
Fused Functional Units for Area-Efficient CGRAs

Abstract—To solve the inefficiencies in general-purpose com-
puting architectures, many different solutions have been proposed
in the past decade. One of the promising architectures is CGRAs,
which comprise functional units and a flexible interconnection
network. In this work, we present a framework that can generate
area-efficient CGRAs via fused functional unit (FU) design.
Our FUs support multi-precision for both fixed- and floating-
point numbers. Our evaluation shows that the proposed fused
functional units result in a 58%∼60% decrease in FU area and
an 11%∼15% decrease across the whole CGRA when integrated
with the state-of-the-art VectorCGRA framework [1], [2].

I. INTRODUCTION

Due to the inefficiencies in general-purpose computing [3],
domain specific architectures have been the subject of inter-
ests for many years. Programmable digital signal processors
(DSPs) were first developed in the 1960s [4] and FPGAs
followed two decades later [5]. The efficiency gap has been
shown to be around 3x between application-specific integrated
circuits (ASICs) and DSPs, 25x between ASICs and FPGAs,
and 500-1000x between ASICs and CPUs [3], [6]. In addition,
GPUs have been shown to be 10–75x less efficient than
FPGAs [7], [8]. Early systolic arrays in the 1980s used an
array of processing elements (PEs), also known as functional
units (FUs) [9], [10], which solution lends itself to recon-
figurability. By implementing reconfigurable PEs, the arrays
became reconfigurable to execute multiple algorithms. Coarse-
grained reconfigurable arrays (CGRAs) appeared soon after as
co-processors to accelerate traces, such as PipeRench [11], and
standalone designs, like DySER [12] and DynaSpAM [13].
They aim to achieve higher performance and lower area and
power consumption than general-purpose chips as well as
higher flexibility than ASICs. The benefits are offset by the
reduced domain of computation [14], [15] and lower area and
energy efficiency, as compared to general-purpose processors
and ASICs, respectively.

CGRAs comprise PEs and an interconnection network
(switches). PEs are special ALUs capable of executing the
same, i.e., homogeneous [11], or a location-specific, i.e.,
heterogeneous [12], [15]–[18], set of functions. Heterogeneous
architectures increase area and energy efficiency over homo-
geneous ones at the cost of a lower number of attainable
configurations. PEs of CGRAs that are homogeneous in com-
position contain more overhead. Furthermore, not all computa-
tion is homogeneous: while neural network applications need
an abundance of multiply-and-accumulate (MAC) hardware
(neuron, pooling), computer vision algorithms, for example,
use a more diverse set of functions.

It has also been established that different domains re-
quire different precisions of computation, both for integer
and floating-point arithmetic [19]–[21]. Encryption algorithms,

depending on the required level of security, multiply variable-
length integers. In the floating-point domain, high-end simula-
tions require bit widths beyond that of the quadruple-precision
format, while neural networks in embedded applications, for
example, trade off accuracy for energy efficiency and settle
for lower precisions.

The work presented in this paper focuses on the composition
of PEs and switches commonly found in CGRAs. The paper
describes the design-space exploration of functional units
(FUs) in terms of efficiency vs. configurability, i.e., what
functions can be supported at low energy and area overheads.
The area- and power-consumption overheads associated with
the increasing number of available FU functions are evaluated.
The cost of switches in terms of banding and granularity is
analyzed as well. The banding number determines from how
far vertically a FU input can receive data. For example, a
banding number of two means that a FU input is connected
to the FUs one and two levels above, as well as to the FU on
the same level, and to the FUs one and two levels below. The
results and the implications of the findings for future use of
FUs and switches in CGRAs are discussed and a case study is
presented. The main finding is that some functions have high
cost and should be considered only when necessary, while
others have marginal cost hence their addition is almost free.
Such functions should be added even if not necessary for the
specific set of applications, as they increase configurability at
a low cost. The following contributions are made throughout
the paper:

• Parameterized generator of configurable FUs and a
banded switch.

• Evaluation of fine-grained cost of FUs and the switch in
terms of banding and granularity.

• A software framework to support auto-integration of
functional units with the VectorCGRA framework.

II. PRIOR WORK

From a high-level perspective, general-purpose architectures
are inefficient for domain-specific tasks mainly due to their
large memory footprints and generic granularity. [3] proposed
a co-accelerator by defeaturing a general-purpose CPU run-
ning an H.264 encoder. The three classes of optimization
are the introduction of application-specific instructions, data
storage and supply networks, as well as arithmetic blocks.
The result is a restricted DSP, which could be used as a co-
processor accelerator thanks to its VLIW implementation.

