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Abstract—For DNN accelerators, we introduce a novel convo-
lution layer Processing Engine (PE) that combine multi-precision
dynamic fraction fixed-point Multiply-Accumulate (MAC) and
Activation Function (AF) units (8/16 bits with shared resources).
This PE, functions as a Single Instruction, Multiple Data (SIMD)
engine, facilitates switching the precision dynamically for 8-bit
or 16-bit computations, supporting multi-precision (N=8 or 16)
operations with dynamic fraction fixed-point data. Pareto analysis
was performed to optimize the resources for determining the
ideal number of parallel Cordic stages needed for multi-precision
dynamic fraction fixed-point AF, a SIMD Engine. Our proposed
approach demonstrates minimal accuracy loss, with less than 1%
for LeNet with MNIST, less than 1% for AlexNet with CIFAR-
10, and less than 2% for VGG16 with CIFAR-10, as compared
to reference float32-based implementations. Experimental results
using the Virtex-VCU118 Evaluation kit highlight that design
of SIMD multi-precision dynamic fraction MAC and CORDIC
AFs units with shared resources exhibits significant improvements
in resource efficiency as compared to non-shared resources.
Specifically, we observed a 51.83% reduction in LUTs for MAC
units and a 43.50% decrease in LUTs for AFs as compared to a
SIMD engine based MAC + AF without shared resources realized
with separate MAC and AFs for 8 and 16 bits. Thereby, this
multi-precision design with shared resources for 4x8 and 1x16-bit
processing optimizes resource utilization, enhances versatility and
throughput, enables efficient computations across diverse DNN
applications, models, and layers with a unique SIMD-enabled PE.

Index Terms—DNN, multi-precision, MAC, AF, dynamic frac-
tion fixed-point, CORDIC, SIMD

I. INTRODUCTION

Deep Neural Networks (DNNs) have revolutionized vari-
ous sectors, driving advances in image classification, audio
recognition, and natural language processing [1]. Hardware
architectures for DNN are instrumental in achieving real-time,
energy-efficient inference at edge devices with the challenges
posed by dynamic and wide-ranging neural network parameters
like varying data representation, range and precision. Efficiently
designing Single Instruction Multiple Data (SIMD) based dy-
namic fraction fixed-point processing engines (PEs) with shared
hardware, encompassing multiply-accumulate (MAC) units and
activation functions (AFs), and adapting them to diverse DNN
models and layers, is a complex endeavor [2]. The implemen-
tation of dynamic fraction fixed-point data with multi-precision
arithmetic (SIMD Engine) is particularly critical for non-linear
AFs to allocate integer and fractional bit widths effectively,
ensuring the requisite dynamic range and precision for accurate
computations across various DNN layers [3] are fulfilled. In this
research article, we adopt the term ”SIMD dynamic fraction
fixed-point” to refer ”multi-precision dynamic/adaptive fraction
fixed-point”. This approach enhances DNN hardware perfor-
mance by accommodating various operand data bitwidths and
facilitating dynamic fraction fixed-point computations (MAC
and AFs) within PEs. This approach effectively handles the

Fig. 1. Conventional PE with Multi-Precision Arithmetic (SIMD), Separate
8-bit and 16-bit MACs and AFs (separate tanh, sigmoid) Units

varying operand bitwidths and dynamic fraction fixed-point
requirements across different DNN layers and models [4].

DNNs encompass a diverse range of layers, which include
convolutional, fully connected, pooling, LSTM, GRU, nor-
malization, and activation layers, such as relu, tanh, and
sigmoid [5]. In this context, the fundamental computational
components of a DNN model are the PEs. The demand is for the
PE to be equipped with multi-precision arithmetic, typically en-
abling 8 and 16-bit operand computations and supporting both
MAC operations and AFs. Figure 1 illustrates a traditional PE
with Multi-Precision Arithmetic featuring distinct 8-bit and 16-
bit MAC and AFs. Such designs may also offer the flexibility to
employ separate tanh and sigmoid units [6]. In a conventional
setup, PEs cooperate to form filter banks for feature extraction
within DNNs. These filter banks demonstrate varying dynamic
ranges and susceptibility to quantization errors [7]. To address
this need, a unified neural processing unit (UNPU) has been
introduced in [8]. The UNPU is an energy-efficient DNN
accelerator, accommodating fully variable weight bit precision
and diverse layer types, viz. convolutional, recurrent, and fully
connected layers. The article demonstrates and compares bal-
ancing energy efficiency and peak performance with ImageNet
DNN (VGG-16). However, the mentioned article does not detail
the multi-precision computations for AFs.

