
Peephole Optimization for Quantum Approximate Synthesis

Abstract—Peephole optimization of quantum circuits provides
a method of leveraging standard circuit synthesis approaches
into scalable quantum circuit optimization. One application of
this technique partitions the entire circuit into a series of
peepholes and produces multiple approximations of each par-
titioned subcircuit. One approximation of each subcircuit is then
selected to form optimized result circuits. We propose a series
of improvements to the final phase of this architecture, which
include the addition of error awareness and a better method of
approximating the correctness of the result. We evaluated these
proposed improvements on a set of benchmark circuits using
the IBMQ FakeWashington simulator. The results demonstrate
that our best-performing method provides an average reduction
in Total Variational Distance (TVD) and Jensen-Shannon Diver-
gence (JSD) of 15.0% and 13.1%, respectively, compared with
the Qiskit optimizer. This also constitutes an improvement in
TVD of 11.4% and JSD of 9.0% over existing solutions.

I. INTRODUCTION

Peephole optimization of quantum circuits is a very effective
and scalable optimization technique which selects classically-
tractable sections (peepholes) of a quantum circuit and opti-
mizes each section. This allows optimization techniques with
poor scaling, such as resynthesis, to be applied to large circuits,
although only to small sections at a time.

Full-circuit peephole optimization methods, such as [1], [2],
partition whole quantum circuits into peepholes, and then per-
form resynthesis on each partitioned component. The resulting
component circuits are then reassembled into an optimized full
circuit, taking the better of each pair of subcircuits (the original
or the resynthesized version). A variant of this technique,
Quest [3], generates multiple approximations of each partition
and attempts to create a set of result circuits which can more
closely match the ideal output than the original circuit when
executed on noisy hardware. This is accomplished by adding
an additional step to the synthesis process, which we call
"recombination", shown in Figure 1. As the recombination step
is responsible selecting partition approximations to produce
optimal circuits, it has a substantial effect on the quality of the
result. Thus, improving the recombination step would produce
significant performance improvements.

The recombination technique employed in Quest is a dual
annealer which explores the set of possible subcircuit combi-
nations. The chosen objective function is composed of three
main metrics: (1) one which ensures that process distance
between the approximation and the original circuit is within
some acceptable range (by default 0.1); (2) a complexity
reduction metric which reduces the number of CNOT gates,
which is meant to minimize the effect of hardware error on
the circuit; and (3) a differentiation metric which encourages
the selection of result circuits that are different than the ones
already selected.

This method produces good results for many applications,
but it has some significant limitations. 1) Although limiting the
approximation error of each result circuit while minimizing
the number of multi-qubit gates is theoretically sound, in
practice it leaves much to be desired. In addition to introducing
another parameter to consider, the approach fails to consider
other sources of error, such as thermal noise and interactions
with the environment, which more strongly correlated to
circuit depth than CNOT count. 2) In addition, while the
sum of partition process distances is proven to provide an
upper bound on the overall process distance, estimating circuit
performance this way does not give any consideration to the
interactions between partitions. For example, it may turn out
that a small error in one partition becomes much larger when
propagated to the next partition, or that a large error in one
partition mostly cancels out with another error in the next.
3) Iteratively selecting partitions has the effect of producing
better approximations at the beginning of the process, and
significantly worse approximations later on as more circuits
exist to compare new circuits against.

Additionally, while this method has been demonstrated to
perform well in more favorable conditions (smaller circuits or
uniform noise, fully connected hardware), testing reveals that
when circuits are mapped onto hardware with more complex
errors and limited connectivity, performance is substantially
degraded.

We propose three new recombination techniques to address
these limitations, in addition to making several smaller op-
timizations to the original method and some changes to the
original flow. To address the first limitation, we propose an
error aware circuit fidelity evaluation, which combines the
apparently opposed objectives of retaining circuit functionality
and reducing CNOT count while also accounting for other
sources of error. To address the second point, we imple-
ment a cascaded error estimation method, which considers
partition pairs rather than individual partitions. This allows
the method to account for the error which happens as a
result of interactions between partitions. To address the third
point, we implement a population-based annealing approach,
which performs annealing on multiple candidates at once, and
provides all candidates to the objective function for evaluation.

To evaluate the proposed techniques, we created four re-
combination configurations, each of which implements one or
more of the proposed techniques. We have also included the
recombination method used in Quest, as well as an improved
variant of that method. These configurations were evaluated
by mapping a series of test circuits to the IBMQ Washington
computer, running them through the approximation process,
optimizing the results with Qiksit, and simulating using the



Fig. 1: Basic structure of the Quest algorithm, with three phases. Partitioning splits the circuit, expansion approximates each
partition, and recombination puts approximations together to produce one or more noise resilient approximations. Recombination
(circled) is the focus of this work.

