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Abstract—Machine Learning (ML) are used in an increasing
number of applications as they continue to deliver state-of-
the-art performance across many areas including computer
vision natural language processing (NLP), robotics, autonomous
driving, and healthcare. While rapid progress in all aspects of
ML development and deployment is occurring, there is a rising
concern about the trustworthiness of these models, especially
from security and privacy perspectives. Several attacks that
jeopardize ML models’ integrity (e.g. adversarial attacks) and
confidentiality (e.g. membership inference attacks) have been
investigated in the literature. This, in return, triggered substantial
work to protect ML models and advance their trustworthiness.
Defenses generally act on the input data, the objective function, or
the network structure to mitigate adversarial effects. However,
these proposed defenses require substantial changes to the ar-
chitecture, retraining procedure, or incorporate additional input
data processing overheads. In addition, often these proposed
defenses require high power and computational requirements,
which make them challenging to deploy in embedded systems
and Edge devices. Towards addressing the need for robust ML at
acceptable overheads, recent works have investigated hardware-
emanated solutions to enhance ML security and privacy. In this
paper, we summarize recent works in the area of hardware
support for trustworthy ML. In addition, we provide guidelines
for future research in the area by identifying open problems that
need to be addressed.

I. INTRODUCTION

Machine Learning (ML) has become the linchpin of tech-
nological progress, permeating an expanding array of applica-
tions and consistently delivering state-of-the-art performance
across diverse domains [1]. From revolutionizing computer
vision and natural language processing (NLP) to steering
advancements in robotics, autonomous driving, and healthcare,
ML has ushered in a new era of possibilities [2]. However,
amid the swift progress in ML development and deployment,
a formidable challenge looms large—the susceptibility of these
systems to security and privacy attacks [3], [4].

One prominent facet of this challenge is the emergence
of adversarial examples, cunningly designed imperceptible
perturbations injected into input data with the malicious intent
of causing ML classifiers to misclassify [5], [6]. The potential
fallout from such mispredictions can be profound. Take self-
driving cars as an example, where misclassifying a ‘stop’
sign as a ‘yield’ sign or a ‘speed limit’ sign could result
in life-threatening situations or significant material damage.
Recently, real-world scenarios have witnessed various adver-
sarial attacks, presenting a concerning menace to the safety
and security dimensions of ML-powered applications [1].

Simultaneously, ML models are now undergoing training
with datasets of increasing sensitivity, encompassing clinical

and biomedical records, personal photos, genome data, finan-
cial details, social interactions, location traces, and more [3].
Given the intricate nature of machine learning (ML) models
and their substantial computational demands, training often
occurs on cloud providers offering ML-as-a-Service, such as
Amazon AWS, Microsoft Azure, and Google API [3]. This
approach allows both novices and professionals to train models
that may contain personally identifiable information (PII)
or potentially sensitive personal data [7]. Safeguarding data
privacy in these systems, particularly preventing any leakage
of training data, is imperative for establishing trustworthy ML
systems.

One of the initial vulnerabilities related to privacy in ML
is the membership inference attack (MIA). MIA involves
the unauthorized extraction of sensitive information about
the private training data solely by accessing the model dur-
ing the inference phase [8]. Specifically, MIAs can discern
whether a particular sample has been employed in training
a targeted model. Due to the phenomenon of overfitting to
the training data, ML models exhibit biases and manifest
distinct behavior on training data (members) compared to test
data (non-members) [9]. This bias becomes apparent through
a statistically higher confidence of models in classifying
members as opposed to non-members. Attackers exploit this
bias to execute membership inference attacks effectively. The
confluence of these security and privacy threats underscores an
urgent imperative to advance the science of machine learning,
security, and privacy in tandem, striving for holistic solutions
that fortify the robustness of ML frameworks [10], [11].

Since the initial unveiling of adversarial attacks, an exten-
sive body of work has been dedicated to advancing poten-
tial defense mechanisms. These defenses commonly revolve
around altering the input data, tweaking the objective function,
or modifying the network structure to mitigate the adverse
effects of attacks [12]. However, a notable drawback of these
proposed defenses is their propensity to demand substantial
changes to the architecture, retraining procedures, or the
integration of additional processing overheads in the input
data [13]. Furthermore, the high power and computational
requirements often associated with these defenses pose a
significant deployment challenge, especially in embedded sys-
tems and applications with stringent latency constraints [14].