In the realm of DNN accelerators, PEs form the core,
combining MAC units with AFs like sigmoid, tanh, and
ReLU [9]. Recent studies stress dynamic fraction and multi-
precision (8/16-bit) computing [10], [11]. Achieving efficient
multi-precision support by sharing resources for MAC units
and various AFs is a complex task. To tackle this, we pro-
pose a versatile SIMD-enabled PE for multi-precision and
dynamic fraction fixed-point computations. It processes 8 or
16-bit operands using shared resources, embracing dynamic
fraction fixed-point (sfixed<N,f>) representation. We focus on
designing multi-precision SIMD MAC units and CORDIC-
based AFs, offering operand support based on the chosen
input mode and data width ‘N.’ We aim to improve hard-
ware efficiency by incorporating multi-precision computation,



allowing precision selection during runtime based on input data
ranges for enhanced inference accuracy and optimized hardware
performance. The key outcomes of the research include:

• A resources efficient MAC unit for multi-precision (8/16
bits) adaptive fraction fixed-point computations.

• By adopting CORDIC-based techniques and shared re-
sources, our design enables unified, modular, and compact
multi-precision adaptive fraction fixed-point computations
for sigmoid and tanh AFs.

• SIMD PEs that are precision-aware and support adaptive
fraction fixed-point sfixed<N,f> representation. This de-
sign empowers multi-precision capabilities, configurabil-
ity, and efficient computations within DNN accelerators.

The paper's structure is as follows: Section II provides
background, motivation, and related works. In Section III,
we introduce our novel approach to SIMD-enabled multi-
precision adaptive fraction fixed-point PEs, which ensemble
both MAC and various AFs units, with a detailed illustration
of their designs. Section IV presents the experimental setup,
inference accuracy evaluation, hardware resources, performance
metrics, and analysis. Finally, Section V concludes the paper
and suggests future research directions.

II. BACKGROUND AND MOTIVATION

Utilizing the sfixed<N,f> notation (multi-precision:
N=8/16) with a dynamic fractional bit (f) is crucial for range,
precision and accuracy in both ASIC and FPGA implemen-
tations [11], [12]. Employing multi-bit precision in MAC
units and AFs within PEs collectively benefits DNNs by
improving efficiency and resource allocation in a fixed-point
multi-precision design. Achieving efficient DNN accelerators
requires hardware optimization with multi-precision dynamic
fraction fixed-point architectural units [6], [13]. An FPGA DSP
block architecture with SIMD support for MAC operations
customized for multi-precision deep neural networks is ad-
dressed in [14], but SIMD nonlinear transformation functions
(AFs) have not been explored. Therefore, further research is
needed to investigate multi-precision dynamic fraction fixed-
point AFs design and enhance PE adaptability across diverse
neural network architectures and datasets [15]. A versatile
Cordic-based architecture for AFs has been introduced in [16],
providing options for precision adjustments and enhancing
efficiency. Nonetheless, further validation is required, extending
beyond specific contexts and multi-precision schemes.

Hardware designs of PEs equipped with SIMD-enabled MAC
and AFs have exhibited remarkable efficiency, supporting either
a single 16-bit operand or two 8-bit operand-based computa-
tions per clock cycle. Another notable innovation involves a
multi-precision AF, offering configurability for AF selection
as either tanh or sigmoid. This configuration enhances PE
performance through shared resource utilization, ultimately
improving hardware resource efficiency and computational
throughput. Motivated by hardware limitations such as re-
source constraints/optimizations, energy efficiency, computa-
tional throughput demands, and accuracy, our research pre-
sented here addresses diverse arithmetic precision requirements
in DNNs. Computation with higher bit precision exponentially
escalates the resource needs, while reducing bit precision may

compromise inference accuracy, especially in complex tasks. To
enable DNN models to excel in both simple and complex tasks,
multi-precision computation with dynamic fraction fixed-point
representation is essential. While prior work has explored multi-
precision computation in MAC operations, the realm of multi-
precision computation for non-linear transformations facilitated
by AFs remains under-explored.

To bridge these gaps, our research introduces PEs for the con-
volution layers, featuring a novel multi-bit precision dynamic
fraction fixed-point MAC unit and multi-precision AFs (8 or
16-bit with shared resources) within the PE. These PEs can
dynamically switch between operational modes (Mode 0 for 8-
bit operands sfixed<8,f> and Mode 1 for 16-bit operands
sfixed<16,f>) as shown in Fig. 2. The PE comprises four
8-bit multipliers followed by accumulation logic and AFs. In
Mode 1, it processes 16-bit operands, yielding a quantized 16-
bit MAC output. This output is used as input for the AFs
with 16-bit arithmetic processing. In mode 1, the final output
from PE is one 16 bits, a kind of PE1 output. In Mode 0, the
MAC unit handles four 8-bit operands, executing dot-product
operations for the upper two as

∑
(Am×Bm)+C1 (correspond-

ing to MAC1) and for the lower two as
∑

(An × Bn) + C2

(corresponding to MAC2). Consequently, two quantized 8-
bit outputs are produced and forwarded to the AF. The AF
computes two separate 8-bit values, generating two distinct
outputs corresponding to a kind of PE1 and PE2.