FakeWashington backend included in Qiskit. The most promis-
ing configuration, the population-based method with error
awareness, achieves a reduction in Total Variation Distance
(TVD) from the ideal result of 18.2% and in Jensen-Shannon
Divergence (JSD) of 15.8% when compared with the original
mapped circuit. When compared with the result from the Quest
method, our best method reduces TVD by 11.4% and JSD by
9.0%. This method also reduces multi-qubit gate count by an
average of 37.1% from the baseline and 16.9% over the Quest
method.

This paper is organized as follows: Section II describes
our proposed techniques and recombination configurations.
Section III discusses how the recombiner configurations were
evaluated along with results. Section V discusses future re-
search direction and concludes the article.

II. PROPOSED METHODS

Algorithm 1 Basic structure of annealing objective function.

1: Pi ← Original partitions
2: P ← Partitions to evaluate
3: S ← The set of existing partitions
4: ϵ← Approximation threshold
5: if P ∈ S then
6: return 2.2
7: else if ⟨P |Pi⟩HS > ϵ then
8: return ⟨Pi|P ⟩HS − ϵ+ 1.1
9: else

10: t← 0
11: for all s ∈ S do
12: t += ⟨P |s⟩HS ≤ max (⟨Pi|P ⟩HS , ⟨Pi|s⟩HS)
13: end for
14: t /= |S|
15: g = CNOT(P ) / CNOT(Pi)
16: return w × g + (1− w)× t
17: end if

Our three proposed methods each rework a different part of
the desired objective function. The cascaded error estimation
improves the accuracy of the approximation limitation, while
the error aware fidelity evaluation combines the approxima-
tion limitation and complexity reduction steps to produce

an estimation of fidelity on the target hardware. Finally, the
population-based annealer allows the objective function to be
optimized over all result circuits at once, rather than iteratively
producing single circuits, which ensures all circuits are equally
affected by the differentiation metric.

In addition to the three proposed methods, we have imple-
mented several smaller changes to the Quest objective function
and implemented them in our own methods where relevant.
First, we modify the approximation limitation to produce a
gradient based on the amount of excess distance between the
approximate and exact circuits rather than returning a constant
value. This allows the annealer to explore the search space
significantly more efficiently, and tends to allow access to
formerly inaccessible regions of the search space. We also
corrected a small but significant error in the differentiation
metric which caused a tendency for results to resemble the
initial exact circuit. The basic structure of this method is shown
in Algorithm 1, which acts as the baseline configuration for
all of our approaches.

A. Cascaded Error Estimation

The cascaded error estimation metric provides a more
accurate estimate of the approximation error of a circuit by
cascading the unitaries for adjacent partitions and calculating
the process distance between that result and the same pair
of partitions in the original circuit rather than comparing
individual partitions. To facilitate this calculation, we construct
a graph of the partition order, where nodes represent partitions
and edges represent the flow of information between them, in
the form of qubits. In order to evaluate a partition, we take
the average of the distances for each pairing of a partition
and its immediate neighbors on the partition graph. Each edge
connecting a pair partitions proportionally increases the weight
of that pair. To evaluate a circuit, we simply sum the scores
of each partition composing the circuit.

B. Error Aware Fidelity Evaluation

The introduction of an error aware fidelity evaluation pro-
vides a significant structural improvement for our objective
function by combining two seemingly opposing metrics and
making the minimum accuracy parameter obsolete. We im-
plement this objective function by calculating the probability



TABLE I: Description of the six different configurations.

Configuration Basic
Changes

Cascaded
Error

Error
Awareness

Population-
Based

Quest
Basic X
Basic w/Err X X
Pop. X X
Pop. w/Err X X X
Cascade X X

density matrix of each partition in the initial circuit to use as
the baseline. We then calculate the probability density matrix
for each approximation running in an error simulation without
readout error. Thus, rather than finding the process distance
between the unitaries of the approximations and the exact
circuit, we calculate the process distance between the ideal
density matrix and one which results from the error simulation.
We use the average of the distances of all circuit partitions to
as both the fidelity estimate, which we use as the complexity
reduction metric in place of reducing multi-qubit gates.

