
Intelligent Malware Detection based on Hardware
Performance Counters: A Comprehensive Survey

Abstract—The growing complexity of modern computing
systems increases vulnerability to evolving cyber threats. Re-
cent breakthroughs in computer architecture security utilizes
Hardware Performance Counters (HPCs) to access low-level
application features, presenting a promising solution to the
limitations of traditional software-based defenses. Specialized
registers in microprocessors capture diverse hardware-related
events, demonstrating efficacy in detecting malicious activities
through application of Machine Learning (ML) algorithms. This
survey offers a comprehensive analysis of recent advancements
in the emerging field of intelligent malware detection based
on hardware performance counters, a topic that has garnered
significant attention within the research community for the
past decade. Additionally, it outlines current challenges and
forecasts future research trends, offering insights for efficient
ML-based security countermeasures based on microarchitectural
features. This work serves as a helpful resource for researchers
in hardware and systems security, offering insights into emerging
developments and research directions in countering cyber-attacks
at the hardware level using ML techniques.

Keywords—Artificial Intelligence, Cybersecurity, Hardware Per-
formance Counters, Machine Learning, Malware Detection.

I. INTRODUCTION
Cybersecurity has become a paramount concern, with

attackers increasingly exploiting software and hardware vul-
nerabilities to compromise information technology infrastruc-
tures. Recent advances reveal a surge in leveraging emerging
hardware vulnerabilities for malicious activities, emphasizing
the critical need for robust defenses against malware threats.
Malware, a broad term encompassing malicious software, is
designed to infiltrate computing systems without user consent,
leading to unauthorized data access, file destruction, and
other harmful actions. The escalating growth of information
technology has amplified the severity of malware as a security
threat.

Traditional software-based detection methods, relying on
static signature analysis and continuous updates, face feasibil-
ity issues in the context of embedded systems due to limitations
in computing and communication bandwidth. Additionally, the
architecture-dependent nature of advanced analysis techniques
further hinders the effective application of existing software-
based detection methods to emerging embedded computing
devices.

In addressing these challenges, the imperative is to de-
velop effective and cost-efficient cybersecurity countermea-
sures, focusing on safeguarding user information and miti-
gating the impact of emerging cyber threats. This involves
a paradigm shift towards integrating security measures into
the underlying hardware, establishing a bottom-up approach
to fortify computing devices rather than treating security as an
afterthought. Simultaneously, recent breakthroughs in Machine
Learning (ML), fueled by the surge in data volume from
high-performance computing systems, have yielded successful
applications across various domains, especially in enhancing
computer system security.

Recent studies in cybersecurity underscore that recognizing

malicious activities at the processor hardware and architec-
ture level is achievable through ML techniques. By classify-
ing anomalies in low-level feature spaces, machine learning-
based security countermeasures can effectively discern poten-
tial threats and respond proactively to evolving behaviors at
runtime. These methods employ standard and advanced ML
techniques on low-level features, such as microarchitectural
events collected by Hardware Performance Counter (HPC)
registers, to train classifiers for detecting malicious patterns
in running programs. HPCs, specialized registers embedded
in modern microprocessors, traditionally used for architec-
tural performance analysis, have emerged as pivotal tools
in securing hardware systems. Recent efforts have proposed
leveraging HPC information to defend against both malware
and microarchitectural security threats, providing a robust
foundation for enhancing overall cybersecurity.

Ongoing research studies in intelligent malware detec-
tion at the hardware level have explored diverse computing
platforms like mobile, embedded systems, IoT, and high-
performance systems. State-of-the-art studies predominantly
emphasize the development and application of machine learn-
ing techniques for evolving malware threats. Our work dis-
tinguishes itself by focusing on microarchitectural security
studies, offering a unique analysis that delves into recent
advancements on employing AI and machine learning tech-
niques protecting the system agains malicious attacks. This
article marks the first comprehensive exploration and survey of
hardware-assisted malware techniques using machine learning.
It addresses existing advances and challenges along with
providing valuable insights for the future trajectory of this
research. We anticipate that this review will lay the foundations
and facilitate further studies, empowering the application of
machine learning to combat the growing complexity of cyber
threats at the hardware level of processors.

II. MALWARE DETECTION TECHNIQUES: BACKGROUND
AND TAXONOMY

In this section, we provide a brief overview of the classi-
fication of the existing malware detection methods. Malware
detection methods are fundamentally categorized in different
categories from different points of view. In this survey, we
classified the existing malware detection techniques into two
major categories including 1) Misuse-based malware detection,
and 2) Anomaly-based malware detection methods [1], [2], [3].

1) Misuse-Based on Malware Detection: Misuse detection
is a method for identifying computer security attacks by
defining abnormal behavior as an initial reference for determin-
ing malicious software. In this approach, anything unknown
is considered normal [4], [5], [6]. Signature-based malware
detection, a subtype of misuse detection, identifies unique
signatures and malicious patterns in malware programs [7], [8].
By profiling applications on computer systems, misuse tech-
niques recognize malware based on predetermined execution
signatures and patterns extracted from executed applications
[2]. This category of malware detection includes signature-

based, heuristic-based, and cloud-based detection methods.
Off-the-Shelf anti-virus software (e.g. Norton, MacAfee, etc.)
are considered as traditional software malware detection meth-
ods that utilize the signatures of malicious pattern to detect the
known malware attacks [9].

Misuse malware detection methods have a notable advan-
tage in their simplicity of incorporating known attacks into the
detection model. This is based on the assumption that abnormal
behavior corresponds to easily defined malicious patterns,
making it an easy-to-use method. However, a significant draw-
back of misuse detection is its inability to identify unknown
security attacks [4], [2]. These methods are vulnerable to
alterations that deviate from pre-identified malware signatures.
While successful in detecting known attacks, signature-based
techniques are incapable of detecting new (unseen) attacks
lacking predefined malicious patterns.

2) Anomaly-Based Malware Detection: Anomaly-based or
behavior-based malware detection contrasts with misuse detec-
tion by defining normal system behavior first and categorizing
all other behavior as abnormal or malicious. This approach
characterizes attacks based on deviations from predefined mod-
els [2] and has the potential to identify new, unknown malware
[3], [2], [9], [1]. Anomaly-based detection relies on heuristics
or rules, rather than patterns or signatures, aiming to detect
any form of malicious activity outside normal system operation
[10]. While antivirus solutions traditionally relied on signature-
based methods, anomaly-based techniques are now deployed
to proactively detect malicious applications, overcoming the
limitations of signature-based analysis. Unlike signature-based
methods that look for specific patterns, anomaly-based detec-
tion searches for certain instructions or rules within application
behavior that are absent in normal programs [11], [12]. Thus,
behavior-based malware detection methods, employ weight-
based or rule-based systems to identify potentially malicious
patterns not previously examined by the system [9], [13].

While anomaly-based detection is effective in recognizing
unknown threats for real-time protection in antivirus tools, it
comes with drawbacks. The scanning and analysis process is
time-consuming, degrading computer system performance [3].
Additionally, manually constructing rules/patterns for recog-
nizing unknown malware is error-prone, limiting the effec-
tiveness of heuristic analysis [9]. Behavior-based detection
can increase false positives, blocking benign programs and
restricting normal computer system operations [13], [3].

Behavior-based malware detection relies on two key
phases: a training phase, involving profiling applications to
capture their behavior and implementing machine learning
(ML) solutions based on the captured information; and a
testing phase, where real malware and benign applications
are compared with the profiled model from the training phase
[14], [10]. These detection techniques predominantly leverage
Artificial Intelligence (AI) and data mining methods to identify
anomalies [14], [2]. In the feature analysis step, software and
hardware-related features are extracted offline to capture file
sample characteristics during training. Machine learning tech-
niques then automatically classify file samples into ”benign”
or ”malware” categories based on feature representations.

Anomaly-based malware detection employs various fea-
tures, categorized into software-based and hardware-based
approaches. Software features include permissions, network
traffic, system calls, API, IPL, information flow, and covert
channels. In recent years, there has been a shift toward

hardware-based detection, utilizing information like memory
access patterns, I/O interface, instruction execution, and low-
level microarchitectural features. Hardware-based detectors
offer real-time detection, efficient resource utilization, and
resistance to infection, proving effective against emerging
threats. Recent studies use ML algorithms for accurate and
efficient detection of malicious attacks, leveraging low-level
features captured from processors’ HPCs.

III. HARDWARE-ASSISTED MALWARE DETECTION:
MACHINE LEARNING PROCEDURE

Figure 2 provides an overview of process of machine
learning-driven approaches designed for enhancing cybersecu-
rity, specifically in the context of hardware-assisted malware
detection. This process encompasses stages such as application
monitoring for HPC data profiling, feature extraction and
analysis, feature selection, and training/testing of the ML-
based detector. The continuous learning of ML models through
the analysis of low-level microarchitectural features aims to
identify and counteract malicious patterns. This proactive and
intelligent approach safeguards the processor architecture from
potential threats, encompassing not only malicious software
but also extending to microarchitectural side-channel attacks.

A. Feature Selection: Analysis of Key Features
Developing effective ML-based hardware-assisted malware

detectors begins with crucial steps like data collection and
feature selection [15], [16], [17], [18]. In modern micro-
processors, numerous microarchitectural events can be col-
lected, but choosing relevant low-level features is essential to
avoid computational complexity and delays associated with
high-dimensional datasets. Specifically, identifying essential
low-level microarchitectural features is crucial for hardware-
assisted malware detection due to several reasons: a) The
abundance of microarchitectural events (e.g., 100+ in Intel
Xeon) leads to high-dimensional data [19], b) Processing raw
datasets involves computational complexity and induces delays
[20], and c) The selection of the most relevant microarchi-
tectural events varies across application classes, posing chal-
lenges in specifying non-trivial events for different malware
classes [21]. In Figure 1, we illustrate the availability of HPC
registers in different processors. As depicted, their numbers
are constrained within the range of 2 to 8. The challenge,
intricately connected to runtime malware detection, discusses
a significant HMD challenge addressed in recent works [19],
[21]. It involves pinpointing a minimal set of HPCs that pre-
cisely capture the characteristics of malicious attacks, thereby
minimizing unnecessary computational overhead. This pursuit
ensures the development of an efficient ML-based security
countermeasure with minimal impact on system performance.