III. DESIGN OF SIMD DYNAMIC FRACTION FIXED-POINT
PROCESSING ENGINE

The need for diverse arithmetic ranges and precision compu-
tations in neural network models and layers has been debated
in various literature and affirmed. To address diverse precision
needs, this article introduces a specialized SIMD architecture
PE for multi-precision computation, supporting flexible, dy-
namic fraction fixed-point representations in the sfixed<N,f>
format. It features an adaptable MAC unit and a unique AF
unit that enables multi-precision dynamic fraction fixed-point
computation, accommodating Relu, sigmoid, and tanh trans-
formations using shared hardware resources. This approach
optimizes resource usage, throughput, configurability, and en-
ergy efficiency. In the next subsection, we provide the design
details of SIMD micro-architecture for multi-precision dynamic
fraction fixed point MAC and AF units. Our novel architecture
incorporates distinctive multi-precision Cordic-based AFs. In
Table I, we compare the current state-of-the-art PE designs
and our proposed architecture on the aspects of SIMD multi-
precision, data types, dynamic fraction, and concurrent 8-bit

TABLE I
SIMD PROCESSING ENGINE (MAC UNIT AND CORDIC AFS)-

EXISTING WORKS VS THIS WORK

Design Parameters MAC unit Cordic AFs

[6] [17] This Work [18] [19] [16] This work

Multi-Precision Yes Yes Yes No No No Yes

4/8/16-bit 4/8-bit 8/16-bit 16 or 8 bit only 16 or 8 bit only 16 or 8 bit only 16/8 bit

SIMD support SIMD SIMD SIMD Non-SIMD Non-SIMD Non-SIMD SIMD

Data Types Fixed/Float Integer Fixed Fixed Fixed Fixed Fixed

Dynamic ’f’:1 to N Yes No Yes No No No Yes

4/8/16-bit ops/cycle –/2/1 8/2/– –/4/1 –/1/1 –/1/1 –/1/1 –/2/1

# of multipliers(N-bit) 4 (8-bit) 8(4-bit) 4 (8-bit) – – – –

#AFs Unit for SIMD – – – Non-SIMD Non-SIMD Non-SIMD 1 for both 8,16-bit
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Fig. 2. Unleashing a SIMD MAC Engine for DNNs: The Multi-Precision
Dynamic Fraction Fixed-Point MAC Unit

and 16-bit computations per clock cycle. In [17], they employed
eight 4-bit multipliers, capable of performing either two 8-bit
multiplications for 8-bit precision or eight multiplications of
4-bit data. This approach utilizes the available resources fully,
similar to our method for 8-bit and 16-bit precision, although
it primarily supports integer calculations.

A. Multi-Precision dynamic fraction fixed-point Multiply-
Accumulate (MAC) unit in Processing Engine

We developed a versatile multi-precision dynamic fraction
fixed-point MAC unit for SIMD PEs, handling 16-bit and 8-
bit operands. In contrast to a typical multi-precision MAC unit,
which handles a single 16-bit computation or two 8-bit compu-
tations [17], the proposed design employs four 8-bit multipliers.
It conducts either single 16-bit multiplication or four parallel
8-bit multiplications with accumulation per cycle (as depicted
in Fig. 2), resulting in double the performance when dealing
with 8-bit computations. MAC computation (Eqn. 1) includes
a bias preloaded in the accumulator register. In Equation 1, i
ranges from 1 to k, representing inputs (ini as input feature,
wti as weight, and ‘b’ as bias). MAC output (macc) is Z,
serving as input to the AF (Z0). The versatile SIMD MAC
unit employs 8-bit multipliers for supporting higher precision
(16-bit) computations. Algorithm 1 details the data flow using
8-bit multipliers for 8-bit or 16-bit dynamic fraction fixed-
point inputs. For 16-bit input, it results in a single output
(macc[15:0]), while for 8-bit input, it produces two 8-bit
values (i.e., macc[15:8], macc[7:0]). The MAC unit’s
micro-architecture is shown in Figure 2.

k∑
i=1

(
ini ×wti

)
+ b = Z (1)

The algorithm has iteratively processed the shifted values of
in and has accumulated them to compute the final result. This
process depends on the sum of the iteration variable ‘q,’ where
its value equals the sum of the number of bits for int_bits
and frac_bits within the for loop. Consequently, the ele-
ments within the variable temp are either right-shifted or left-
shifted, contingent upon the number of fractional bits. Within
this procedure, wt is expanded to match a bitwidth equal to
two times the sum of int_bits and frac_bits through
modifications to the value of wt⌈q⌉. Inside a loop iterating for
q < fract bits, the right-shifted values of in_ext and wt⌈q⌉
undergo a bitwise AND operation to calculate the new values
for both temp⌈q⌉ and acc_value. Conversely, left-shift
operations are conducted with the same logic. Moreover, the

Algorithm 1 Multi-Precision (8 or 16-bit) Fixed-Point MAC
Algorithm with Variable Fractional Component
Require: ini, wti, b, Pmode (0 or 1): Input parameters
Ensure: macc, acc1, acc2: SIMD MAC outputs