In response to the need for robust ML with acceptable
overheads, recent research endeavors have pivoted toward
exploring the role of hardware in fortifying ML security and
privacy [15] [16] [17] [18] [19] [20] [21] [22]. This recent
line of research started in 2017 and try to propose hardware-



emanated defenses towards having both gains in resources and
robustness. This paper provides a comprehensive synthesis and
characterization of recent works in the burgeoning field of
hardware support for trustworthy ML. By delving into these
advancements, the goal of this review paper is not only to illu-
minate the current landscape but also to offer valuable insights
that guide future research. The identification of intriguing open
problems within the intersection of hardware and ML security
and privacy serves as a compass, pointing the way toward
innovative solutions that can reshape the future of secure and
private machine learning systems in our interconnected world.

II. TAXONOMY OF HARDWARE SUPPORT FOR
TRUSTWORTHY ML

In this section, we offer a concise overview of our taxon-
omy, which focuses on hardware support for trustworthy ML.
This taxonomy uniquely integrates threat models and hard-
ware support categories, forming a comprehensive framework.
Figure 1 shows this taxonomy in detail, systematically orga-
nizing various defense mechanisms into specific categories.
This taxonomy is designed to offer a clear and organized
framework, enabling the readers to easily understand and
differentiate between the various defense mechanisms within
these categories.
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Fig. 1. Taxonomy of Hardware Support for Trustworthy ML. Defenses are
grouped under each support category. ‘Asterisk’ and ‘triangle’ indicate the
defenses that perform attack detection and attack prevention, respectively.

A. Threat Model-based Taxonomy

The threats that ML models face can be categorized into to
main categories: security threats and privacy threats.

1) ML Security: Machine Learning (ML) systems are
susceptible to security threats, with adversarial sample attacks
being a significant challenge. These attacks involve manip-
ulating input data to mislead the model, potentially causing
misclassification in critical applications like autonomous cars,

finance, disease diagnosis, and malware detection. Another
threat is poisoning attacks, compromising the model’s integrity
by introducing malicious data during training.

2) ML Privacy: ML poses a significant privacy threat
due to its reliance on personal and sensitive data. Concerns
arise from the potential unauthorized access to individual
information, as ML models learn (and inadvertently reveal)
sensitive patterns during training. ML privacy encompasses
model privacy and data privacy, with membership inference
attacks representing a substantial threat to data privacy. These
attacks aim to determine if a specific data point was part of the
training dataset, compromising the confidentiality of sensitive
information by exploiting the model’s responses.

B. Hardware Support-based Taxonomy

Hardware-based defenses for ML security and privacy are
found to leverage two types of supports: Memory and Com-
putation. We elaborate these hardware supports as follows.

1) Memory: We observe various memory supports that
contributed to defense design.

(i) Quantization: Quantization emerges as a robust defense
strategy, simultaneously fortifying machine learning models
against adversarial sample attacks and enhancing privacy
against membership inference attacks. By offloading the com-
putational burden of quantization to specialized hardware,
this approach ensures that reduced precision, a hallmark of
quantization, is implemented efficiently [15]. By reducing the
precision of input itself or model (e.g.,, weight, bias, acti-
vation), quantization introduces robustness against adversarial
sample attacks by diminishing the model’s sensitivity to subtle
input manipulations [10]. The noise introduced during quanti-
zation acts as a deterrent, disrupting the optimization processes
used by attackers. Simultaneously, the reduced precision and
abstraction make it more challenging for adversaries to discern
specific training data points, bolstering the model’s privacy
against membership inference attacks [23].

(ii) Non-Volatile Memory (NVM) crossbar non-ideality:
There exists efforts to investigate memory supports aimed at
enhancing security against adversarial sample attacks. Con-
sider Resistive Random-Access Memory (RRAM) crossbar,
for instance. RRAM demonstrates specific variations and
imperfections in its resistive states, introducing an element
of unpredictability to the stored data. These dynamic inher-
ent non-idealities pose challenges for adversaries attempting
to precisely manipulate or reverse-engineer specific memory
states, thus hindering the generation of potential adversarial
samples [18].

