the inference servers to reduce the inference latency
by forwarding the request to the most appropriate inference
server.

B. KV Cache Sharing Mechanism

One of the main requirements is to share the KV cache
across multiple requests. We achieve this by searching for the
long prefix match. More specifically, for a given new input
sequence of tokens, we aim to find the cached token sequence
that has the longest prefix match to the input sequence. Then
we leverage the cache of the longest prefix to reduce the
amount of recomputation. With templated prompts [3], [20],
the amount of prefix matches across prompts is significant
and thus this method has a substantial impact on reducing
the inference latency. Compared to techniques such as KV
cache compression where the optimization methods change
the model output, our solution in fact keeps the output of the
model exactly the same, so it is applicable to a wide variety
of models. Figure 2 shows how the transformer works when
the keys and values of some prefix tokens are cached.

C. Semantic Load Balancer

As shown in Figure 3, the Semantic Load Balancer contains
mainly three components:

• Token Sequence Info Cache (TSIC): This is a shared
memory cache that stores mapping from a token sequence
to an LLM server that has the KV cache of that token
sequence. This module supports the lookup of the longest
prefix match mechanism mentioned above, and provides
high throughput and low latency read/write capability to
support the other two modules in the Semantic Load
Balancer.

• Request Process and Dispatch Module: This module
processes the prompt input, tokenizes the prompt, and
accesses the TSIC to look for the inference server that
has the longest prefix match token KV cache. Then it
forwards the token sequence to the corresponding server.

• Response Process Module: This module receives the
response token from the LLM inference servers, converts
it into text, and sends the response back to the user. At
the same time, it updates the TSIC to reflect the cached
token sequence of the response LLM server.

During operation, user input prompts are sent to the Request
Process and Dispatch Module to make inference server selec-
tion decisions by reading the TSIC. After token generation at
the selected LLM server, the responses are transmitted to the
Response Process Module, which writes to the TSIC module
and returns the response to the user.

One aspect to emphasize in this design is the support of
parallelism execution of both the Request Process and Dis-
patch module and Response Process module. The TSIC sup-
ports high-throughput and low-latency concurrent read/write
access from multiple processes. Notice that the TSIC is not
a traditional data store or database. Instead, it uses shared
memory techniques to ensure the high performance of the
load balancer. With such a design, all read and write accesses
to the TSIC involve only memory access without any Inter
Process Communication (IPC). More implementation details
of the TSIC is provided in the next Section.



IV. IMPLEMENTATION

In this section, we provide the implementation details of the
sLLM system. The sLLM system is implemented using Rust
and Python to support both high-performance execution and
compatibility with machine learning packages.

Next, we will separately introduce the implementation de-
tails of the TSIC, Request Process and Dispatch module, and
the Response Process module.

A. Implementation of TSIC
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Fig. 4. Implementation of TSIC

To support high throughput and low latency concurrent
read/write operation, TSIC is designed using lock-free data
structures built on top of shared memory provided by the
Operating System. More specifically, we implemented a lock-
free hash table [21] on top of shared memory to support a
fast concurrent look-up and update based on a given token
sequence. Locking mechanism is a popular method used by
developers to control the concurrent access to a shared piece
of memory to ensure data integrity and prevent issues like race
conditions. However, locking mechanisms have limitations
like deadlock risk and performance issues in high contention,
making them unsuitable for highly concurrent real-time appli-
cations. Lock-free data structure, on the other hand, combines
Operating System support and algorithm design to provide
an efficient way for concurrent read/write access with high
throughput and low latency.

The detailed implementation of the TSIC is shown in
Figure 4. It contains two lock-free hash tables with shared
memory and one regular shared memory. The Inference Server
Lookup Hash Table maps from the hash value of a token
sequence to the info (e.g. hostname or IP address) of an
inference server that has the corresponding KV cache to
the token sequence. The Response Lookup Hash Table is
designed to respond to prompts that have an exact match to
the previously seen prompts. The goal is to directly reply with
the response text to the user without having to forward the
request to an inference server. It maps the hash of a token
sequence to a memory address and the size of the response.