1: if Pmode= 0 then
2: for i← 1 to k do
3: acc1← acc1 +

(
(ini × wti) + (ini+1 × wti+1)

)
4: acc2← acc2 +

(
(ini+2 × wti+2)+(ini+3 × wti+3)

)
5: end for
6: acc_temp1← trunc[(acc1+ b), 8]
7: acc_temp2← trunc[(acc2+ b), 8]
8: macc← {acc_temp1[7 : 0],acc_temp2[7 : 0]}
9: else

10: for i← 1 to k do
11: acc1 ←

(
ini[7 : 0] × wti[7 : 0]

)
+
((
ini+1[15 : 8] ×

wti+1[7 : 0]
)
<<8

)
12: acc2←

(
(ini[7 : 0]×wti[15 : 8])<<8

)
+
(
ini+1[15 :

8]× wti+1[15 : 8])<<16
)

13: acc_temp← acc_temp+
(
acc1 + acc2

)
14: end for
15: macc← trunc[(acc_temp+ b), 16]
16: end if

value assigned to result, which corresponds to acc_value,
is updated by adding the value of temp⌈q⌉ at position ‘q’ to its
existing value. In this context, in_ext refers to the extension
of in, achieved by adding zeros to the MSB side to align its
bitwidth with that of wt, thus enabling consistent processing.
The determination of the result’s sign bit relies on the XOR
operation applied to the sign bits of both in and wt parameters.

When using 16-bit operands, the MAC unit accumulates k
times, producing a single 16-bit output. However, with 8-bit
operands, it concurrently handles the upper two 8-bit multipli-
ers, resulting in acc1 after k accumulations and acc2 from
the remaining two 8-bit multipliers. In the latter scenario, a
shift and addition operation is required for 16-bit multiplication
with an 8-bit multiplier (Pmode = 1). It efficiently manages
resources for parallel four 8-bit or single 16-bit computations.
For 8-bit operands, two parallel outputs, acc1 and acc2,
each with (16+k)-bits (where k is the overflow bits calculated
as log2(j)), are rounded to 8 bits and assigned to macc,
following the Pmode-0 configuration. In the case of 16-bit
operands, the single output (32+k)-bits are rounded to 16
bits and assigned to macc, which is applied to the same
above AF, configurable to handle the 16 bits. Algorithm 1
details these multi-precision MAC operations supporting two
precision modes: 8-bit and 16-bit, determined by the Pmode

input. In 8-bit mode (Pmode=0), ‘k’ iterations compute acc1
and acc2 by multiplying and adding ini and wti, followed
by truncation for 8-bit segments combined into macc. In 16-bit
mode (Pmode=1), similar iterations involve bit shifts for acc1
and acc2, resulting in a 16-bit macc. This versatile MAC unit
accommodates various operand precisions for flexible precision
computations, as shown in Algorithm 1.

B. Multi-Precision Cordic Algorithm and Its Hardware Imple-
mentations for Configuring Multiple AFs with SIMD Capability

In this section, Cordic’s [20] multi-precision capabilities,
hardware design, and applications in configuring multiple
SIMD-supported AFs for DNNs are investigated. Cordic em-



 Subtract (multi-precision)

Adder (multi-precision)

X0[N-1:0]
= 1.20749

sin
h

(A
F

in )

co
sh

(A
F i

n)

1.0
e^(-AFin)

1.0+ e^(-AFin)
Mux 2:1Mux 2:1

Z0[N-1:0]
=AFin

Y0[N-1:0] 

=0.0

YoutXout

tanh(AFin) or sigmoid(AFin)Xd[N-1:0] 0

Xd[N-1:0] Yd[N-1:0] Zd[N-1:0] = 0

Division Cordic  (Number of Stages, Vectoring Mode)

Pmode (0/1)
Hyp. Unit

Division Unit

Ei = tanh-1 2-ii

1
2
3
4

0.5493061
0.2554128
0.1256572
0.0625816

1
2
3
4

i

0.5000
0.2500
0.1250
0.0625

Ei =  2-i

AFs

Hyperbolic Cordic  (Number of Stages, Rotation Mode)

Zout = 0

Fig. 3. Cordic-based AF Unit for Multi-Precision Dynamic Fraction Fixed
Point: A SIMD AF Engine. The longest path for the sigmoid function is
indicated in green. Pmode ‘0’ pertains to 8-bit operations, and ‘1’ corresponds
to 16-bit operations.

ploys iterative and pipeline designs, with each stage dedicated
to specific computations for efficiency [19]. Each rotation (i-th)
represents a step in the process, iteratively transforming vector
coordinates (Xi, Yi) into (Xi+1, Yi+1). Cordic’s precision and
efficiency rely on scaling factor Si for adjusting vector rotations
in different modes [21]. The computation Si involves factoring
out cosh(αi) for hyperbolic mode and cos(αi) for circular mode
as the scaling factor (Si) in Eqn. (2). αi represents the rotation
angle in radians [22].(

X(i+1)