(iii) Enclave: By providing isolated and trusted execution
environment (TEE) within the hardware, secure enclaves (e.g.,
Intel SGX, ARM TrustZone, AMD SEV) shield sensitive
computations from external interference. This protection is
pivotal in thwarting adversarial attempts to manipulate model
behavior through subtle input perturbations [14]. Besides,
secure enclaves contribute significantly to privacy preservation
by preventing unauthorized access to critical model infor-
mation, and thus, it becomes exceedingly challenging for



adversaries to glean information about the training data or
model parameters [17].

2) Computation: Under this support category, defenses are
found to utilize approximate/stochastic computing through
various hardware components: CPU, GPU, FPGA, ASIC,
etc. Such computing is observed by undervolting of those
hardware or introducing randomized hardware components.
Randomized hardware proves to be a formidable ally in
securing machine learning models against adversarial sample
attacks and bolstering privacy against membership inference
attacks. The introduction of randomness at the hardware level
adds an unpredictable element to the computations, making
it significantly more challenging for adversaries to craft ef-
fective adversarial samples. This inherent variability moves
the decision boundary of models unpredictably, disrupting the
precision required for adversarial manipulation [1]. Simultane-
ously, randomized hardware contributes to enhanced privacy
by introducing uncertainty in the model’s responses, thwarting
attempts to infer membership information. The unpredictabil-
ity injected at the hardware level creates a dynamic defense
mechanism, reinforcing both security and privacy aspects [3].

III. HARDWARE-SUPPORT FOR ML SECURITY

This section provides an overview of hardware-based de-
fenses against security attacks. This section primarily focuses
on hardware-based defenses against adversarial attacks in ML
systems, as there are currently no published hardware-based
solutions for countering poisoning attacks, which presents a
promising direction for future research. The security defenses
are categorized based on the hardware support utilized as a
building block for the defense; memory and computational
support categories.

A. Memory-based Defenses

We specifically present the defenses that use quantization
and other memory support. To facilitate a comparative analy-
sis, we consolidate the quantization-based defenses in Table I
and elaborate each specific defense as below.

QAAT [10]: Athores introduced Quantization-Aware Ad-
versarial Training (QAAT) for executing 8-bit DNN models
on FPGA while maintaining robustness against adversarial
examples (AEs). Implemented in the Vitis-AI development
environment, the 8-bit parameter QAAT model successfully
ran on an FPGA. Evaluation on MNIST and CIFAR-10 tasks
demonstrated that QAAT achieved comparable robustness to
the 32-bit precision Adversarial Training (AT) model, while a
32-bit precision AT model, applied after clean image training,
significantly decreased AE robustness.

QUANOS [24]: QUANOS is a framework for layer-specific
hybrid quantization based on Adversarial Noise Sensitivity
(ANS). By leveraging the novel noise stability metric ANS
for DNNs, QUANOS determines optimal bit-width per layer
to enhance adversarial robustness and energy efficiency with
minimal accuracy loss. Evaluation on precision-scalable Mul-
tiply and Accumulate (MAC) hardware architectures demon-
strates QUANOS outperforming homogenously quantized 8-

bit precision baselines in terms of adversarial robustness using
CIFAR10 and CIFAR100 datasets.

ODG-Q [13]: ODG-Q is a novel method recasting robust
quantization as an online domain generalization problem.
Utilizing quantization-aware training with a uniform quantizer
and XNOR-net for various bit configurations (1,2,4,8 bits) and
1-bit quantization, ODG-Q covers both weights and activa-
tion. Demonstrating superior performance, it generates diverse
adversarial data at low training cost. On CIFAR-10, ODG-Q
achieves 49.2% average improvements under five white-box
attacks and 21.7% under five black-box attacks, with a training
cost comparable to natural training.

Zhou et al. [15]: This defense introduces a cloud-native
service that generates and distributes adversarially robust
compressed models for edge deployment using a novel post-
training quantization approach (using 6, 7 bits for weight and
activation). Experimental results show that, despite vulnerabil-
ity to universal adversarial perturbation (UAP), post-training
quantization on synthesized, adversarially-trained models ef-
fectively counters these perturbations.

DQ [23]: Defensive Quantization (DQ) optimizes deep
learning model efficiency and robustness by quantizing ac-
tivation using 1-5 bits. Empirical studies reveal that standard
quantization is more vulnerable to adversarial attacks due to
an error amplification effect. DQ addresses this by controlling
the Lipschitz constant during quantization, defending against
adversarial examples and achieving superior robustness com-
pared to full-precision models.