C. Population-Based Annealing

The Quest recombination approach performs the recombina-
tion algorithm once for each desired result circuit, adding each
result to a list of prior results. The prior results are then used
in the differentiation metric to score new circuits. However,
this means that the first circuit produced does not account
for any other circuits, while the last circuit is expected to
be differentiated from all other circuits. Thus, a set of well-
distributed approximate circuits which average to cancel out
hardware error, this approach allows earlier circuits to have
minimal CNOT count, while later circuits tend to become
increasingly large. To address these concerns, we propose a
population-based annealer, which performs annealing on each
member of a population of candidate solutions simultaneously.
This allows all solutions to be equally influenced by the
differentiation metric. In order to implement this metric, we
have modified several sections of an existing dual annealing
implementation [4]. Namely, the main loop of the annealer
now updates all solutions in each timestep, and saves a set
of results when reannealing, rather individual results. We also
added an argument to the objective function which contains
all solutions except the solution to be evaluated, to enable the
implementation of the differentiation metric. In addition to
these changes, we also modify the objective function to allow
duplicate results, as the improved differentiation behavior
should allows the annealer to decide if duplicates are desirable.

D. Configurations

Aside from the cascaded error estimation and the error
aware fidelity evaluation (which affect the same parts of the
evaluation) the proposed improvements can be applied in
tandem. As a result, we have produced five separate candidate
configurations in addition to the Quest method, which are
shown in Table I. The first of these configurations is our
improved version of the Quest method, which is the basic
structure on which our other configurations are built. The next

TABLE II: Benchmark circuits ysed to evaluate recombination
methods.

Circuit Description Qubit
Count

CNOT
Count

Adder Quantum adder 4 24
9 98

HLF Hidden linear function 5 14
circuit 10 56

Multiplier Quantum multiplier 5 20
10 163

QAOA Quantum approximate 5 42
optimization algorithm 10 85

QFT Quantum Fourier transform 5 33
circuit 10 216

TFIM Transverse-field Ising 4 12
model simulation 8 56

XY XY quantum Heisenberg model 4 12
8 56

two are one which employs the population-based approach
and one which uses the cascaded error estimation, each with
no additional changes. The final two are error aware variants
of the improved Quest method and the population-based
approach.

III. RESULTS

The six recombiners were implemented in the BQSKit
quantum synthesis library [5] and evaluated by running the
Quest pipeline and applying each recombiner to the same set
of approximations for each circuit. The benchmark circuits are
provided in Table II, along with a brief description of each
circuit and the qubit and CNOT gate counts of each circuit.
All six recombiners were applied to each testbench circuit and
the resulting circuits, along with the initial hardware mapped
circuit, were optimized with Qiskit with all optimizations
on and simulated on the IBMQ FakeWashington backend
with 1024 shots for each circuit. The mapped circuit was
also run in an ideal simulator with optimizations disabled
at 8192 shots. The Total Variational Distance and Jensen-
Shannon Divergence of each combined set of results circuits in
comparison with the ideal results were calculated. The results
are presented in Figures 2 and 3.

The results demonstrate that while the Quest method per-
forms well on a few circuits, most notably QFT 5, performance
is generally worse than the other methods tested. Similarly,
both the Basic and Basic with Error Awareness methods do not
demonstrate impressive performance for any of the benchmark
circuits. The Basic with Error configuration also performs
significantly worse than any other configuration on HLF 5.
The population-based method demonstrates some encouraging
results, producing the best results out of all methods on
HLF 5, and does not have any particularly poor benchmarks.
However, the two best configurations by far are the population-
based method with error awareness and the cascaded error
estimation. The population-based method with error awareness
gives at least some improvement on almost all test circuits,
the only exception being Adder 9, which all configurations
perform somewhat poorly on. However, even on Adder 9, Pop-
ulation with Error is among the better performing circuits. The



Fig. 2: Improvement in Total Variational Distance across all recombination configurations for all benchmark circuits. Not shown
is the performance of the basic method with error awareness for HLF 5, which is -92.1%.

Fig. 3: Improvement in Jensen-Shannon Divergence across all recombination configurations for all benchmark circuits. Not
shown is the performance of the basic method with error awareness for HLF 5, which is -71.1%.

Cascade approach does not provide the best performance on
every circuit, but it is among the better performing approaches
for most benchmarks, and performs far better than any other
circuit on the TFIM 8 and XY 8 benchmarks.