Y(i+1)

)
= Si·

(
1 −m· di· 2−i

di· 2−i 1

)(
Xi

Yi

)
(2)

A detailed analysis of Cordic’s operation is provided in [19].
In Equation 2, Si is associated with cosh(αi) in hyperbolic
rotation. In this mode, Si has a constant scaling factor of
0.8281 in pseudo-rotation, and Xi⌈N⌉ undergoes an offset
adjustment of 1/Si = 1.20749. The Cordic algorithm performs
trigonometric functions (sinh, cosh) and subsequent AFs (tanh,
σ) in hyperbolic mode [16], [19]. Hardware transformations
of trigonometric equations are discussed in [22]. Equation 3
includes common equations used for Cordic hardware mod-
ification with multi-precision features. Variables Xi, Yi, and
Zi represent values at the i-th iteration, and αi denotes the
rotation angle in radians for each iteration. Ei serves as the
memory element for that iteration, with values corresponding
to 2−i, tan−1(2−i), and tanh−1(2−i) for Linear, Circular, and
Hyperbolic coordinates, respectively. Equation 3 represents the
generalized form adapted for hyperbolic functions by setting
m = −1 and for linear vector mode by fixing m = 0.

Xi+1 = Xi −m· di·Yi· 2−i (3a)

Yi+1 = Yi + di·Xi· 2−i (3b)
Zi+1 = Zi − di·Ei (3c)

1) Multi-precision Hyperbolic Cordic Computation Micro-
Architecture: We have realized the multi-precision dynamic
fraction fixed-point computations in SIMD AFs using Cordic
equations (Eqn. 3), involving hyperbolic functions and division
operations implemented through Cordic architecture in hyper-
bolic and linear modes, respectively. We have implemented

Algorithm 2 Hyperbolic sinh and cosh using Cordic
Require: X0H , X0L Y0H , Y0L Z0H , Z0L & frac(f) : input param.
Ensure: Xout, Yout: concatenated hyperbolic Cordic output
Require: AFin: input applied at Z0H and Z0H with 8-bit each.
Require: Pmode: Operation mode (0 for 8-bit or 1 for 16-bit).

1: Pmode based Initialize X0⌈N⌉ = 1.20749, Y0⌈N⌉ = 0.0, Z0⌈N⌉
= AFin, m = −1, di = Zi[N − 1] (sign bit).

2: for i← 1 to n do
3: XiL ← X(i−1)L - di ·(m· Y(i−1)L ·2

−i) ▷ calc. Xi

4: YiL ← Y(i−1)L + di ·(m· X(i−1)L ·2
−i) ▷ calc. Yi

5: ZiL ← Z(i−1)L + di ·tanh−1(2−i) ▷ calc. Zi

6: if Pmode = 0 then
7: XiH ← X(i−1)H - di ·(m· Y(i−1)H ·2

−i)
8: YiH ← Y(i−1)H + di ·(m· X(i−1)H ·2

−i)
9: ZiH ← Z(i−1)H + di ·tanh−1(2−i)

10: else
11: XiH ← X(i−1)H - di ·(m· Y(i−1)H ·2

−i) + OF(XiL )
12: YiH ← Y(i−1)H + di ·(m· X(i−1)H ·2

−i) + OF(YiL )
13: ZiH ← Z(i−1)H + di ·tanh−1(2−i) + OF(ZiL )
14: end if
15: end for
16: if Pmode = 0 then
17: Xout ← {trunc(XnH , 8), trunc(XnL , 8)}
18: Yout ← {trunc(YnH , 8), trunc(YnL , 8)}
19: else
20: Xout ← trunc

(
{XnH ,XnL}, 16

)
21: Yout ← trunc

(
{YnH ,YnL}, 16

)
22: end if
23: return Xout, Yout

16-bit computations for AFs based on the Pmode signal, uti-
lizing two 8-bit computational hardware blocks. Memory con-
stants (Ei), essential for computing the results, are visualized
in Fig. 3. Utilizing Pareto analysis, the design incorporates a 5-
stage parallel Cordic for hyperbolic functions (sinh & cosh) in
hyperbolic mode and a division block with a 5-stage Cordic
tailored for sigmoid or tanh functions in the sfixed<N,f>
format. The micro-architecture for multi-precision Hyperbolic
Cordic computation, as shown in Fig. 4, accommodates two
8-bit operands in Pmode=0 and a single 16-bit operand in
Pmode=1. Algorithm 2 illustrates multi-precision Cordic cal-
culations for hyperbolic sinh and cosh using SIMD support
in both iterative and pipelined modes. We have implemented
a pipeline architecture for results evaluation and analysis. It
produces 16-bit results, which translate to a single 16-bit output
for 16-bit operands and two 8-bit packets for 8-bit operands.
The output includes Xout (cosh) and Yout (sinh) values, with
’OF’ indicating the overflow bit for lower 8-bit computations.”