Concerning the limitations of the underlying processor’s ar-
chitecture, especially in resource-constrained computing plat-
forms like embedded systems and IoT devices with restricted

1

Intel Nehalem

Intel Haswell

UltraSparc II

Pentium III

ARM Cortex-A5

ARM Cortex-A8

ARM Cortex-A9

AMD Athlon

4HPCs 2HPCs 2HPCs 6HPCs

8HPCs 2HPCs 4HPCs 4HPCs

Fig. 1: Number of HPC registers available in various processor types

Application
Monitoring

Feature Engineering
1. Data Cleaning

2. Feature
Normalization

3. Feature
Selection

4. Feature
Extraction

ML AlgorithmTraining Validation

ML-based DetectorInference

MalwareBenign

Defense Action

Fig. 2: General overview of hardware-assisted security countermea-
sures against malware using machine learning

HPC registers, efficient yet accurate runtime detection relies on
critical feature selection. Recent HMD studies [19], [21] have
addressed effective runtime hardware-assisted malware detec-
tion, identifying the minimal set of essential HPCs required
for data collection in a single run.

As depicted in Figure 2, the chosen HPC features are
utilized to train individual ML-based detectors. The classifier
endeavors to establish a correlation between the feature values
and application behavior, aiming to predict the presence of
malicious patterns (benign or attack type). There have been
some feature selection techniques that are dominant in prior
ML-based detection work including correlation attribute evalu-
ation, principle component analysis, gain ratio evaluation, and
Fisher Score. As a result, in this section each of these methods
will be briefly discussed. Several feature selection techniques
have played a prominent role in previous ML-based HMD
efforts. These include techniques such as correlation attribute
evaluation, principal component analysis, gain ratio evaluation,
and Fisher Score. In the following section, a brief overview of
each of these methods will be provided.

1) Correlation Attribute Evaluation (CAE): CAE is an al-
gorithmic feature selection method that ranks features based on
their importance and relevance to the target classified variable.
It evaluates attribute importance by measuring the correlation
(Pearson’s) between the attribute and the corresponding class,
calculated using the Pearson correlation coefficient ρ.

ρ(i) =

n∑
k=1

(xk,i − x̄i)(ck − c̄)√∑n
k=1(xk,i − x̄i)2

∑n
k=1(ck − c̄)2

(1)

In this algorithm k is the total number of input values;
x(k,i) is kth value in input dataset for feature i; ck is kth

value in output dataset. The mean of input data for feature
i is denoted by x̄i, and that for the output data by c̄. CAE
finds correlation co-efficient for all captured features as per
above equation and according to the ranking of ρ, top low-
level features are selected for analysis and implementing the
ML classifiers used for malware detection and classification.
Correlation attribute evaluation is a key technique for feature
selection in hardware-assisted malware detection, as seen in
recent works [19], [22], [23], [21], [24], [25].

2) Principle Component Analysis (PCA): PCA is a statis-
tical method for dimensionality reduction, transforming ob-
servations of correlated variables into a new feature space
called Principal Components (PC) [26], [27], [28]. It identifies
vital microarchitectural parameters by capturing data varia-
tion through uncorrelated PC dimensions, providing a linear
combination of the original data [29], [30]. This reduction
helps determine the most important features along different

PC dimensions. It is essential to normalize data to the unit
normal distribution to address sensitivity to the relative scaling
of original variables [21].

3) Gain Ratio Evaluation (GRE): GRE is an extension of
the Information Gain Ratio (IGR) feature selection method
introduced in [31]. IGR aims to address the bias in Information
Gain (IG) by normalizing it, considering how an attribute
divides input samples. The Gain Ratio method is a normalized
version of Information Gain, achieved by dividing the infor-
mation gain by the entropy of the attribute with respect to the
class, reducing bias. The entropy after partitioning samples
according to a given feature A is denoted as SI(S, A). The
IGR is computed using equations involving SI and IG.

SI(S,A) = −
|V |∑
v=1

|Sv|
|S|

× log2

|Sv|
|S|

(2)

IGR(S,A) =
IG(S,A)

SI(S,A)
(3)

Gain Ratio evaluation addresses a limitation of the informa-
tion gain approach, particularly its bias against attributes with
a high number of distinct values. In the context of building
a decision tree for hardware-assisted malware detection, this
bias correction is crucial. Gain Ratio, commonly employed to
determine the relevance of collected HPC features for malware
detection, assists in making informed decisions about feature
selection near the root of the tree. GRE and IGR are widely
adopted feature selection method in recent HMD techniques
[18], [32], [18], [33].

4) Fisher Score (FS): Fisher Score (FS) is a widely used
feature selection method aiming to measure discriminative
power by minimizing redundancy and maximizing relevance
to the target, such as class labels in classification [34]. In
hardware-assisted malware detection, FS identifies top low-
level features for malware detection using unsupervised ML
techniques, as employed in [2]. FS provides a measure of
average inter-class distance compared to intra-class distance
for a given feature, helping select features that assign similar
values to data samples in the same class and different values
to samples from different classes [35], [36]. As a result, the FS
for the ith feature denoted as Si will be calculated as follows:

Si =

∑K
k=1 nj(µij − µi)

2∑K
k=1 nj(ρij)2

(4)

where µij and ρij are the mean and the variance of the
ith feature in the jth class respectively, nj is the number of
instances in the jth class, and µi is the mean of the i − th
feature. Higher values of Sk imply that while members in
the same class are closer together, the members belonging to
different classes are further separated using the kth feature.
For the malware detection problem which is often a two-class
problem including the positive class (malicious) or or negative
class (benign), the FS method simplifies [36]. FS helps select
a subset of significant features for distinguishing malicious
patterns, but it does not consider the correlation and mutual
dependency between features, which could be a limitation [2].

B. ML Techniques for Malware Detection
Data mining and machine learning techniques have shown

to be effective in classifying anomalies to accurately detect
the behavior of malicious applications. As mentioned before,
Figure 2 illustrates the overview of malware detection process
using such classification techniques.

Bayesian Network
(BN)

input

x1
x2
x3
…
xn

network probability output

P(y0|C)={0.8,0.1,0.1}

P(y1|C)={0.2,0.7,0.1}

Probabilistic graphical model
that aims to model
conditional dependence and
causation by representing a
set of variables and
conditional dependencies
with edges in a directed
graph.

Bayes Net (BN),
Naïve Bayes
(NB)

ExampleDescriptionML Classifier Architecture

Neural Network
(NN)

input

x1
x2
x3
…
xn

hidden layers output

y0
y1

Consists of units (neurons),
arranged in layers, which
convert an input vector into
some output. Each unit takes
an input, applies a (often
nonlinear) function to it and
then passes the output on to
the next layer.

Multi-Layer
Perceptron (MLP),
Convolutional
Neural Network
(CNN), Recurrent
Neural Network
(RNN)

0.2

0.8

Decision Tree
(DT)

input

x1
x2
x3
…
xn

decision tree probability outputSequential models, known as
"divide and conquer"
algorithms, which logically
combine a sequence of simple
tests where a numerical
attribute is compared against a
threshold value or against a set
of possible values.

REPTree (RT),
J48,

≥

<

<

<

<

≥ ≥

≥

P(y0) = 0.8

P(y1) = 0.2

Rule-Based
input

x1
x2
x3
…
xn

set of rules output

y0 [rule1, rule3]

Identify, learn, and evolve
%utilize a set of relational rules
that collectively represent the
knowledge captured by the
system.

OneR, JRip,
PART

Logistic
Regression (LR)

input

x1
x2
x3
…
xn

Z = wX + b outputStatistical method in which its
goal is to find the best fitting
model to describe the
relationship between
dependent variable (response
or outcome variable) and a set
of independent (predictor or
explanatory) variables.

Simple Logistic
(SL), Multinomial
Logistic
Regression (MLR)

IF and THEN

IF and THEN

IF and THEN

IF and THEN

IF and THEN

*
* ** *

** ** ** ** *
* ** *

**
** ** ** ** *

* ** *

σ 𝑧 = !
!"#!"

P(y0) = 1 - σ 𝑧
P(y1) = σ 𝑧

Ensemble Learning
(e.g. Bagging,
Random Forest
(RF))

input

x1
x2
x3
…
xn

outputA branch of machine learning
which is used to improve the
accuracy and performance of
general ML classifiers by
generating a set of base learners
and combining their outputs for
final decision.

Boosting(Ada
Boosting,
LightGBM,
XGBoost),
Stacking (RF),
Bagging.

P(y0) = 0.8

P(y1) = 0.2

Boosting

y0

y1 average or
voting

y0

K Nearest
Neighbor
(KNN)

input

x1
x2
x3
…
xn

network probability output

y = min(distance of
point A (y0), distance
to point B (y1))

A supervised classification
algorithm that learns from labeled
points to classify new points. It
determines a point’s classification
by examining the labels of its
nearest neighbors (determined by
the parameter “k”) and employs a
voting mechanism based on their
classifications.

KNN (k= 1,2,...)