The average reduction in the number of CNOT gates for
each set of results was also calculated with respect to the
exact circuit, the results for which are shown in Figure 4. The
figure shows that all recombiners generally reduce the number
of CNOT gates in the original circuit, in some cases by up
to 80%, although there is still significant variation between
recombiners. For example, the Quest approach generally offers

the lowest reduction in CNOTs, often not reducing CNOT
count at all. The Basic, Cascade and Population approaches
generally offer similar reductions in CNOT count, with Cas-
cade being the lowest and Population being the highest. The
methods which stand out the most are the two error aware
methods, which often produce considerably more reductions
than the other methods. However, in several cases, the Popu-
lation with Error method actually produces considerably less
reduction in CNOT count than other circuits.

Table III shows the average performance improvement for
each method on each benchmark circuit in terms of TVD, JSD,



Fig. 4: Improvement in number of CNOT gates across all recombination configurations for all benchmark circuits. Not shown
is the performance of the basic method with error awareness for HLF 5, which is -71.1%.

TABLE III: Performance improvement of recombination methods over the original circuit.

Proposed Methods
Metric Quest [3] Basic Basic w/Err Pop. Pop. w/Err Cascade
TVD 6.8% 9.8% 4.4% 10.5% 18.2% 14.4%
JSD 6.8% 9.7% 4.7% 10.1% 15.8% 13.5%
CNOT Reduction 20.2% 35.5% 38.1% 43.2% 37.1% 32.1%

and CNOT count reduction. The results summary reaffirms
the evaluation that the Population with Error and Cascade
approaches perform the best, with an average improvement
in TVD of 18.2% and 14.4%, respectively. Similar results are
seen for JSD, with an average improvement of 15.8% and
13.5%, respectively. The Quest method achieves an average
reduction in TVD and JSD of only 6.8%, giving the Population
with Error method an advantage of 10% on both metrics. In
terms of CNOT count reduction, the error aware methods are
predictably among the better performing approaches, although
the population-based approach does the best. The Cascade
and Basic approaches are comparable, while the Quest suffers
a drop of roughly 12% in comparison with the next closest
method.

IV. DISCUSSION

The extremely varied performance across most of the al-
gorithms for most of the benchmarks raises a number of
questions. The first concern is the relatively poor performance
of the supposedly "enhanced" Quest approach (Basic), particu-
larly when performance is below the original method. In these
cases, the performance drop is caused by the improvement to
the approximation limitation metric. The original algorithm’s
exploration of the search space is so significantly limited by
the the faulty approximation metric that in most cases, par-
ticularly on simpler circuits, only a few circuits are returned.
The improved metric does not suffer from this problem, but in

several of these cases the additional circuits which are found
are not of good quality. The Basic with Error configuration
suffers a similar problem compared with Population with
Error, as population with error is allowed to return the same
circuit more than once, where Basic with Error is not. Thus,
Basic with Error is occasionally forced to return poor quality
circuits. The cause for the poor performance of the Cascade
configuration on several circuit is likely due to the cascade
metric breaking down and not providing significant benefits
for circuits with few partitions. In these cases, similar results
to Quest and the Basic method are expected and are indeed
observed.

V. CONCLUSION

Full-circuit peephole optimization provides an interesting
method for producing error resilient approximations of a
given circuit which do not deviate too significantly from
the exact output. However, limitations in the recombination
step of existing methods must be addressed before these
methods can be applied to larger quantum circuits. Notably,
the recombination method proposed in Quest [3] has several
shortcomings, including difficulty balancing correctness and
complexity reduction, difficulty propagating approximation
errors through circuits, sub-optimal differentiation metrics, and
poor performance on circuits which have been mapped to
restricted hardware. We address each of these problems by
proposing changes to the recombination objective function,



with the best performing change seeing an 15% decrease in
Total Variational Distance (TVD) and a 13.1% decrease in
Jensen-Shannon Divergence (JSD) over the exact circuit. This
corresponds to an 11.4% and 9.0% improvement over Quest
in TVD and JSD, respectively.

Although the proposed methods provide good improvements
over Quest, there is still much room for improvement. While
the Population with Error and Cascade methods perform well,
their performance is still quite poor on several circuits, and
very inconsistent. We suspect that an error aware method with
cascaded evaluation might perform well, but implementation
of such a method is complicated by the fact that the Cascade
method operates on circuit unitaries, while the error aware
methods estimate error using the probability density matrices
produced by each circuit. Further, the behavior of all methods
regarding the differentiation metric is troubling, with most
seeing little change in performance with the weight of the
metric being reduced. Finally, we suspect that poor perfor-
mance on the Adder 9 and Multiplier 10 benchmarks may be
due to poor approximation quality, meaning that improvements
in the approximate circuit generation may produce significant
performance improvements.
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