Similarly, [22] observe that the main sources of efficiency in
application-specific designs are the specialized compute struc-
tures and their connectivity. From there, it can be concluded
that an array of multi-granularity processing elements (PEs)
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Fig. 1: Parameterizable VectorCGRA architecture and a tile with the PyMTL fused functional unit wrapper. Sub-figures (a)–(e)
depict various SystemVerilog RTL functional units that can be wrapped and used by the PyMTL VectorCGRA framework.

connected by a sparse switch network gets rid of most of
the overhead associated with general-purpose computing, and
reaches ASIC-like efficiency while maintaining reconfigura-
bility.

CGRAs are configured by selecting each PE’s function and
connecting these PE functions in a way that implements the
desired algorithm. Since CGRA fabrics can contain hundreds
of thousands of PEs, thoughtful PE composition is imperative
to maintain a reasonable area and power budget. Similarly to
this work, Composite Cores [18] advocates for heterogeneous
computing. It leverages heterogeneity at a higher level by
migrating traces inside the processor core based on their com-
putational intensity. Moving migration into the core reduces
switching between tasks of different complexity compared to
multi-core designs, such as Arm’s big.LITTLE architecture.
The motivation, however, is the same behind all three designs;
if a set of functions are less computationally intensive than oth-
ers, mapping them to a new, simple unit created by defeaturing
complex resources increases their executions’ power and area
efficiency.

Besides the nodes of data-flow graphs (mapped to FUs), the
other high-level building block of CGRAs is the graph’s edges,
i.e., the routing between FUs. As design complexity increases,
measures have to be taken to mitigate the scaling of the inter-
connection network’s power consumption and area. One study
evaluates the advantages of power gating unused switch sub-
networks [23]. This solution is applied to many-core processor
designs, and would add significant overhead to a CGRA. In the
presented domain-specific CGRAs, the objective is to increase
energy and area efficiency by implementing resources with
a high utilization ratio. For this reason, the effectiveness of
banding in switches is evaluated. All connections are expected
to be used during program execution, but many connections
can be eliminated by clever mapping of the algorithms. The
elimination of connections results in a lower interconnect area
and power consumption.

Another proposed solution for interconnect scaling in multi-
core CPUs is a 16-by-16 network-on-chip capable of connect-
ing 256 processor nodes [24]. The mesh network is a point-to-
point connection between the nodes, and increases throughput
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and energy efficiency by moving global synchronization into
the switch network.

A prior solution directly applicable to domain-specific com-
putation is the hierarchical interconnect network in a mobile
computing accelerator FPGA [6]. The authors build on the
trend of outsourcing specific tasks to fixed-function accelera-
tors in mobile computing. These accelerators are idle most of
the time (dark silicon), and are active only when their specific
function is being executed. The proposal is to create an FPGA
that can be configured to execute all accelerator functions
at near-ASIC performance, area-, and energy-efficiency. The
switch network is organized in stages and each stage has
unique switches. The difference between switches of different
stages is that they support different level changes. All in all,
they still implement a fully-connected network among the
LUTs via two-way routing, but if processing elements are
placed between all adjacent switch stages and these switches
implement routing in only one direction, a banded switch
network is created that is suitable for accelerating any data-
flow-like algorithm.

III. ARCHITECTURE

A. CGRA Architecture Overview

Figure 1 shows the VectorCGRA [1], [2] architecture used
to evaluate the fused functional units proposed in this paper. It
implements a king-mesh-based coarse-grained reconfigurable
array (CGRA). The CGRA comprises tiles which are placed
in a rectangular grid. Each tile is connected to its eight
neighbors using a crossbar switch. Besides the crossbar, all
tiles contain a functional unit (FU) that can be configured to
execute a predefined set of functions using the configuration
memory. By individually setting every tile’s function and the
crossbar configurations, the architecture can execute a plethora
of algorithms. One of this paper’s main contributions is the
wrapper located around the FU. The general nature of this

wrapper enables switching in and out many different types of
IPs or user-designed computational elements.