Reinforcement
Learning (RL)

input

S

R

A

hidden layers output

action1, action2,
action3, …

In RL algorithm, an agent learns to
take optimal actions by interacting
with its environment, aiming to
maximize its cumulative reward
over time. The RL framework
comprises four key components:
the agent, the environment, the
reward, and the policy.

Model-free (Q-
learning, Action
Critic Advantage,
proximal policy
optimization(PP
O) and Model-
based (AlphaGo)

Ensemble Learning
(Boosting)

input

x1
x2
x3
…
xn

boosting outputOne of the most used ensemble
learning in which each base
classifier is trained on a weighted
form of the training set in which
the weights depend on the
performance of the previous base
classifier.

AdaBoosting,
XGBoost,
LightGBM

y = argmax
(weighted y0,
y1)

**
** **

** **
**

**

*
**

*

*

A
B

X subset
{x1,…,xm}

weak
Lear
ners

y predict
weighted

Repeat for N times

Weighted Weak Learner
1

Weighted Weak Learner
n

…

Weighted
Prediction 1

…
Weighted

Prediction n

ExampleDescriptionML Classifier Architecture

Transfer Learning learning processAims to improve the performance
of predictive function of the target
ft for learning task over data Dt by
discovering and transferring latent
knowledge from source feature
domain Ds and its function fs
including architecture and
parameters, where Ds != Dt.

Transfer
learning on pre-
trained deep
learning
models over
ImageNet.

source predictive
function fs

Target domain

Target predictive
function ft

Ds

Dt

knowledge

tr
an

sf
er

 le
ar

ni
ng

Source domain
input

x1
x2
…
xn

output

y = ft(Dt|fs(Ds))

Fig. 3: Various branches of machine learning algorithms used in HMD techniques, examples, and architectures

To categorize the unknown applications into either benign
or malicious software, the classification process can be divided
into two stages including training and testing. First, we need to
construct the classification model by training the ML classifiers
using the extracted data (the HPCs information) for malware
detection. The extracted features are then converted to vectors
in the training set. Both the feature vectors and the class label
of each sample (i.e., malicious or benign) are used as inputs
for a classification algorithm (e.g., Artificial Neural Network
(ANN), Logistic Regression (LR), Decision Tree (DT), and
Support Vector Machines (SVM), etc).

By analyzing the training file samples, the deployed ML
classification algorithm constructs a classifier capable of de-
tecting the patterns of malicious samples with some level of
accuracy and performance detection. Next, during the testing
stage, first the vectors of the new file samples are first extracted
using the same feature extraction techniques as in the training
phase. This completely unseen data then is fed to the trained
classifier to examine the detection rate of malware detection
process. The classifier attempts to classify the new file samples
based on the extracted feature vectors. Figure 3 illustrates
various branches of machine learning algorithms used in HMD
techniques. We briefly describe the ML models, along with
their examples and architectures, that have been used in
intelligent hardware-assisted malware detection research.
C. Performance Evaluation Metrics

Assessing the effectiveness of ML classifiers is a crucial
phase in the implementation of robust malware detection
techniques. Within the realms of ML and statistics, various
metrics are employed to evaluate the performance of a detec-
tion method.Table I provides a consolidated overview of the
evaluation metrics utilized for performance analysis of ML-
based security countermeasures.

As observed, all metrics are calculated based on the counts
of prediction correctness and incorrectness to each class, which
are the counts of true positive, false positive, true negative, and

false negative. These four counts form a confusion matrix,
which is comprised of two dimensions namely ”actual” and
”predicted”, and identical sets of ”classes” in both dimensions.
Each row of the confusion matrix represents the instances in a
predicted class while each column represents the instances in
an actual class (or vice versa) [37]. Various metrics can be em-
ployed to evaluate the performance of a model, depending on
the system under consideration. While error rate and accuracy
provide a general overview of model performance, they may
not accurately represent performance in real-world network
environments with imbalanced datasets. In such cases, where
normal samples significantly outnumber abnormal ones, F-
Measure emerges as a more comprehensive metric, accounting
for both precision and recall, and proving resilient to class
imbalance. F-Measure (F-score), is often favored for indicating
the overall detection performance, offering a balanced perspec-
tive where precision and recall need to be traded off.

In binary malware detection, metrics such as True Positive
Rate (TPR), True Negative Rate (TNR), False Positive Rate
(FPR), and False Negative Rate (FNR) offer detailed insights
into a model’s prediction capabilities for malware and benign
samples. TPR signifies the proportion of correctly identified
malware among all predicted malware, crucial for assessing
detection accuracy. Conversely, TNR measures the correct clas-
sification of benign samples, addressing false alarms. Precision
gauges positive prediction accuracy, while recall evaluates
positive prediction completeness. Receiver Operating Charac-
teristic (ROC) and Area under the ROC Curve (AUC) provide
a graphical representation of the model’s performance, offering
insights into trade-offs between True Positive (TP) and False
Positive (FP). AUC measures the entire area under the ROC,
with higher values indicating better detection performance.
D. Performance Monitoring Tools

In this section, we introduce some most prevalent per-
formance monitoring tools under different operating systems
(Windows, Linux, and macOS systems) used in prior works

TABLE I: Evaluation metrics used for analyzing ML-based security countermeasures
Evaluation Metric Equation/Description
True Positive (TP) Count of correct positive prediction (e.g., malware is predicted as malware).
False Positive (FP) Count of incorrect positive prediction (e.g., benign is predicted as malware).
True Negative (TN) Count of correct negative prediction (e.g., benign is predicted as benign).
False Negative (FN) Count of incorrect negative prediction (e.g., malware is predicted as benign).

Specificity: True Negative Rate (TNR) TNR = TN/(TN + FP), TNR = 1− FPR, defined as the proportion of genuinely negative samples predicted as negative result among all negative samples.
False Negative Rate (FNR) FNR = FN/(FN + TP), FNR = 1− TPR, defined as the proportion of genuinely positive samples predicted as negative result among all positive samples.
False Positive Rate (FPR) False alarm rate, defined as the proportion of genuinely negative samples predicted as positive results among all negative sample, FPR = FP/(FP + TN), FPR = 1− TNR.

Recall/sensitivity: True Positive Rate (TPR) TPR = TP/(TP + FN), TPR = 1− FNR, defined as the proportion of genuinely positive samples predicted as positive results among total positive samples. It refers to the proportion
of correctly identified positives (the rate of malware samples) by the model.

Precision (P) P = TP/(FP + TP), Defined as the ratio of true positive predictions to total predicted positives, indicating the confidence level of attack detection.
F-Measure (F1-score) Fmeasure = 2 × (P × R)/(P + R), Represents a weighted average of precision (P) and recall (R). It offers a more comprehensive evaluation than accuracy, considering both precision

and recall, and is robust for evaluating both balanced and imbalanced datasets.
Detection Accuracy (ACC) ACC = (TP + TN)/(TP + FP + TN + FN), The ratio of correctly classified samples to total samples. Accuracy is a suitable metric when the dataset is balanced.

Error Rate (ERR) ERR = (FP +FN)/(P +N), where P, N represents total positive and negative samples respectively. It is the number of all incorrect predictions divided by the total number of the dataset.
Receiver Operating Characteristic (ROC) Curve Visually depicts the trade-offs between true positive rate and false positive rate, providing insights into detection performance with varying discrimination thresholds. Each prediction result

corresponds to a point in the ROC space, and the upper-left corner (coordinate (0, 1)) signifies optimal detection, denoting 100% sensitivity and 100% specificity.
Area Under the Curve (AUC) AUC =

∫ 1
0 TPR(x)dx =

∫ 1
0 P (A > τ(x))dx, where τ is the thresholds on the decision function used to compute FPR and TPR. AUC quantifies the entire two-dimensional area beneath

the ROC curve, spanning from (0,0) to (1,1).

to monitor applications behavior and collect hardware-related
events that assist in application performance analysis and
tuning. In order to monitor applications behavior and collect
hardware-related events that assist in application performance
analysis and tuning various performance monitoring tools have
been used in prior works. These tools include Perf [38],
Pin [39], PAPI [40], Intel VTune [41], and Intel PCM [42].
All these tools are available for Linux systems while only
Intel VTune and Intel PCM are able to monitor HPCs in
Windows and macOS systems. Perf, PAPI, and Pin demand
some knowledge of command lines for users due to the
lack of GUI interface. Perf tool is a Linux-based low-level
performance monitoring tool that can instrument CPU perfor-
mance counters, tracepoints, kprobes, and uprobes (dynamic
tracing) [43]. Its monitoring granularity scales as least as 10ms
without customization. Pin tool collects various program’s
ISA-dependent features such as instruction mix, instruction-
level parallelism, register traffic, branch predictability, etc. to
examine the applications behavior [39].

Performance Application Programming Interface (PAPI)
[44] provides a cross-platform interface for monitoring hard-
ware performance counters on processors that are equipped
with specific registers for hardware events. To help with
discovering and resolving performance bottlenecks in running
programs for tweaking and debugging purposes, Intel has
developed a licensed-based tool called Vtune [41]. It can
record and show performance-related information. It offers a
robust GUI interface and supports a wide range of profiling,
including HPCs, call graphs, performance bottlenecks, and
hotspot hunting, in comparison to the previous tool. Last but
not least, PCM [42], [45] is the performance monitoring units
(PMU) implemented in Intel’s processors (e.g., Xeon, Atom,
and Xeon Phi) that help to monitor performance and energy-
related metrics in both Windows and Linux environments.
Compared to Perf and PAPI tools, Intel PCM supports both
core and uncore events monitoring in real-time.