Rakin et al. [25]: This study focuses on using activation
quantization as an effective defense against adversarial attacks.
This work introduces Dynamic Quantized Activation (DQA),
treating activation quantization function thresholds as tuning
parameters during adversarial training. Adaptive adjustment
of these thresholds plays a crucial role in improving network
robustness. DQA further enhances this by introducing more
learnable parameters during adversarial training, achieving
both compactness and robustness in neural networks simul-
taneously.

Xu et al. [26]: This work proposes to detect adversarial
images by squeezing the input image. For this, the image is
processed with color depth bit reduction (5 bits) and smoothed
by a 2 × 2 median filter. The central concept involves com-
paring the model’s predictions on the original input with those
on the compressed input during testing. If the low resolution
image is classified differently as the original image, then this
image is detected as adversarial.

Panda et al. [27]: Discretization significantly boosts DLN
robustness against adversarial attacks, reducing pixel levels
from 256 values (8-bit) to 4 values (2-bit). Binary neu-
ral networks (BNNs) and related variants are intrinsically
more robust than full precision counterparts. Combining input
discretization with BNNs enhances robustness, eliminating
the need for adversarial training under certain perturbation
magnitudes.
AD2V NCS [9]: Memristive crossbar-based neuromorphic

computing systems (NCS) have shown outstanding perfor-



TABLE I
PROMINENT HARDWARE QUANTIZATION-BASED DEFENSES AND THEIR CHARACTERISTICS.

Defenses Tested Attacks Used H/W
# of

quantization
bits

What is
quantized? When applied? ML Models Dataset

QAAT [10] PGD FPGA 8 bits Weight Train, Test 3-layer MLP,
VGG-11

MNIST,
CIFAR-10

ODG-Q [13] FGSM, PGD,
BIM, TPGD GPU 1,2,4,8 bits Weight,

Activation
Train XNOR-Net,

ResNet-18

MNIST,
CIFAR-10,
ImageNet

Zhou et al. [15]
Universal

Adversarial
Perturbation

Edge (Jetson
Nano) 6,7 bits Weight,

Activation
Test

MobileNet,
ResNet,

WideResNet

CIFAR-10,
CIFAR-100,

SVHN

QUANOS [24] FGSM, PGD FPGA 8,16 bits MAC operation Train, Test VGG-19,
ResNet-18

CIFAR-10,
CIFAR-100

DQ [23] FGSM, PGD CPU 4 bits Activation Train, Test Wide ResNet,
VGG-16

CIFAR-10,
SVHN

Rakin et al. [25] FGSM, PGD,
CW CPU 1-3 bits

Activation
(Tanh) Train, Test LeNet-5,

ResNet-18
MINIST,

CIFAR-10

Xu et al. [26]
FGSM, BIM,

DeepFool,
JSMA, CW

GPU 1-5 bits Input Test
7-layer CNN,

DenseNet,
MobileNet

MNIST,
CIFAR-10, and

ImageNet

Panda et al. [27] R-FGSM, PGD,
CW GPU 2,4 bits Input, Model Train, Test BNN, XNOR

MNIST,
CIFAR-10,

CIFAR-100, and
ImageNet

Kowalski et al. [11] Membership
Inference Attack CPU 4,16 bits Weight,

Activation
Test ResNet-18 Fashion MNIST,

CIFAR-10

mance in accelerating neural networks. This paper delves into
the robustness of deep neural networks (DNNs) against adver-
sarial sample attacks using Resistive Random Access Memory
(RRAM) approximation. This investigation introduces innova-
tive training strategies, including DFS (Deep neural network
Feature importance Sampling) and BFS (Bayesian neural net-
work Feature importance Sampling), to simultaneously address
device variation and adversarial sample attacks on DNNs.

Roy et al. [18]: Non-Volatile Memory NVM crossbars,
characterized by their analog nature, provide efficient Matrix
Vector Multiplication (MVM) but introduce approximations.
The study explores the consequences of these approximations
in adversarial conditions, revealing that the non-ideal behavior
of analog computing diminishes the efficacy of adversarial
attacks in both Black-Box and White-Box scenarios. In non-
adaptive attacks, analog computing demonstrates inherent ro-
bustness, resulting in substantial peak adversarial accuracy
improvements across various datasets.