We have evaluated sinh and cosh functions using
multi-precision calculations, yielding two parallel outputs:
out[15:8] and out[7:0] for 8-bit operands, or a single
16-bit output as out[15:0] for 16-bit operand. Algorithm 2
outlines the methodology for hyperbolic function calculations,
accommodating both 16 and 8-bit precision and computation of
one 16-bit operand and two parallel 8-bit operands with shared
hardware resources. To ensure N-bit precision, we truncated
the output Xn and Yn to obtain Xout and Yout, representing
cosh(Z0) and sinh(Z0). Computation of negative exponential
values followed Eqn. 5(a), applied in sigmoid calculations.
Figure 4 illustrates the hardware for bit-level mapping and
multi-precision Cordic computation, capable of handling either
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Fig. 4. Multi-Precision Hyperbolic Cordic: Using two 8-bit operands for
Pmode=0 and a single 16-bit operand for Pmode=1. Outputs at n-th stages:
Xn= cosh(Z0), Yn= sinh(Z0), and Zn ≈ 0.

a single 16-bit operand or two 8-bit operands, enabling multi-
precision AFs. Output generation aligns with the procedure out-
lined for out[15:0], featuring 8-bit adders, shifters, memory
constants, and pipeline registers.

2) Multi-Precision Cordic Micro-Architecture for SIMD
Division : The Cordic configured in linear vectoring mode
does the division operation (m = 0) with memory element
Ei set to 2−i, the micro-architecture for the algorithm which
produces output, is shown in Figure 3. It can perform multi-
precision division operations by configuring the divisor (Xd0),
dividend (Yd0), and initial value (Zd0 = 0). After #stages
pipeline stages using Eqn 4, it produces Zn, representing the
quotient Yd0/Xd0. The top-level hardware design in Fig. 3 has
implemented multi-precision Cordic-based configurable AFs,
and the sub-block used for division using Cordic is depicted
in Fig. 5. In this Di is considered as the result of applying
the XNOR operation to the signs of variables Xi and Yi.
Division operations generate outputs for the tanh or sigmoid
functions, as described in Eq. 5(b) and Eq. 5(c), respectively.
These AFs support either two 8-bit operands or a single 16-
bit operand, enabling dynamic fixed-point representation in AF
computations. The hyperbolic calculation methodology outlined
in Algorithm 2 has been adapted for the division block with
specific parameters in linear vectoring mode. The algorithm
can be configured using either iterative stage architecture or
a pipeline design for high-throughput computation. We have
implemented this algorithm in Verilog HDL, optimizing it
for hardware performance based on available resources and
throughput requirements. Traditionally, the number of Cordic
stages is determined by the fractional bits in the adaptive
fixed-point representation. However, through Pareto analysis,
an appropriate number of stages has been determined for error-
resilient applications while allowing for approximation.

Xn+1 = Xi (4a)

Yi+1 = Yi + di·Xi· 2−i (4b)

Zi+1 = Zi − di· 2−i (4c)

The hardware design of the multi-precision Cordic includes
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Fig. 5. Multi-precision Cordic Division: 8-bit operands (Pmode=0) and 16-bit
operand (Pmode=1), n-th stage outputs: Zdn = Yd0/Xd0.

Fig. 6. Error metrics (MSE, MAE, and SD) were computed at each iteration
by comparing observed data to true AF values.

sign adders, part-select logic (shifters), pipeline registers, and
memory constants (Ei). The choice of Ei depends on the mode
of operation. For instance, in the case of an 8-bit operand,
Ei[15:8] is used for MSBs calculation with an i-th right-
shift for both MSBs and LSBs calculations. Conversely, for
16-bit operands, it is obtained from right-shifted Ei[15:8]
and Ei[(7+i): i]. The memory constants Ei are initially
scaled by a factor of 2f , determined by the available fractional
bits in the dynamic fixed-point representation (sfixed<N,f>).
This expansion extends the computation range, resulting in
two configurations: one for selecting input values and memory
elements as sfixed<N,f>, and the other for selecting part-select
bits considering shifted values used in the i-th stage of Cordic
computation.

e−AFin = cosh(AFin)− sinh(AFin) (5a)
tanh(AFin) = sinh(AFin)/cosh(AFin) (5b)

sigmoid(AFin) =
1.0

1.0 + e−AFin
(5c)

3) Optimal pipeline stages for Cordic-based multi-precision
AFs: As the number of pipeline stages increases, hardware
resource utilization also rises. Therefore, it is essential to
investigate the optimal stage count that balances computational
accuracy and hardware resource efficiency. To achieve this
equilibrium, we conducted a Pareto analysis to determine the
minimum number of stages necessary without significant accu-
racy loss. In our comprehensive Pareto analysis, we rigorously
assessed error metrics while processing observed data with our
proposed algorithm across varying iterations (pipeline stages).
At each i-th iteration, we computed Mean Squared Error
(MSE), Mean Absolute Error (MAE), and Standard Deviation
(SD) by comparing observed data with true AF values. The



analysis, as shown in Fig. 6, reveals that error metrics quickly
approach a minimal level after approximately #5 pipeline
stages, indicating that using more than five stages provides
negligible accuracy improvements. This selection optimizes
area utilization, power consumption, and critical delay for an
efficient multi-precision AF implementation using Cordic.