IV. STATE-OF-THE-ARTS ON HARDWARE-ASSISTED
MALWARE DETECTION

In this section, we survey the latest proposals on hardware-
assisted malware detection using ML techniques. Figure 4
illustrates the yearly analysis of publications on hardware-
assisted malware detection techniques, captured from Google
Scholar. For the purpose of thorough and structured explo-
ration, we classify prior studies into several categories accord-
ing to each work’s specific focus and the challenges addressed.

A. General Hardware Malware Detection
The study by Demme et al. [15] pioneered the exploration

of HPCs for accurate malware detection via ML techniques.
The research successfully demonstrated the efficacy of offline

Fig. 4: Comprehensive yearly analysis of state-of-the-art researches
on intelligent malware detection using hardware performance counters

ML algorithms in pinpointing malicious software. Further-
more, it showcased the applicability of HPCs in detecting
malware at the Linux OS level, including Linux rootkits and
cache side-channel attacks on Intel and ARM processors. The
study achieved notable detection performance results for An-
droid malware by employing ML algorithms, such as Artificial
Neural Network (ANN) and K-Nearest Neighbor (KNN). Prior
to that, the study conducted in [46] utilized HPCs for both
static and dynamic integrity checking of running programs.
The authors employed a tool named Eurequa to identify ma-
licious modifications in programs by detecting equations and
hidden mathematical relationships among HPCs. While their
approach did not involve ML, but it showed the potential of
HPCs for security applications with minimal runtime overhead.

Tang et al. [2] explored the feasibility of unsupervised
learning with HPCs features to detect return-oriented pro-
gramming (ROP) and buffer overflow attacks by identifying
anomalies. The Fisher Score metric was employed for feature
selection, distinguishing malicious code execution from non-
malicious instances for each event and ranking them. The top
7 ranked features were then used to train one-class Support
Vector Machine (oc-SVM) classifier, detecting deviations in
program behavior indicative of potential malicious attacks. The
study also compared performance across different sampling
frequencies of HPCs.

The works by Wang et al. [70], [71] utilize HPCs informa-
tion to detect rootkits that modify system calls through statis-
tical methods. These approaches focus on counting hardware
events during each system call execution in a guest Virtual
Machine, enabling the identification of modifications to kernel
control flow. Despite their effectiveness, these works employ
complex detection architectures that do not rely on machine
learning and data mining solutions. Such architectures may
not be suitable for implementation in resource-constrained
embedded and IoT devices.

The research in [72] presented HPCMalHunter, an
anomaly-based malware detection technique utilizing machine
learning classifiers at the hardware level. This framework,
termed a behavioral online malware detector, predicts malware

TABLE II: Overview of recent research on hardware-assisted malware detection with machine learning techniques
Research Year Platform Classification Model Threat Type Major Contribution and Challenge Addressed
[15] 2013 Android,

Linux
KNN, NN, DT, RF Malware It was the first work to use HPCs in ML-based malware detection on OS level, their findings show that data from performance counters

can be used to identify malware and that the trained ML model using HPCs are are robust to minor variations in malware programs.
[47] 2014 Linux ocSVM Malware It demonstrated that HPC features combined with unsupervised machine learning using benign program executions can detect deviations

from malware programs. Their findings show the microarchitectural characteristics of benign and malware programs have different patterns,
while benign are noisy, and the deviations exhibited by malware are minute.

[48] 2015 Windows LR, ANN Malware Proposed Malware-Aware Processors (MAP) framework for real-time HMD. Their work proposed a two-level detection framework where
the hardware classifier prioritizes the work of a more accurate but more expensive ML defense mechanism. They also explored integrating
the MAP implementation with an open-source x86-compatible core, synthesizing the resulting design to run on an FPGA.

[49] 2015 Windows LR, NN, EL Backdoor, PWS, Rogue, Trojan,
Worm

Focus on per class malware detection using HPCs, compared the accuracy of specialized and general malware detectors, highlighting the
effectiveness of specialization in HMD.

[50] 2016 ARM ocSVM Firmware malware Introduced as a cost-efficient technique for identifying malicious changes in embedded control system firmware using MLs.
[18] 2017 Linux SVM, ocSVM, NB, DT Kernel Rootkits utilizing the synthetic rootkit traces of HPC features to train ML to detect kernel-level rootkit attacks. Their experimental results show that

HPCs can be effective features for rootkit detection.
[22] 2017 Linux OneR, MLP, BN, SMO,

SGD, LR
Malware Assessed detectors based on accuracy, accuracy/area, Power Delay Product (PDP), and latency.

[51] 2017 Windows LR, MLP,DT,SVM Adversarial malware Proposed a resilient defense solution to reverse-engineering based adversarial attacks through retraining, randomized features and HPC event
periods.

[19] 2018 Linux BN, J48, JRip, MLP, OneR,
RT, SGD, SMO, AB, BG

Malware It was the first paper to break the trade-off of more HPCs used for training effective MLs than the limited number of HPC registers
available in today’s microprocessors. Their work shows using ensemble machine learning solutions can be effective in training runtime
malware detectors with only 2 or 4 HPCs which makes online malware detection more available.

[23] 2018 Linux AdaBoost on five ML classi-
fiers

Malware Explored ensemble learning’s effectiveness, comparing general and ensemble classifiers in terms of accuracy, robustness, performance, and
hardware overhead.

[52] 2018 Windows DT, RF, MLP, KNN, AB, NB Malware Questioned the effectiveness of HPC based method, revealing larger performance variations across different MLs.
[24] 2018 Linux MLs Ess Malware. Presenting a customized ML-based HMD and identification solution for embedded systems.
[21] 2019 Linux J48, JRip, MLP, OneR, AB Virus, Trojan, Rootkits, Back-

door
A two-stage ML-based approach for specialized runtime malware identification and detection.

[53] 2019 Linux Adversarial malware (Back-
door, Rootkit, Virus, Worm,
Trojans)

LR, NN It created adversarial attacks on HMD systems by injecting perturbations into HPC traces. They first employ an adversarial sample predictor
to predict the number of HPC features used on the target system, then use reverse-engineered malware samples together with perturbed
noise to compromise victim systems. Their results show such adversarial attacks can be effective in evading malware detections.

[54] 2019 Linux MLP, OneR, LR, JRip IoT malware It addressed security risks in large-scale IoT networks. They proposed HaRMemploys with low computational overhead ML classifier (OneR)
suitable to the needs of IoT devices with good malware detection accuracy. They developed a framework for combining the models of
malware spreading processes on networks explicitly with their direct adverse effects on network performance and formulate an optimal
control problem for malware confinement while maintaining network integrity. The experiment results show this method can be used to
generate imperfect estimates of infection state in IoT network.

[25] 2020 Linux MLP, OneR, LR, J48, SVM,
SGD

IoT malware proposing a two-staged framework with a lightweight malware detector followed by a stochastic controller.

[55] 2020 Linux J48, JRip, LR, KNN, BOFF,
FCN

Stealthy Malware (Trojan, Rootk-
its, Backdoor, Blended)

First to address the challenge of stealthy malware using HPCs, proposed a specialized time series ML approach for stealthy malware
detection.

[56] 2020 Xilinx
Zynq7000
SoC

RNN, Linear Regression Malware It explores the interpretability of ML HMD. They first theoretically establish that the proposed method can provide an interpretable explanation
of classification results to address the challenge of transparency. Then they show through explainable ML, detection performance can be
improved. Their results show promising detection performance.

[57] 2020 Linux oc SVM, Malware They use time series benign data only to train one class SVM in a multi-thread environment, which considers per-thread and cross-thread
features in embedded devices. Their approach enables continuous monitoring of time series of multi-thread HPC readings for run-time
malware detection.

[58] 2021 Linux time series FCN,
MLP,ResNet, MCDNN,
JRip, J48, LR, KNN, BOPF

Stealthy Malware (Trojan, Rootk-
its, Back- door, Blended)

Proposed StealthMiner, a lightweight time series Fully Convolutional Neural Network (FCN) to accurately detect stealthy malware trace at
run-time using branch instructions.

[59] 2021 Linux RF Malware Quantifying ML with uncertainty, introduced an uncertainty estimator to consider undertain predictions when handling zero-day malware.
[60] 2021 Linux EL(AB), RF, DT, GNB, SGD,

LR
Zero-day malware Suggest classical MLs were found effective for known malware but suffered a high FPR in zero-day malware detection, proposed Ada

Boosting over RandomForest for zero-day malware detection.
[61] 2021 CNN Cloud malware Real-time malware detection in cloud (IaaS) environment.
[33] 2022 Linux CNN, TL, RF,DT, Zero-day malware Image-based transfer learning on tabular HPC data proved to be effective in detecting zero-day malware.
[62] 2022 Linux DT, NN Adversarial malware Moving target defense of adversarial defense by changing the numbers and set of HPCs and classifiers.
[63] 2022 Android BN,SL,MLP,PART,SMO Malware Propose an ML-guided hardware-assisted resource and timing estimation tool that can effectively reduce the design space exploration for

edge devices’ design through HLS optimization for MLs.
[64] 2022 Windows LR,DT,SVM Adversarial malware It shows existing HMDs can be effectively reverse-engineered and subsequently evaded. They suggested that retraining over adversarial

samples is not effective. As a result, they proposed uniform random switching among ML detectors at run-time to defend against effective
reverse engineering attacks. Their approach showed an increased detection performance for both evasive and non-evasive malware.

[32] 2022 Linux RL(UCB), EL,JRip, J48, LR,
MLP, OneR, RepTree

Zero-day malware First work that tackles major issues in adaptive and cost-aware zero-day malware detection using HPCs, considering desired performance
metrics and available hardware resource; meantime propose a unified feature selection method based on heterogeneous feature fusion
approach.