B. Functional Unit Design

1) Fixed-point functional unit: This section shows the
design of a generator that can produce functional units (FUs)
at multiple levels of configurability. Table I and Figure 1a
show the incremental complexity of the FU designs. The first
version does not include any configurability, i.e. comprises
a single ‘add’ operation. The next version implements ‘sub’
in addition to ‘add.’ Recognizing that comparison (‘lt,’ ‘lte,’
‘gt,’ ‘gte’) operations are based on subtraction, the next step
is adding these to the FU. Table II shows how comparison
operations can be executed using the already present subtractor
(adder) hardware.

TABLE II: Executing comparison functions using a subtractor
unit.

Function Computation Indicator
A LT B A - B 1 == MSB

A GTE B A - B 0 == MSB
A GT B B - A 1 == MSB
A LTE B B - A 0 == MSB

‘lt’ is computed by observing the sign (MSB) of the
subtraction’s result. ‘gte’ is the complement of this MSB,
while ‘lte’ and ‘gt’ can be similarly determined by switching
the subtraction’s operands. The sixth design adds the multipli-
cation operation. The seventh, final, design adds the multiply-
and-accumulate (MAC) operation and is shown in Figure 1a.
To keep incremental costs to a minimum, multiplication in
both designs is implemented using a partial-product multiplier,
whose outputs are added by reusing the original adder unit.
The multiply-and-accumulate unit uses a 3-to-2 adder to sum
the multiplication’s partial products and the addend. The 3-to-
2 adder’s outputs are summarized using the original adder.
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Fig. 2: Area of fixed- and floating-point functional units.

2) Floating-point test units for evaluation: A custom
floating-point (FP) adder and multiplier generator are used
to evaluate the cost of carrying out fixed-point computations
using a floating-point unit’s resources. The generator supports
custom bit widths for both the exponent and mantissa, there-
fore not only the IEEE standard precisions (half, single, dou-
ble, quadruple, octuple), but any other bit width combination
can be instantiated. This feature is useful for carrying out
experiments, such as running 32-bit fixed-point operations on a
custom FP unit that is designed for a 30-bit mantissa. Table III
shows the custom bit widths used during the experiments.

TABLE III: Custom floating-point total word lengths, exponent
and mantissa bit widths used in the experiments.

WL Exp Man Comment
8 3 4 Quarter-precision (not IEEE).

12 5 6 FP adder executing 8b INT ops.
13 5 7 FP multiplier executing 8b INT ops.
16 5 10 Half-precision (IEEE).
21 6 14 FP adder executing 16b INT ops.
22 6 15 FP multiplier executing 16b INT ops.
24 6 17 Three-quarter-precision (not IEEE).
31 8 22 FP adder executing 24b INT ops.

32 8 23 Single-precision (IEEE),
FP multiplier executing 24b INT ops.

39 8 30 FP adder executing 32b INT ops.
40 8 31 FP multiplier executing 32b INT ops.

The units are shown to yield results in the same range as
the DesignWare IP blocks, therefore provide a reliable data
point for comparisons. Figure 1e and 1d show the custom
FP adder and multiplier, respectively. The FP adder’s design
include fixed-point adders, while the FP multiplier comprises
both a fixed-point adder and multiplier.

Figure 1b and 1c show how the previously described fixed-
point FU operations can be executed based on these FP-
hardware resources. The fixed-point FUs’ adder and partial-
product multiplier can be shared with those of the FP units.
An additional control signal is added to direct the merged

fixed-point and FP units’ inputs to the fixed-point or FP data
path and display the correct result.

C. Switch Design

Similarly to the FU, a switch generator is presented to
evaluate several switch designs. The switch generator’s param-
eters are input and output count, physical bit width, effective
bit width, banding number, and select line encoding. For
this evaluation, N -input and 2N -output switches are chosen,
because the majority of FUs have two inputs and one output,
and the number of FUs is similar on a particular switch’s input
and output side.

The physical bit width parameter is the actual bit width of
the switch’s multiplexers, while the effective bit width is the
bit width of the data being routed. Consequently, the effective
bit width has to be less than or equal to the physical bit width.
The banding number determines from how far vertically a FU
input can receive data as explained in Section I.

IV. METHODOLOGY

First, we evaluated the fixed- and floating-point functional
units. The area, power, and performance results are generated
automatically by a Perl script. This allows a large number
of designs to be investigated and compared. Based on the
predefined configuration parameters, the RTL for the current
design is generated. The design is, then, synthesized with
a 1-ps clock period, which results in an estimated timing
requirement. The time range between 0.85x and 2.5x of the
estimated timing requirement is split into twenty equal-length
regions. Synthesis is carried out automatically by the Perl
script at all twenty clock periods. The resulting twenty data
points are manually evaluated to find a good trade-off between
area and energy cost.