To optimize the algorithm’s real-world hardware perfor-
mance, we have observed that both Pmode 0 with 8-bit precision
and Pmode 1 with 16-bit precision require approximately five
pipeline stages. Therefore, we have implemented up to five
pipeline stages for hyperbolic and division operations for the
sfixed<N,f>. The same configuration has been subjected to in-
ference accuracy evaluation and hardware performance assess-
ment. Here, N corresponds to operand bit precision, specifically
8-bit and 16-bit for Pmode 0 and 1, respectively. It’s worth
noting that in both precision settings, the number of Cordic
stages can be dynamically configured to accommodate variable
fractional bit requirements. To address potential overflow dur-
ing addition and shifting (part-select bits), the bit representation
for each stage has been increased by one bit. Additionally,
the final output of the hyperbolic Cordic, encompassing sinh
and cosh values, has been truncated to N bits based on
Pmode and subsequently provided to the division operation via
an additional adder for tanh and sigmoid evaluation. We’ve
implemented hyperbolic and division computations illustrated
in Fig. 3 using the Cordic architecture across various combina-
tions (variable Cordic stages) for Pareto analysis, with dynamic
fixed-point representation to conclude on the pipeline stages.
This architecture enables runtime computation of sigmoid and
tanh AFs with dynamic fixed-point sfixed<N,f> and multi-
precision computations. The Cordic-based AF unit is unified,
supporting both sigmoid and tanh functions.

IV. INFERENCE ACCURACY AND HARDWARE
PERFORMANCE: EVALUATION AND ANALYSIS

We have evaluated our multi-precision dynamic fraction
fixed-point PE, designed for SIMD operations, focusing on
inference accuracy for image classification tasks. Additionally,
an analysis has been conducted on resource utilization and
delay in Cordic-based AFs, considering both 8 and 16-bit
operands. The results demonstrate the effectiveness of our PEs,
having multi-precision dynamic fraction fixed-point MAC and
AFs, allowing adaptive precision-aware DNN computations.

• Develop and verify a SIMD PE with configurable MAC
and Cordic-based AF units using a Python-based emulator
for accuracy and hardware performance assessment.

• Pareto analysis to identify the optimal number of Cordic
stages to balance accuracy, area, power, and delay.

A. Experimental Validation of multi-precision Fixed-Point PE

By modeling the proposed multi-precision dynamic fraction
fixed-point PEs in a Python context, we have extensively
evaluated the performance of PE. The model was created
to evaluate the inference accuracy of DNN models on our
proposed PE. The PE model in Python is bit-level compatible
with the PE’s hardware behavioral logic. This ensures that the
models behave similarly to the Verilog-implemented hardware.
The primary goal has been to assess the inference accuracy of

the PEs in the context of the hardware. These models have been
created utilizing the multi-precision dynamic sfixed<8,f> (four
operands) and sfixed<16,f> (single operand) representations,
which are equivalent to the hardware architecture, to ensure the
same runtime inference accuracy. To ensure constant bit widths
throughout the computation, we have utilized the trunc
library function from numpy. No additional parameters were
employed to achieve optimal accuracy. We have investigated
and reported the inference accuracy for various bitwidths in
Table II for dynamic fraction fixed-point.

B. Accuracy Analysis with multi-precision PE Software
(Python based) Emulator

We have performed an extensive inference accuracy analy-
sis, comparing our proposed multi-precision dynamic fraction
fixed-point MAC and Cordic-based AFs enabled PE with a ref-
erence PE model [23] which use float32 precision for MAC and
AFs and ROM-based design for AFs [13]. Hence, data type and
precision-dependent inference accuracy and ROM Vs. CORDIC
AF effect on inference accuracy are compared and analyzed.
Results in Table II show accuracy for three neural network
models: LeNet (MNIST), AlexNet, and VGG16 (CIFAR-10).
These networks use ReLU followed by sigmoid and tanh
activations with 8-bit operands for dynamic sfixed<8,f> and
with 16-bit operands for sfixed<16,f> representations. We
explored various sfixed<8,f> and sfixed<16,f> fractional bit
configurations for inference accuracy. Specific fraction fixed-
point representations resulted in consistently better accuracy
values in reference to the benchmark PE from Tensor [23]. For
sfixed<16,f>, accuracy was <1% lower than Float32 across
three neural network models, demonstrating the effectiveness
of our PE with Cordic-based dynamic fraction fixed-point AFs
for 16-bits. The results are comparable with ROM-based AFs as
well. However, 8-bit precision resulted in significant accuracy
drops for sfixed<8,5> and sfixed<8,2> due to reduced bit
widths. VGG16 achieved the highest accuracy with 3 and 10
fraction bits for sfixed<8,3> and sfixed<16,10>, respectively.