[65] 2023 Linux RL(A2C), CNN, MLs IoMT Malware Proposed a hybrid and adaptive image-based framework for online hardware-assisted zero-day malware detection.
[66] 2023 Linux SVM, RF, GBM, AB Ransomware Determining the optimal hardware features and time granularity for early ransomware detection.
[67] 2023 Linux MLP, LR, DT Adversarial malware (backdoors,

rogues, password stealers, trojans,
and worms)

Enhance adversarial defense by adding stochastic noise (through controlled undervolting) in HMDs’ computations during inference.

[68] 2023 Linux Various binary & multi-
classifiers.

BioMedical malware Introduces a tailored hardware monitoring framework and employs MLs to enhance cybersecurity in biomedical computing systems.

[69] 2024 Linux Various binary & multi-
classifiers.

Malware A thorough evaluation of MLs’ reliability considering factors of training data size, the number of HPCs used, and internal data separability
(malware stealthiness); introduced model observer to enhance reliable intrusion detection during inference.

K Nearest Neighbor:KNN, BayesNet:BN, NaiveBayes:NB,Logistic Regression:LR, AdaBoost:AB, Bagging:BG, Support Vector Machine:SVM, One Class SVM: ocSVM, Neural Netework:NN, Last Level Cache References: LLC, REPTree: RT, Decision Tree:
DT, Random Forest: RF, Ensemble Learning: EL, Bag-of-Pattern-Features: BOFF, Fully Convolutional Network: FCN, TL: Transfer Learning, Reinforcement Learning: RL, Actor Critic Advantage: A2C, Upper Confidence Bound: UCB, Embedded

Systems: ESs, High Level Synthesize: HLS, SimpleLogic: SL, Sequential Minimal Optimization: SMO.

presence with high accuracy using a Support Vector Machine
(SVM) classifier. Initially, the detector gathers a set of hard-
ware performance counter events concurrently from the run-
ning application. In the subsequent step, the authors employ a
Singular Value Decomposition (SVD)-based feature reduction
technique to identify the most significant HPC events.

In studies [48], [73], the authors introduced the MAP
framework for real-time hardware-assisted malware detec-
tion. They explored sub-semantic features in the low-level
microarchitectural space, including executed instruction fea-
tures, memory address pattern features, and architectural event
features. Their approach utilized Logistic Regression and
Artificial Neural Network classifiers for malware detection,
requiring changes to the microprocessor pipeline for real-time
implementation. The authors discussed estimated latency and
area utilization of the proposed algorithm implementations.

In [74], the focus is on per-class malware detection using
hardware performance counter information. The authors de-
veloped ML-based specialized detectors trained for individual

malware classes, predominantly employing logistic regression
and neural network classifiers. Utilizing the same features as
Ozsoy et al. [48], they compared the accuracy of specialized
and general malware detectors, highlighting the effectiveness
of specialization in hardware-assisted malware detection. They
further enhanced accuracy through specialized ensemble learn-
ing, combining LR and NN classifiers.

Singh et al.’s work [18] focuses on utilizing ML algorithms
on synthetic traces of HPC features to detect kernel-level
rootkit attacks. To reduce features, they employ the Gain Ratio
technique from the WEKA toolkit [75], achieving high accu-
racy in detecting synthetic rootkits. The study collects HPC
samples only at the program’s end and trains ML classifiers
using these HPCs to detect and classify rootkits. Notably,
rootkits utilizing direct kernel object manipulation (DKOM)
have minimal impact on HPCs, posing a challenge for simple
HPC-based detection.

In [22], various ML classifiers for malware detection were
evaluated, ranging from simple OneR to complex MLP. The

study assessed detectors based on accuracy, accuracy/area,
Power Delay Product (PDP), and latency. While complex clas-
sifiers achieved close to 90% accuracy, their implementation
overheads led to inferior performance in PDP, accuracy/area,
and latency compared to simpler alternatives. The OneR al-
gorithm emerged as the most cost-effective, with over 80%
accuracy and fast execution (less than 10ns), achieving the
highest accuracy per logic area while primarily relying on a
single branch-instruction feature.

Sayadi et al. [19], [23] proposed ensemble machine learn-
ing solutions for effective runtime malware detection using
low-level microarchitectural features. To optimize runtime
detection with limited hardware performance counters, the
authors employed systematic feature reduction. They used the
Correlation Attribute Evaluation technique to select top events
by calculating Pearson’s correlation coefficient between HPC
features and determining the most significant ones. In [23], the
authors explored ensemble learning’s effectiveness with only
8 HPC features, equivalent to the available number of HPC
registers. They applied AdaBoost on five ML classifiers, com-
paring general and ensemble classifiers in terms of accuracy,
robustness, performance, and hardware overhead.

The research in [19], the challenge of limited HPC registers
for runtime malware detection was addressed by focusing
on specialized ML techniques trained with a small number
of HPC features (2-4). The study highlighted that across
various ML models the accuracy of hardware-based malware
detection decreases with the number of HPCs used. To enhance
performance, ensemble learning techniques were proposed,
eliminating the need to run an application multiple times.
They implemented eight robust ML models and two ensemble
learning classifiers (Adaboost and Bagging), and compared
them in terms of detection accuracy, robustness, performance
(accuracy×robustness) and hardware overhead. Results showed
that the proposed ensemble learning malware detection with
just 2 HPCs outperformed standard classifiers with 8 HPCs
by up to 17%, matching the robustness and performance of
standard ML-based detectors with 16 HPCs while using only
4 HPCs and enabling effective runtime malware detection.

Furthermore, the work in [21] proposed a two-stage ma-
chine learning-based approach for specialized runtime malware
detection in which in the first level classifies applications using
a multiclass classification technique into either benign or one
of the malware classes (Virus, Rootkit, Backdoor, and Trojan).
In the second level, to have a high detection performance, the
authors deploy a machine learning model that works best for
each class of malware and further apply effective ensemble
learning to enhance the performance of malware detection.

In [76], unlike prior HMD research, the suitability of low-
level microarchitectural features for distinguishing malware
from benign applications is questioned. The authors argue
that there is no inherent relationship between low-level mi-
croarchitectural features and high-level application behavior.
They contend that positive results in previous works stem
from optimistic assumptions, presenting their best result with
an F1-score of 80.78%. However, they conduct a 10-fold
cross-validation of HPC-based malware detection, revealing
larger performance variations across different machine learning
classifiers. Similar variations are noted in previous works
employing different machine learning classifiers.

The research in [77], presents a hardware-level malware
detection framework named Akoman that utilizes Discrete

Wavelet Transform (DWT) and behavioral signatures derived
from hardware events to determine the behavior of running
programs. For each known malware type, two signatures are
generated by collecting four hardware event traces from the
executions of malware samples belonging to that family. The
first signature, obtained through SVD, is used for fast initial
matching, while the second, obtained through discrete wavelet
transform, is employed for precise final matching. DWT serves
as a tool to reduce the dimensionality and noise in measure-
ment traces. In work [66], the focus is on determining the
optimal hardware features and time granularity for early ran-
somware detection. The study examines HPC counter statistics
gathered at intervals of 100ms, 500ms, and five seconds. They
train several classical ML models to compare configurations
and find that capturing 5 HPC registers every 100ms for the
first 3 seconds of payload execution achieves the best results
with AdaBoost classifier, achieving an accuracy above 90%.

B. Addressing Advanced Threats: Stealthy and Zero-Day Mal-
ware Detection

Stealthy attacks involve concealing malicious code within
benign applications, making detection more challenging [78].
Prior hardware-assisted malware detection approaches often
assume malware as a separate thread, overlooking scenarios
where malware is embedded in benign applications. This em-
bedded malware, a form of stealthy threat, remains undetected
by commercial antivirus software. The works in [55], [79]
were the first HMD efforts that addressed this research gap by
tackling the challenge of detecting embedded malware using
hardware features. Embedded malware involves stealthy cyber-
attacks where malicious code hides within benign applications,
eluding traditional detection methods. In HMD methods, di-
rectly inputting HPC data into ML can lead to contamination,
as malicious code within benign applications combines with
HPC features. Addressing this issue, the authors introduce
StealthMiner, a specialized time series ML approach based
on the Fully Convolutional Network (FCN), aiming to detect
stealthy malware, embedded within benign traces, at runtime
using the time series branch instructions feature, the most
prominent hardware event.

The study in [59] proposes an ensemble-based (bagging)
approach for quantifying uncertainty in predictions made by
ML models in HMD techniques. The study introduces an
uncertainty estimator, showing that considering uncertain pre-
dictions enables ML models to handle zero-day malware.
Furthermore, the work in [80] employs a power grid case study
to demonstrate that HPC effectively detect stealthy rootkits in
an 8-grid power system, offering a landscape review of HPC’s
role in malware detection.

While showing promise for known malware detection,
accurately identifying zero-day malware have been overlooked
in prior HMD works. Zero-day attack is a type of serious cy-
bersecurity threat that exploits software security vulnerabilities
that are undocumented (unknown) in the training database of
the detection mechanism Zero-day attacks exploit potentially
serious software security vulnerabilities that are undocumented
(unknown) in the database of the detection mechanism [81].
In addressing the challenge of zero-day malware detection, He
et al. [60] conducted experiments using machine learning for
detecting known and zero-day malware. Classical MLs were
found effective for known malware types but suffered from
a high false positive rate in zero-day malware detection. By

applying Ada-boosting over the robust Random Forest, they
achieved a 4% improvement in F1-score for zero-day malware
detection. Additionally, in a recent study [33], a two-staged
zero-day malware detection method based on deep transfer
learning is developed. Investigating the feasibility of transfer
learning across different domains and applications is crucial.
Training models on diverse datasets from various domains
may lead to more robust and generalized malware detection
capabilities. The proposed method in [33] involves converting
four HPC features into two-dimensional images and applying
transfer learning with a pre-trained ResNet model on ImageNet
to enhance learning hidden patterns of zero-day malware.
Results demonstrates the effectiveness of transfer learning for
HMD, addressing an open question in current research.