B. Computation-based Defenses

SecureVolt [1], [16]: These works explore inference com-
putation while voltage over-scaling (VOS), a method of re-
ducing the supply voltage without altering the frequency, as a
lightweight defense against adversarial attacks. Implementing
a moving-target defense for DNNs using the stochastic timing
violations induced by VOS, the experiments demonstrate its
effectiveness in countering various attack methods in image
classification without necessitating software/hardware modifi-
cations, while also leading to reduced power consumption.

DA [21]: DA uniquely utilizes an approximate 32-bit
floating-point multiplier, called Ax-FPM, designed with ag-
gressive approximation of full adders (FAs) to inject compu-

tational noise. This noise, making the decision boundary of
DA randomly different from the initial model, is a distinctive
feature as it incurs no overhead and naturally arises from
a simpler and faster AC implementation. DA serves as a
seamless replacement for hardware without specific training
requirements or alterations to the CNN architecture or param-
eters.

Majumdar et at. [28]: This paper introduces a novel
method for enhancing image classifier robustness using con-
trolled undervolting of FPGA to induce compute errors during
the inference process. These errors disrupt adversarial inputs,
enabling correction or detection of adversarial attacks. Evalu-
ation on FPGA design and software simulation demonstrates
average detection rates of 77% and 90% for 10 tested attacks
on two widely used DNNs.

DNNShield [12]: The work reveals that existing approx-
imate computing approaches, while effective for various in-
puts, fall short against stronger, high-confidence adversarial
attacks. In response, it introduces DNNSHIELD, a hardware-
accelerated defense that adjusts response strength based on
adversarial input confidence. DNNSHIELD employs dynamic
and random sparsification through hardware to efficiently
approximate inference with fine-grained control over error.
Adversarial inputs are detected by analyzing the output dis-
tribution characteristics of sparsified inference compared to a
dense reference.

Stochastic-HMDs [2]: Stochastic-HMDs, a defense in the
malware detection domain, utilizes approximate computing
to enhance hardware malware detectors’ (HMDs) resilience
against evasive malware attacks. By introducing controlled
undervolting to induce stochastic timing violations during
detection, these detectors offer effective defense, especially



against reverse-engineering and transferability.
RHMD [29], Opt-RHMD [22]: Resilient Hardware Mal-

ware Detectors (RHMDs) comprise multiple base detectors
and dynamically switch between detectors in a stochastic man-
ner, increasing the difficulty of reverse engineering. RHMDs
exhibit resilience against both reverse engineering and evasion,
providing a robust defense against evasive malware with min-
imal additional complexity. However, the random switching
employed by RHMDs may potentially decrease overall detec-
tion accuracy. Opt-RHMDs introduce an optimized switching
strategy, formulated through a Bayesian Stackelberg game,
aiming to maximize accuracy in detecting both evasive and
non-evasive malware.

EMShepherd [5]: Adversarial attacks pose severe threats to
critical applications relying on deep learning, but current de-
fense techniques demand extensive model knowledge, testing
inputs, and execution details. These are impractical for general
deep learning scenarios where the model internals are un-
known, creating a ’black-box’ situation for users. EMShepherd
is a framework leveraging electromagnetic (EM) emanations
during model inference. By capturing and processing EM
traces, the work detects adversarial attacks using only benign
samples for training. EMShepherd, functioning in an air-
gapped environment, effectively identifies various adversarial
attacks on a widely used FPGA deep learning accelerator.

Monotonic-HMDs [20]: MonotonicHMDs, utilizing only
the malicious features, provide a robust defense against ad-
versarial evasion attacks on Hardware Malware Detectors
(HMDs). This approach ensures that adding benign features
to malware won’t evade detection, and incorporating malicious
features increases the probability of malware detection.

ND-HMDs [30]: Non-differentiable Hardware Malware De-
tectors (ND-HMDs) defend against transient execution attacks
by using gradient-free classifiers like Decision Trees and
Random Forests, reducing the effectiveness of evasion through
obfuscated Hardware Performance Counter (HPC) traces. ND-
HMDs successfully resist gradient-based and sleep-based at-
tacks while maintaining high detection accuracy on non-
evasive transient execution attacks, offering a robust defense
against hardware malware threats.