Other interesting data points are generated by using the
post-synthesis netlist, but modifying the original test bench
to reduce the bit width of the operands. A scaling factors of
2 is used. For example, a 32-bit adder module is stimulated
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Fig. 3: Area and energy results of the functional units and switch.

with 16-bit data, in addition to the original 32-bit width. These
data points are quick to generate since the original full-width
design can be used saving the time-consuming synthesis step.

The designs were synthesized and area numbers generated
using Synopsys DesignCompiler and a 12-nm commercial
PDK. Power numbers were retrieved from Synopsys Prime-
Time. Simulations to verify functionality and obtain the VCD
switching activity files were run with Synopsys VCS.

We used the previously described VectorCGRA framework
to evaluate the efficiency of the fused functional unit. We chose
a uniform sixteen-bit granularity throughout the datapath.
Since VectorCGRA is implemented in the PyMTL model-
ing framework, we designed two levels of wrappers around
the pure-SystemVerilog functional unit design. The first-level
wrapper simply encapsulates the SystemVerilog code to allow
compatibility with the PyMTL framework. The second-level
wrapper, subsequently, converts the functional unit into a
format that makes it compatible with the VectorCGRA frame-
work. Listing 1 shows the generic composition of a PyMTL
VectorCGRA wrapper.

Listing 1: PyMTL VectorCGRA wrapper around the PyMTL
functional unit.

from pymtl3 import *
from ...lib.ifcs import SendIfcRTL, RecvIfcRTL
from ...lib.opt_type import *
from ..ALUgenMACRTL import ALUgenMAC
from ..basic.Fu import Fu

class ALUgenMACFU( Fu ):
def construct(..):

super( ALUgenMACFU, s ).construct(..)

# RTL component.
s.fALU = ALUgenMAC()

s.fALU.op_code //= "fn selection logic code"

s.fALU.rhs_0 @= s.recv_in[s.in0i].msg.payload
s.fALU.rhs_1 @= s.recv_in[s.in1i].msg.payload
s.fALU.rhs_1b @= s.recv_in[s.in2i].msg.payload
# The wrapped design in SystemVerilog is
# treated as a blockbox during simulation
# and synthesis in PyMTL.
s.send_out[0].msg.payload @= s.fALU.lhs_0



V. EVALUATION

A. Experimental Setup

We compare six VectorCGRA instances to evaluate the
fused functional unit’s area efficiency. The baseline designs
use a behavioral approach in which the functional units (add,
sub, compare, mul, and MAC) are described in PyMTL code.
The incremental designs use only the fixed-point fused func-
tional unit for computation. (Both designs implement memory
interface units in the left-most column to communicate with
the scratchpad memories.) Both the baseline and incremental
configurations are realized in two-by-two, four-by-four, and
six-by-six VectorCGRA layouts, hence totaling to six data
points.

We synthesized the design using Synopsys DesignCompiler
and used the Synopsys DesignWare library’s partial-product
multiplier (DW02 multp) module. We derived the lowest clock
period that met the timing requirements of all six designs.
We mapped the synthesized netlist to the GlobalFoundries
12-nm cell library. The results of section V-C are produced
by Synopsys DesignCompiler using the compile_ultra
-no_autoungroup command for synthesis, which allows
us to report the area of individual instances in the design
hierarchy.

B. Functional Unit and Switch Evaluation

1) Area: Figure 2 shows the area cost of increasing the
functionality of a functional unit. It is shown that the option
of subtraction has some overhead compared to plain addition.
The overhead of adding comparison operations is similar, since
the adder circuit is not modified and only control blocks need
to be added. The exception is the ‘gte’ operation when ‘lt’ is
already present, since this can be added using a one-bit xor
gate (see Table I) which adds negligible cost.

Supporting multiplication results in a big increase, since a
multiplier is expensive in terms of area. The already-existing
adder can be reused, however, to mitigate the costs. By im-
plementing a partial-product multiplier and adding its outputs
using the original adder, the resulting design is one adder
smaller compared to the case with a standalone multiplier unit.
Once the partial-product multiplier is added, multiply-and-
accumulate (MAC) operations can be supported at a negligible
cost, as shown in Table I and Figure 1a. A standalone MAC
unit’s area is shown for reference. The area is dominated by
the multiplier, so if a system uses multiple MAC units (e.g., a
CNN), complementing those units with integer arithmetic and
comparison operators is nearly free, therefore a good way to
support reconfigurability at marginal cost.