Furthermore, He et al. [32] is the first work that tackles
major issues in adaptive and cost-aware zero-day malware
detection using low-level hardware events. They propose a
unified feature selection method based on heterogeneous fea-
ture fusion to determine prominent HPC events for on-device
HMD. Additionally, the authors introduce Reinforced-HMD,
a novel reinforcement learning-based framework designed for
adaptive and cost-aware unknown malware detection, focus-
ing on desired performance metrics and available hardware
resources. The framework utilizes six classical and two rein-
forcement learning algorithms, including the Upper Confidence
Bound (UCB) approach, and undergoes thorough efficiency
analysis for detecting unknown malware using HPC events.
Their analysis demonstrates Reinforced-HMD’s accuracy and
robustness, achieving a 96% F1-score and AUC metrics.

In a recent study [69], the authors focus on the reliability
analysis of hardware-oriented Intrusion Detection Systems
(IDSs). While ensuring the dependability of ML models’
decisions is crucial, it has been largely overlooked in pre-
vious studies. This work conducts a thorough evaluation of
ML algorithms in IDSs, considering factors such as training
data size, the number of hardware events used, and internal
data separability (malware stealthiness). To enhance reliable
intrusion detection, an effective model observer module is
integrated during ML inference to assess prediction reliability
at runtime, determining the ML model’s confidence.

C. Impact of Adversarial Attacks on HMD Techniques
While artificial intelligence, in particular machine learning,

has been widely embraced to enhance security countermea-
sures, recent research has uncovered new security challenges,
notably adversarial attacks [82], [83], [84]. Despite ML clas-
sifiers demonstrating resilience against random noises, vul-
nerabilities have emerged, allowing adversaries to manipulate
outcomes by adding specially crafted perturbations to input
data. As ML models become integral for malware detection,
adversaries may employ dynamic strategies to evade detection.
Investigating robustness against evolving adversarial attacks,
especially those targeting hardware features, is a critical chal-
lenge. In the context of HMD, which relies on microarchitec-
tural events captured via HPCs, [53] demonstrated an adver-
sarial attack on HMD systems. This attack involves injecting
perturbations into HPC traces using an adversarial sample
generator application. Addressing these vulnerabilities presents
a new avenue for future research in developing adversary-
resilient ML-based malware and side-channel attack detectors.

In [51], the authors propose a resilient solution to defend
ML-based HMD against reverse engineering. They highlight

HMD’s vulnerability to adversarial attacks and emphasize that
retraining on adversarial malware datasets is ineffective. To
address this, they suggest constructing detectors with ran-
domized features and Hardware Performance Counter (HPC)
collection periods, switching them stochastically to thwart
attackers’ predictions. In work [62], a Moving Target Defense
(MTD) technique is proposed for adversarial attacks on HMD.
MTD dynamically changes the number and set of performance
counters and the classifier, confusing attackers. It uses random
selection of 4 features and 2 ML models (Decision Tree,
Neural Network) at runtime, successfully defending against
adversarial attacks without performance degradation. However,
its effectiveness against non-adversarial malware attacks re-
mains untested. Similarly, in [64], the authors demonstrate
the effectiveness of reverse-engineering ML models while
highlighting the limitations of retraining for runtime attacks.
They propose a strategy of uniform random switching among
ML detectors to enhance defense against reverse engineering,
akin to the concept of moving target defense. Similarly, Islam
et al. [67] address the adversarial attacks through reverse
engineering. They propose Stochastic-HMDs, which introduce
stochastic noises into the computations of model inference to
defend reverse engineering based adversarial attacks. They ma-
nipulate the stochastic noise through controlled undervolting
by scaling the supply voltage below nominal level to add noises
in the HMDs’ computations during inference.

D. Securing Edge and Beyond: Malware Detection in Embed-
ded Systems, IoT, and Cloud

Sayadi et al. [24] extends the concept of malware detection
using microarchitectural events to embedded systems, present-
ing a customized ML-based hardware-assisted malware detec-
tion and identification solution for these resource-constrained
devices. The work identifies challenges in effective malware
detection for embedded devices, emphasizing the limitations of
conventional software-based methods in these systems. Due to
the low overhead of hardware monitoring, their deployment is
seen as a promising solution. The proposed lightweight HMD
addresses the constraints of embedded systems by leveraging
HPC features. It employs various ML classifiers to detect
and classify different malware classes at runtime, using four
crucial HPC features: branch instructions, cache references,
branch misses, and node-stores. This approach aims to achieve
accurate and effective runtime malware detection despite the
limited computing power and resources in embedded systems.

Exploring synergies between hardware-assisted detection
and network-level detection techniques can improve overall
system security. Integrating insights from both levels can
enhance the ability to detect sophisticated malware threats.
Aligned with this idea, in [54], the authors address security
risks in large-scale IoT networks, emphasizing the challenges
of malware propagation. Traditional approaches fall short,
leading to the introduction of HaRM, a runtime malware detec-
tor achieving rapid 92.21% accuracy within 10ns. A stochas-
tic model predictive controller confines malware propagation
in real-time, ensuring uncompromised network performance.
Further, in [25] the authors expand their prior work exploring
network effects, proposing a two-staged framework with a
lightweight malware detector followed by a stochastic con-
troller, outperforming existing solutions by achieving nearly
200% higher network throughput on IoT devices.

The utilization of HPCs extends beyond control-flow al-

terations for malware detection, proving effective in detecting
firmware modifications. In the study presented in [?], ConFirm
is introduced as a cost-efficient technique for identifying
malicious changes in embedded control system firmware.
The approach involves measuring low-level hardware events
captured by HPC registers during firmware execution. The
evaluation encompasses various firmware types on ARM- and
PowerPC-based embedded processors, assessing detection ca-
pability and performance overhead. Furthermore, the proposal
is extended to handle more complex control flows, introducing
a machine learning-based classifier in [50] to automatically
extract relations between different hardware features.

The study described in [56] explores the interpretability
of HMD techniques by introducing a framework that employs
explainable machine learning. This framework enhances the
explainablity of classification results, making them more acces-
sible and understandable for human analysis. They collect time
series HPC data from Xilinx Zynq7000 SoC ZC702 evluation
board, train an RNN, and use the model’s output to train a
linear regression model for feature contribution factors. This
interprets which HPC features contribute to malicious attacks
and when they occur.

Moreover, in study [57], a one-class SVM is built using
only benign data to classify normal and malware on pro-
grammable logic controllers (PLCs). PLCs often have a mix
of timing-based and event-triggered components in a multi-
threaded environment. The approach monitors real-time HPCs
with an outside-of-the-process approach, collecting separate
HPCs from each thread. Per-thread and cross-thread features
are extracted, with the former modeling activity patterns within
threads and the latter modeling temporal relationships among
activity patterns between threads. The work in [85] explores
research landscape utilizing performance counters and ML for
IoT device security. The study delves into topics including
authentication, access control, secure offloading, and malware
detection schemes, assessing their benefits, drawbacks, and
potential for safeguarding IoT infrastructure on both the edge
and the cloud, along with individual IoT devices.

In [65], a hybrid and adaptive image-based framework
for online hardware-assisted zero-day malware detection in
the Internet of Medical Things (IoMT) is proposed. The
method based upon Deep Reinforcement Learning (DRL)
dynamically selects the best Deep Neural Network (DNN)
detector at runtime from a pool of continuously trained models,
customized for each device. Tabular hardware-based data are
converted into small-size images using transfer learning, en-
hancing model performance for unknown malware detection. A
DRL agent, consisting of two Multi-Layer Perceptrons (MLPs)
functioning as an Actor and a Critic, is trained to dynamically
select the optimal DNN model at runtime. This decision-
making process ensures highly accurate zero-day malware
detection using a limited number of hardware events, leading
to high malware detection performance.

Tian et al. [61] address real-time security challenges in
virtual machines in the Infrastructure as a Service (IaaS) cloud
environment. Using Lamport’s ring buffer algorithm, they
implement concurrent real-time control flow collection and
security checks. Intel Processor Trace (PT)’s Virtual Machine
Introspection captures control flow information outside the
target VM. They convert this information into two-dimensional
color images and employ a CNN-based method for mal-
ware detection. This represents the sole effort in cloud-based

malware detection utilizing HPCs. Although its performance
may not reach state-of-the-art levels, it underscores potential
avenues for future research in cloud security.

The work in [63] proposes accelerated ML for efficient
on-device HMD. They propose OptiEdge, an ML-guided
hardware-assisted resource and timing estimation tool that
can effectively reduce the design space exploration for edge
devices’ design through effective High Level Synthesize (HLS)
optimization techniques for different ML algorithms. The
study in [68] extends the applicability of HMDs to healthcare
systems, particularly for biomedical computing systems. The
work introduces a tailored hardware monitoring framework
and employs ML to improve the accuracy and efficiency
of malware detection and classification using real-time data
from biomedical processors’ hardware events. Experimental
results highlight the effectiveness of the XGBoost model,
achieving a 95% detection rate in F-measure and accuracy
with efficient resource utilization and low inference latency
using only four hardware events. biomedical processors’ hard-
ware events. Their experimental results demonstrate that the
XGBoost model, using 4 hardware events, excels in malware
detection, boasting 95% detection rate in F measure and accu-
racy, efficient resource utilization, and low inference latency.