El-Allami et at. [19]: The investigation focuses on the ro-
bustness of SNNs to adversarial attacks, considering different
values for neuron firing voltage thresholds and time window
boundaries. This work conducts a comprehensive analysis of
SNN security, examining various adversarial attacks in a strong
white-box setting with different noise budgets and variable
spiking parameters.

DNNGuard [31]: This paper presents DNNGuard, an ef-
ficient elastic DNN accelerator that integrates original DNN
networks and a detection algorithm for adversary sample
attacks into a single chip. The architecture enhances data
transfer efficiency and information protection, featuring an
extended AI instruction set for neural network synchronization
and task scheduling. Implemented on RISC-V and NVDLA,
DNNGuard effectively validates the legitimacy of input sam-
ples, as shown in experimental results.

IV. HARDWARE-SUPPORT FOR ML PRIVACY

This section summarizes hardware-based defenses for ML
privacy, particularly against model privacy and data privacy.
Interestingly, defenses that protect the model privacy are
memory based and the only defense against data-privacy is
computation-based.

A. Memory-based Defenses

All of the following defenses protect the model privacy.
Famili et al. [7]: This paper explores the impact of quantiza-
tion on privacy leakage and introduces a novel quantization
method designed to enhance a neural network’s resistance
against Membership Inference Attacks (MIA). Unlike con-
ventional quantization methods focusing on compression or
speed, this proposed framework prioritizes defense against
MIA. Evaluation on various benchmark datasets and model
architectures demonstrates improved metrics, including preci-
sion, recall, and F1-score, compared to full bitwidth models.

MLCapsule [17]: MLCapsule offers a secure offline de-
ployment solution for Machine Learning as a Service (MLaaS)
through SGX-enclave protection. This approach enables local
execution of the machine learning model on the user’s client,
ensuring data privacy as it remains on the client side. ML-
Capsule provides service providers with control and security
equivalent to server-side execution, safeguarding against direct
model access and offering defenses against advanced attacks
like model stealing, reverse engineering, and membership
inference.

FLAIRS [8]: This research explores leveraging FPGA-
based TEE computation to enhance the security of Federated
Learning (FL) against backdoor and inference attacks. By
utilizing FPGA-based enclaves, the approach addresses infer-
ence attacks during FL aggregation, employing an advanced
backdoor-aware aggregation algorithm on the FPGA to counter
backdoor threats. The method, implemented and evaluated
on Xilinx VMK-180, achieves substantial speed-ups, approx-
imately 300 times on the IoT-Traffic dataset and more than
506 times on the CIFAR-10 dataset, overcoming performance
bottlenecks associated with software-only solutions.

Islam et al. [4]: The paper introduces T-Slices, a framework
for securely incorporating memory-intensive DL models into
ARM TrustZone-based embedded devices with limited trusted
memory. It ensures protected inference of pre-trained models,
leveraging TrustZone’s security features to safeguard data and
model parameters. T-Slices effectively defends against both
black-box and white-box membership inference attacks by
requiring decryption within the secure TrustZone memory,
thwarting access to training data and model information.

Pelta [14]: Pelta is a defense against gradient-based evasion
attacks in Federated Learning, utilizing hardware obfuscation
to hide critical in-memory values near the input during infer-
ence. This work relies on hardware-enabled trusted execution
environments (TEEs) in Arm TrustZone, offering privacy and
integrity guarantees for Vision Transformer (ViT) models.
However, TrustZone’s limited enclave memory, particularly for



models exceeding 500 MB, requires Pelta to be a light, partial
obfuscation of the model.

B. Computation-based Defenses

So far, there is only one recent hardware-based defense that
protect the data privacy of the ML models.

VPP [3]: Privacy Preserving Volt (VPP ) introduces a
lightweight inference-time defense method using undervolt-
ing for privacy-preserving machine learning. VPP maintains
protected models’ utility without re-training, obscures the out-
come of membership inference attacks (MIAs) by introducing
computational randomness through undervolting FPGA during
inference, and achieves a compelling utility/privacy tradeoff,
surpassing prior defenses.

V. CONCLUDING REMARKS

This comprehensive review paper presents a systematic tax-
onomy that bridges the gap between threat models in Machine
Learning and hardware support, paving the way for more
trustworthy ML systems. This taxonomy not only simplifies
the complexity of various defense strategies but also provides
a structured approach for researchers and practitioners to
navigate and select appropriate hardware-based solutions for
enhancing the security and privacy of ML systems.
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