The custom floating-point adder and multiplier units’ are
shown to only marginally increase in area when they support
integer arithmetic and comparison operations. (The Design-
Ware floating-point adder and multiplier units are shown for
reference.)

Figure 3d shows the area cost of increasing precision and
input count of a switch’s multiplexer. Area grows linearly both
with bit width and input count.

2) Energy: Figure 3a shows the energy-per-operation cost
of executing addition on different designs. As far as energy
is concerned, executing the same operation is cheapest on the
design with no configurability. However, supporting selected
additional operations is different in cost. Adding the subtrac-
tion option comes at an initial increase, but adding comparison
operations comes at a lower cost afterwards.

Executing addition on floating-point units has a high energy
cost compared to that of dedicated integer units. However,
the cost is nearly identical in all flexibility cases–regardless
of what integer operations are supported by the floating-
point unit. The floating-point multiplier’s energy showcases a
steeper increase compared to that of the integer and floating-
point adder units, due to the complexity of the design. It is
also shown that increasing the bit width results in a linear
energy increase in all cases.

Figure 3c shows the energy-per-operation cost of executing
addition on designs that either match the precision of the
operation, or are twice as wide.

The only significant difference between the over-
provisioned and original bit widths is shown for the
floating-point multiplier unit. This is caused by the multiplier
still switching a large portion of its gates compared to adders
and other logic gates when the effective bit width is lower
than the actual hardware bit width. The unused blocks can
be gated to mitigate this cost when the floating-point unit
is used to execute integer operations, but that increases the
critical path which is already high in a floating-point unit.

Lastly, Figure 3b shows the energy cost of executing every
possible operation on Table I and Figure 1a’s designs. The
horizontal axis lists the different hardware units. The vertical
axis shows what operation is being executed on the selected
hardware. The corresponding energy numbers are shown as
powers of two. Energy increases as hardware complexity
increases. It is also shown that comparison operations cost
less energy than addition or subtraction. The biggest increases
within the same hardware happen when units that comprise a
multiplier (+mul, +MAC, FPmul) execute operations involving
multiplication (mul, MAC, FPmul).

Figure 3e shows the energy-per-operation cost of multiplex-
ers at multiple input counts and bit widths. The energy of
executing an operation at the same input count and bit width
is the same cost in energy when done on a hardware with
matching bit width or an overprovisioned one that has a higher
bit width than the effective bit width of the executed operation.

C. VectorCGRA Case Study

Figure 4 shows the area breakdown and comparison across
the six different designs described in section IV. All configu-
rations are synthesized at 454 MHz and the GlobalFoundries
12nm technology node.

Figure 4a shows the area breakdown by different compo-
nents for all three VectorCGRA sizes. Figure 4b and 4c show
the area of the different components in the baseline and fused
VectorCGRA designs. The area numbers are averaged over
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the 2x2, 4x4, and 6x6 designs. Across the three different-
sized VectorCGRA configurations, the fused functional unit
performs 11–15% better than the baseline instances. Account-
ing for only the functional units, we see a substantial 58–60%
decrease from the baseline to the fused configurations.

As far as scalability is concerned, the total area increases
4.7–4.9-fold from the 2x2 to the 4x4 CGRA, and 11.3–11.8-
fold from the 2x2 to the 6x6 CGRA, for the baseline and
fused-FU designs, respectively. This is more than the 4-fold
and 9-fold increase seen in the number of tiles between the
2x2 and the 4x4 CGRAs, and the 2x2 and the 6x6 designs.
The overhead is explained by the relatively higher increase
in the crossbar area. Smaller CGRAs are dominated by edge
and corner tiles which have significantly less connections
than inside tiles. As CGRA dimensions grow, the number of
inside tiles starts to dominate, therefore, the increase in area
converges to the increase in the number of tiles.

VI. CONCLUSION

In this paper, we have evaluated the efficiency of multiple
fixed- and floating-point functional units and switches. We
have concluded that some instructions are possible to support
at a negligible cost, therefore they should always be part of the
available functions. We have also implemented a methodology
to wrap SystemVerilog FUs for use in the PyMTL-based Vec-
torCGRA framework, which resulted in a 58–60% decrease
in FU area and an 11–15% decrease across the whole CGRA
using our fused units.
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