V. RESEARCH CHALLENGES AND OPPORTUNITIES

1) Architectural Reasoning of HPCs for Malware Detection:
While hardware performance counter registers have been ex-
tensively utilized for enhancing security, the lack of detailed
architectural analysis poses a challenge. Obtaining a deep
understanding of the interactions between microarchitectural
features and malware behavior is crucial for effective security
analysis. Current practices often involve extracting features
without comprehensive explanations of their relevance to mal-
ware traits. A common approach includes feature selection, but
the connection between selected features and achieved results
remains largely unexplored. Researchers must emphasize pro-
viding clear explanations for the chosen features in machine
learning-based malware detection, ensuring a more compre-
hensive and interpretable analysis of security implications.
2) Challenge of HPC Information for Security Implications
and Cross-Architecture Compatibility: The growing number
of microarchitectural events in modern processors, surpassing
the growth of physical HPC registers, demands effective fea-
ture reduction techniques and machine learning algorithms.
Ambiguous documentation and indefinite inference of low-
level features pose challenges, requiring expert-level under-
standing for accurate execution and data capture. Complexity
variations across architectures make consistent hardware per-
formance counter-assisted information extraction challenging.
Researchers should validate findings on diverse microprocessor
architectures and provide detailed documentation of perfor-
mance counter configurations for enhanced reproducibility and
credibility of security-related works. Ensuring compatibility
and effectiveness across different processor architectures is
crucial, as microarchitectural events may vary, necessitating
adaptability for widespread applicability. Addressing these
challenges will contribute to the robustness and reliability of
hardware-assisted malware detection techniques.
3) Privacy-Preserving Malware Detection: Balancing accurate
malware detection and identification with user privacy has
become a growing concern. Future research should prioritize
developing methods that effectively discern malicious activity

while safeguarding sensitive user information. This entails
exploring innovative techniques and frameworks for privacy
prioritization, ensuring ethical and regulatory alignment. This
challenge is vital for instilling user trust and compliance. In
networked and distributed systems, privacy is a paramount
concern due to device interconnectivity. Traditional centralized
malware detection raises data privacy concerns. Exploring
solutions such as decentralized models leveraging edge com-
puting, blockchain technology, and incorporating differential
privacy for peer-to-peer collaboration present a potential to
address these privacy challenges.
4) Energy-Efficient Malware Detection: Addressing energy
constraints of resource-limited computing systems (e.g. mobile
platforms, embedded systems, and biomedical devices) is a
crucial focus for advancing HMD methods. The challenge
lies in minimizing the energy overhead associated with de-
tection processes to ensure optimal system performance. A
promising avenue involves the integration of Tiny Machine
Learning (TinyML) techniques, which specialize in deploying
lightweight ML models tailored for devices with limited com-
putational capabilities. This approach aims to strike a balance
between accuracy and computational efficiency, optimizing the
use of hardware features for effective malware detection. Min-
imizing the energy overhead introduced by detection processes
is a key direction for future research. Moreover, the exploration
of dedicated hardware accelerators and co-processors designed
specifically for malware detection in resource-constrained en-
vironments offers a potential solution to offload computational
burdens and conserve energy resources.

VI. CONCLUSION
Hardware performance counter registers are hardware units

that are designed to count low-level micro-architectural events
in modern microporcessors. Many research proposals have
investigated the usage of machine learning techniques for mal-
ware detection using Hardware performance counters profiles.
This survey attempted to provide a comprehensive overview
and comparative analysis of the state-of-the-art studies in the
field of hardware-based malware detection techniques using
artificial intelligence and machine learning techniques. Fur-
thermore, based on the current research challenges and pitfalls
of hardware-assisted malware detection, this work forecasts
the future research trends by providing insights into future
directions of efficient and enhanced hardware-assisted malware
detection techniques.

REFERENCES

[1] H. Yin and et al., “Panorama: Capturing system-wide information flow
for malware detection and analysis,” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, ser. CCS ’07.
ACM, 2007, pp. 116–127.

[2] A. Tang and et al., “Unsupervised anomaly-based malware detection
using hardware features,” in RAID’14, 2014.

[3] Z. Bazrafshan and et al., “A survey on heuristic malware detection
techniques,” in The 5th Conference on Information and Knowledge
Technology, May 2013, pp. 113–120.

[4] R. Cathey and et al., “Misuse detection for information retrieval
systems,” in Proceedings of the twelfth international conference on
Information and knowledge management. ACM, 2003, pp. 183–190.

[5] “Misuse,” in https://en.wikipedia.org/wiki/Misuse detection.
[6] P. Helman and et al., “Foundations of intrusion detection (computer

security),” in Computer Security Foundations Workshop V, 1992. Pro-
ceedings. IEEE, 1992, pp. 114–120.

[7] S. A. Hofmeyr and et al., “Intrusion detection using sequences of system
calls,” Journal of Computer Security., vol. 6, no. 3, pp. 151–180, Aug.
1998.

[8] A. Somayaji and S. Forrest, “Automated response using system-call
delays,” in Proceedings of the 9th Conference on USENIX Security
Symposium - Volume 9, ser. SSYM’00. Berkeley, CA, USA: USENIX
Association, 2000, pp. 14–14.

[9] Y. Ye and et al., “A survey on malware detection using data mining
techniques,” ACM Computing Surveys, vol. 50, no. 3, pp. 1–40, 2017.

[10] “Anomaly based intrusion detection,” in
https://en.wikipedia.org/wiki/Anomaly based intrusion detection
system.

[11] M. Polychronakis and et al., “Comprehensive shellcode detection using
runtime heuristics,” in Proceedings of the 26th Annual Computer
Security Applications Conference, ser. ACSAC ’10. ACM, 2010, pp.
287–296.

[12] M. Polychronakis and et al., “Emulation-based detection of non-self-
contained polymorphic shellcode,” in Proceedings of the 10th Inter-
national Conference on Recent Advances in Intrusion Detection, ser.
RAID’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 87–106.

[13] M. Schmall, “Heuristic techniques in av solutions: An overview,”
in https://www.symantec.com/connect/articles/heuristic-techniques-av-
solutions-overview, 2002.

[14] I. Khalkhali and et al., “Host-based web anomaly intrusion detection
system, an artificial immune system approach,” 2011.

[15] J. Demme and et al., “On the feasibility of online malware detection
with performance counters,” in ISCA’13. ACM, 2013, pp. 559–570.

[16] H. Sayadi and et al., “Towards ai-enabled hardware security: Challenges
and opportunities,” in 2022 IEEE 28th International Symposium on On-
Line Testing and Robust System Design (IOLTS). IEEE, 2022, pp.
1–10.

[17] H. Sayadi and et al., “Recent advancements in microarchitectural se-
curity: Review of machine learning countermeasures,” in MWSCAS’20,
2020, pp. 949–952.

[18] S. Baljit and et al., “On the detection of kernel-level rootkits using
hardware performance counters,” in ACM AsiaCCS’17, 2017.

[19] H. Sayadi and et al., “Ensemble learning for effective run-time
hardware-based malware detection: A comprehensive analysis and clas-
sification,” in Design Automation Conference, 2018.

[20] H. Liu and et al., Feature selection for knowledge discovery and data
mining. Springer Science & Business Media, 2012, vol. 454.

[21] H. Sayadi and et al., “2smart: A two-stage machine learning-based
approach for run-time specialized hardware-assisted malware detec-
tion,” in Design, Automation Test in Europe Conference Exhibition
(DATE’19), March 2019, pp. 728–733.

[22] N. Patel and et al., “Analyzing hardware based malware detectors,” in
Proceedings of the 54th Annual Design Automation Conference 2017,
ser. DAC ’17. ACM, 2017, pp. 25:1–25:6.

[23] H. Sayadi and et al., “Comprehensive assessment of run-time hardware-
supported malware detection using general and ensemble learning,” in
ACM International Conference on Computing Frontiers, CF, 2018.

[24] H. Sayadi and et al., “Customized machine learning-based hardware-
assisted malware detection in embedded devices,” The 17th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications (IEEE TrustCom-18), 2018.

[25] S. M. P. Dinakarrao and et al., “Cognitive and scalable technique for
securing iot networks against malware epidemics,” IEEE Access, vol. 8,
pp. 138 508–138 528, 2020.

[26] M. Malik and et al., “Co-locating and concurrent fine-tuning mapreduce
applications on microservers for energy efficiency,” in Workload Char-
acterization (IISWC), 2017 IEEE International Symposium on. IEEE,
2017, pp. 22–31.

[27] “Trojan horse (computing),” in https://en.wikipedia.org/wiki/Principal
component analysis.

[28] A. E. Serpen G., “Host-based misuse intrusion detection using pca
feature extraction and knn classification algorithms,” in Intelligent Data
Analysis, 2018.

[29] S. Wold and et al., “Principal component analysis,” Chemometrics
and Intelligent Laboratory Systems, vol. 2, no. 1, pp. 37 – 52, 1987,

proceedings of the Multivariate Statistical Workshop for Geologists and
Geochemists.

[30] C. O. S. Sorzano and et al., “A survey of dimensionality reduction
techniques,” ArXiv e-prints, Mar. 2014.

[31] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, Mar 1986.

[32] Z. He and et al., “Breakthrough to adaptive and cost-aware hardware-
assisted zero-day malware detection: A reinforcement learning-based
approach,” in 2022 IEEE 40th International Conference on Computer
Design (ICCD), 2022, pp. 231–238.

[33] Z. He and et al., “Deep neural network and transfer learning for accurate
hardware-based zero-day malware detection,” in Proceedings of the
Great Lakes Symposium on VLSI 2022, ser. GLSVLSI ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 27–32.