The memory address points to a location in the Response Text
Shared Memory that stores the response text.
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Fig. 5. Execution Pipeline of Request Process and Dispatch Module
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B. Implementation of Request Process and Dispatch module

With the concurrent read access support from TSIC, the
Request Process and Dispatch module follows the flow in
Figure 5. The prompt is first tokenized, and then we search
for an exact match in the Response Lookup Hash Table. If
not found, the Prefix Search module tries to find the longest
prefix match token sequence. If a match is found, the request
is forwarded to the server with the corresponding KV cache
for token generation. A basic longest prefix search algorithm
is used in our design. It starts with the first token and gradually
increases the number of tokens and checks if there is a match
until no match is found.

C. Implementation of Response Process module

The processing pipeline of the Response Process is provided
in Figure 6. After receiving the generated token sequence from
an inference server, the Response Process first decodes the
tokens into text and replies to the user. In parallel, it adds
the response tokens to the Response Text Shared Memory and
updates the info to the Response Lookup Hash Table. Then
it also updates the Inference Server Lookup Hash for all the
prefixes.

V. EVALUATION

To evaluate the sLLM system, we mainly consider two
areas: 1. the performance of the Semantic Load Balancer and;
2. the LLM inference latency.

A. Experiment Setup

The sLLM is evaluated with the OPT 2.7B model [12]
with the Alpaca dataset [22]. The experiments are done in a
compute cluster. The inference servers are deployed on Ubuntu
servers with Intel Xeon Gold 5218 CPU and 192G of RAM.
The Semantic Load Balancer is deployed on an AMD Ryzen
5 Server with 32G of RAM. To simulate a large number
of inference servers, we use profiling traces collected from
running the inference tasks on the Intel Xeon servers. These



traces allow us to test the performance of the Semantic Load
Balancer on a large scale.

B. Semantic Load Balancer

We evaluate the performance of the Semantic Load Balancer
in terms of its throughput and latency.

Baseline - Redis-based Semantic Load Balancing: We com-
pare our Semantic Load Balancer to a functionally similar
load balancing solution that is implemented using Redis [23]
as the in-memory caching layer. We select Redis because it is
a popular choice for efficient in-memory cache.
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Fig. 7. Semantic Load Balancer Latency Evaluation

Figure 7 shows the latency of different parts of our Se-
mantic Load Balancer versus the Redis-based Semantic Load
Balancer. Our implementation is able to achieve a signifi-
cant speedup compared to the Redis-based solution. When
considering the Request Process and Dispatch pipeline, our
solution is over 7X faster (30x faster if not considering the
tokenization step) compared to the baseline. This demonstrates
the efficiency and low overhead of our lock-free shared-
memory Semantic Load Balancer.
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Figure 8 shows the throughput of our Semantic Load
Balancer compared to the baseline. Our implementation is
able to achieve over 6x higher throughput compared to the

baseline, showing the ability of the load balancer to support a
large number of inference servers efficiently.

C. LLM inference latency
For the evaluation of the overall LLM inference latency, we

focus on the metric of Time-To-First-Token (TTFT), which
is defined as the time between when the input prompt is
received and the generation of the first token. TTFT reflects the
responsiveness of the system as it measures the wait time from
the user’s input and the first output, thus it has a significant
impact on the user experience. [24]

Baseline - Basic Inference Cluster: We compare sLLM
inference time with the case where the KV cache is not shared
across requests, and a basic load balancer is used.
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Fig. 9. TTFT Inference Latency under Different Percentages of Repeated
Prompts

To evaluate the inference latency under different usage
patterns, we augment the Alpaca dataset with different per-
centages of repeated prompts (i.e. identical prompts). Repeated
prompts are realistic as prompts are commonly reused in real-
world applications. The Percentage of repeated prompts is
defined as the percentage of prompts in the dataset that have
one or more previous occurrences. Figure 9 shows the TTFT
latency under different percentages of repeated prompts. With
our system that enables KV cache sharing across prompts, it
is able to reduce the inference latency by around 30% even
if no prompts in the dataset are exactly the same. With more
repeated prompts, we can further reduce the latency as the
cached response text can be replied directly to the user without
running inference.

VI. CONCLUSION

In conclusion, the sLLM system provides a method for
improving LLM inference for real-world applications. By
combining a Semantic Load Balancer with a shared Key-Value
(KV) cache mechanism, sLLM improves inference efficiency
and reduces computational costs in a cluster environment. Our
evaluations underscore sLLM’s ability to dramatically reduce
latency and Time-To-First-Token (TTFT).
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