[34] R. Moskovitch and et al., “Unknown malcode detection using opcode
representation,” in Intelligence and Security Informatics. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 204–215.

[35] R. Duda and et al., Pattern Classification. John Wiley & Sons, 2001.
[36] P. Yan and Z. Yan, “A survey on dynamic mobile malware detection,”

Software Quality Journal, May 2017.
[37] D. M. Powers, “Evaluation: from precision, recall and f-measure to roc,

informedness, markedness and correlation,” 2011.
[38] “Intel performance monitoring unit,” in https://software.intel.com/en-

us/articles/intel-performance-counter-monitor.
[39] V. J. Reddi and et al., “Pin: a binary instrumentation tool for com-

puter architecture research and education,” in Proceedings of the 2004
workshop on Computer architecture education: held in conjunction with
the 31st International Symposium on Computer Architecture, 2004, pp.
22–es.

[40] P. J. Mucci and et al., “Papi: A portable interface to hardware perfor-
mance counters,” in Proceedings of the department of defense HPCMP
users group conference, vol. 710, 1999.

[41] J. Reinders, “Vtune performance analyzer essentials,” Intel Press, 2005.
[42] T. Willhalm et al., “Intel performance counter monitor-a better

way to measure cpu utilization,” Dosegljivo: https://software. in-
tel. com/en-us/articles/intelperformance-countermonitor-a-better-way-
to-measure-cpu-utilization.[Dostopano: September 2014], 2012.

[43] https://perf.wiki.kernel.org/index.php, last accessed: 20-Feb-2019.
[44] K. London et al., “The papi cross-platform interface to hardware perfor-

mance counters,” in Department of Defense Users’ Group Conference
Proceedings, 2001, pp. 18–21.

[45] T. Willhalm et al., “Intel® performance counter
monitor - a better way to measure cpu utilization,”
https://software.intel.com/content/www/us/en/develop/articles/intel-
performance-counter-monitor.html, 2017.

[46] C. Malone and et al., “Are hardware performance counters a cost
effective way for integrity checking of programs,” in Proceedings of
the Sixth ACM Workshop on Scalable Trusted Computing, ser. STC’11.
New York, NY, USA: Association for Computing Machinery, 2011, p.
71–76.

[47] A. e. a. Tang, “Unsupervised anomaly-based malware detection using
hardware features,” in RAID’14. Springer, 2014, pp. 109–129.

[48] M. Ozsoy and et al., “Malware-aware processors: A framework for
efficient online malware detection,” in HPCA’15, 2015.

[49] K. N. Khasawneh and et al., “Ensemble learning for low-level hardware-
supported malware detection,” in RAID’15, 2015, pp. 3–25.

[50] X. Wang and et al., “Malicious firmware detection with hardware
performance counters,” IEEE Transactions on Multi-Scale Computing
Systems, vol. 2, no. 3, pp. 160–173, July 2016.

[51] K. N. Khasawneh and et al., “Rhmd: Evasion-resilient hardware mal-
ware detectors,” in 2017 50th MICRO, 2017, pp. 315–327.

[52] B. Zhou and et al., “Hardware performance counters can detect mal-
ware: Myth or fact?” in ASIACCS’18, 2018, pp. 457–468.

[53] S. M. P. Dinakarrao and et al., “Adversarial attack on microarchitectural
events based malware detectors,” in Proceedings of the 56th Annual
Design Automation Conference 2019, 2019, pp. 1–6.

[54] S. M. P. Dinakarrao and et al., “Lightweight node-level malware
detection and network-level malware confinement in iot networks,” in

2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2019, pp. 776–781.

[55] H. Sayadi and et al., “Stealthminer: Specialized time series machine
learning for run-time stealthy malware detection based on microarchi-
tectural features,” in GLSVLSI’20, 2020, p. 175–180.

[56] Z. Pan and et al., “Hardware-assisted malware detection using explain-
able machine learning,” in ICCD’20, 2020, pp. 663–666.

[57] P. Krishnamurthy and et al., “Anomaly detection in real-time multi-
threaded processes using hardware performance counters,” IEEE Trans-
actions on Information Forensics and Security, vol. 15, pp. 666–680,
2020.

[58] H. Sayadi and et al., “Towards accurate run-time hardware-assisted
stealthy malware detection: A lightweight, yet effective time series cnn-
based approach,” Cryptography, vol. 5, no. 4, 2021.

[59] H. Kumar and et al., “Towards improving the trustworthiness of
hardware based malware detector using online uncertainty estimation,”
in DAC’21. IEEE Press, 2021, p. 961–966.

[60] Z. He and et al., “When machine learning meets hardware cybersecurity:
Delving into accurate zero-day malware detection,” in 2021 22nd
International Symposium on Quality Electronic Design (ISQED), 2021,
pp. 85–90.

[61] D. Tian and et al., “Mdchd: A novel malware detection method in cloud
using hardware trace and deep learning,” Computer Networks, vol. 198,
p. 108394, 2021.

[62] A. P. Kuruvila and et al., “Defending hardware-based malware detectors
against adversarial attacks,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 40, no. 9, pp. 1727–
1739, 2021.

[63] H. Mohammadi Makrani and et al., “Accelerated machine learning for
on-device hardware-assisted cybersecurity in edge platforms,” in 2022
23rd International Symposium on Quality Electronic Design (ISQED),
2022, pp. 77–83.

[64] M. S. Islam and et al., “Efficient hardware malware detectors that are
resilient to adversarial evasion,” vol. 71, no. 11, pp. 2872–2887, 2022.

[65] Z. He and H. Sayadi, “Image-based zero-day malware detection in
iomt devices: A hybrid ai-enabled method,” in 2023 24th International
Symposium on Quality Electronic Design (ISQED), 2023, pp. 1–8.

[66] M. A. Putrevu and et al., “Early detection of ransomware activity
based on hardware performance counters,” in Proceedings of the 2023
Australasian Computer Science Week, ser. ACSW ’23. New York, NY,
USA: Association for Computing Machinery, 2023, p. 10–17.

[67] M. S. Islam and et al., “Stochastic-hmds: Adversarial-resilient hardware
malware detectors via undervolting,” in 2023 60th ACM/IEEE Design
Automation Conference (DAC), 2023, pp. 1–6.

[68] H. Sayadi and et al., “Cyber-immunity at the core: Securing biomedical
devices through hardware-level machine learning defense,” in 2023
IEEE Biomedical Circuits and Systems Conference (BioCAS), 2023, pp.
1–5.

[69] H. Sayadi and et al., “Redefining trust: Assessing reliability of machine
learning algorithms in intrusion detection systems,” in 2024 IEEE
International Symposium of Circuits and Systems (ISCAS), 2024.

[70] X. Wang and R. Karri, “Numchecker: Detecting kernel control-flow
modifying rootkits by using hardware performance counters,” in Design
Automation Conference (DAC), 2013 50th ACM/EDAC/IEEE. IEEE,
2013, pp. 1–7.

[71] X. Wang and R. Karri, “Reusing hardware performance counters
to detect and identify kernel control-flow modifying rootkits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 3, pp. 485–498, 2016.

[72] M. B. Bahador and et al., “Hpcmalhunter: Behavioral malware detection
using hardware performance counters and singular value decomposi-
tion,” in 2014 4th International Conference on Computer and Knowl-
edge Engineering (ICCKE), Oct 2014, pp. 703–708.

[73] M. Ozsoy and et al., “Hardware-based malware detection using low-
level architectural features,” IEEE Trans. on Computers, vol. 65, no. 11,
pp. 3332–3344, Nov 2016.

[74] K. N. Kh. and et al., “Ensemble learning for low-level hardware-
supported malware detection,” in RAID’15, 2015.

[75] M. Hall and et al., “The WEKA data mining software: An update,”
SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18, Nov 2009.

[76] B. Zhou and et al., “Hardware performance counters can detect mal-
ware: Myth or fact?” in Proceedings of the 2018 on Asia Conference on
Computer and Communications Security. ACM, 2018, pp. 457–468.

[77] N. Alizadeh and M. Abadi, “Akoman: Hardware-level malware de-
tection using discrete wavelet transform,” in 2018 IEEE International
Conference on Smart Computing (SMARTCOMP), June 2018, pp. 476–
481.

[78] S. J. Stolfo and et al., “Towards stealthy malware detection,” in Malware
Detection. Boston, MA: Springer US, 2007, pp. 231–249.

[79] H. Sayadi and et al., “Towards accurate run-time hardware-assisted
stealthy malware detection: a lightweight, yet effective time series cnn-
based approach,” Cryptography, vol. 5, no. 4, p. 28, 2021.

[80] C. Konstantinou and et al., “Hpc-based malware detectors actually
work: Transition to practice after a decade of research,” IEEE Design
Test, vol. 39, no. 4, pp. 23–32, 2022.

[81] L. Bilge and T. Dumitraş, “Before we knew it: An empirical study of
zero-day attacks in the real world,” in CCS’12, ser. CCS ’12. ACM,
2012, p. 833–844.

[82] O. Suciu and et al., “Exploring adversarial examples in malware
detection,” in 2019 IEEE Security and Privacy Workshops (SPW).
IEEE, 2019, pp. 8–14.

[83] N. Papernot et al., “The limitations of deep learning in adversarial
settings,” in 2016 IEEE European Symposium on Security and Privacy
(EuroS P), 2016, pp. 372–387.

[84] Y. Liu et al., “Delving into transferable adversarial examples and black-
box attacks,” in 5th International Conference on Learning Representa-
tions, ICLR 2017,Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017.

[85] G. Kornaros, “Hardware-assisted machine learning in resource-
constrained iot environments for security: Review and future prospec-
tive,” IEEE Access, vol. 10, pp. 58 603–58 622, 2022.