Results show that specific fixed-point representations are
comparable in accuracy to the benchmark PE from Tensor [23]
and ROM-based AF model [13]. Various precision settings
were evaluated for 8-bit and 16-bit dynamic fraction fixed-
point representations. Dynamic fraction fixed-point AFs us-
ing multi-precision Cordic exhibit minimal accuracy loss. For
sfixed<16,f>, the accuracy loss was <1% for LeNet
with MNIST, <1% for AlexNet with CIFAR-10, and <2%
for VGG16 with CIFAR-10 compared to Float32 reference
PE [22]. Cordic approaches maintain accuracy similar to Tensor
or ROM-based hardware, demonstrating their effectiveness for
multi-precision dynamic fixed-point PEs at 8-bit and 16-bit
bitwidths. Higher accuracy is observed for sfixed<8,3>
and sfixed<16,10>, attributed to broader integer and
fractional bit ranges. In 8-bit precision, <8,5> and <8,2>
configurations show decreased accuracy due to their narrower
integer and fraction scale, which is not observed in 16-bit.

We have extensively analyzed the accuracy of our PE
with Cordic-based multi-precision AFs, comparing them to a
reference PE model [23] using float32 precision and ROM-
based design [13]. Table II presents accuracy results for three



TABLE II
COMPARISON OF INFERENCE ACCURACY: SIMD DYNAMIC

FRACTION FIXED-POINT PES WITH CORDIC-BASED AFS VS.
FLOAT32 [23] VS. ROM-BASED AFS [13]

Fixed-point Inference Accuracy(%) with ROM & Cordic AFs (sigmoid & tanh) and ReLU

Variable ‘f ′ bits MNIST@LeNet CIFAR-10@AlexNet CIFAR-10@VGG16

PE float32 [23] 98.9 78.2 84.8

Processing MAC +AFROM MAC +AF MAC +AFROM MAC +AF MAC +AFROM MAC +AF

Element (PE) ROM [13] Our SIMD ROM [13] Our SIMD ROM [13] Our SIMD

dynamic fixed-point sfixed<8,f>

sfixed<8,5> 97.5 97.3 24.8 14.0 34.0 29.0

sfixed<8,4> 98.2 97.5 72.0 68.7 80.0 78.0

sfixed<8,3> 97.6 97.1 51.0 50.4 80.2 79.1

sfixed<8,2> 93.8 94.0 26.0 25.2 66.2 52.1

dynamic fixed-point sfixed<16,f>

sfixed<16,12> 98.0 98.0 77.0 69.2 83.0 82.0

sfixed<16,11> 98.9 98.2 77.8 77.0 83.0 81.0

sfixed<16,10> 98.0 98.0 78.0 78.0 84.1 83.7

neural network models: LeNet (MNIST), AlexNet, and VGG16
(CIFAR-10), employing ReLU, sigmoid, and tanh activations
with 8-bit (sfixed<8,f>) and 16-bit (sfixed<16,f>) operands.
Various fractional bit configurations were explored for infer-
ence accuracy. The sfixed<16,f> precision showed less than
1% accuracy reduction compared to Float32, highlighting the
effectiveness of Cordic-based dynamic fixed-point AFs with
8-bit and 16-bit bitwidths. However, 8-bit precision led to
significant accuracy drops for sfixed<8,5> and sfixed<8,2>
due to reduced fractional value range. VGG16 achieved the
highest accuracy with 3 and 10 fractional bits for operands
with sfixed<8,3> and sfixed<16,10>, respectively.

In summary, Lenet, Alexnet, and VGG16 achieved high accu-
racy using multi-precision dynamic fixed-point PEs and Cordic-
based AFs with sfixed<8,3> compared to the Tensor-
based/ROM-based model. Lenet reached peak accuracy with
#11 fractional bits for sfixed<16,f>, while Alexnet and
VGG16 achieved it with #10 fractional bits. These findings
emphasize the need for multi-precision dynamic fixed-point
computation tailored to each layer/model, ensuring maximum
accuracy for specific datasets and DNN layers/models. Our
multi-precision PE designs with adaptability and flexibility in
sfixed<N,f> demonstrate its effectiveness in accommodat-
ing dynamic fixed-point data representation addressing SIMD-
supported PEs in deep learning accelerators.

C. Hardware Design and Implementation Analysis

In this section, we provide a comprehensive analysis of
the proposed SIMD multi-precision dynamic fraction fixed-
point PE with shared resoources, which encompasses both the
MAC unit and Cordic AFs (sigmoid and tanh). The hardware
realization has been carried out using Verilog HDL, and the
hardware post-implementation results were obtained using the
Vivado-Xilinx tool. We utilized the Virtex-VCU118 Evaluation
kit for our experiments and analysis. The design includes MAC
and AFs with the same data flow as the Python-based model to
maintain the same input-output precision of the PE. The study
focuses on hardware utilization, critical delay, and fmax.

Our novel architecture incorporates a unique SIMD multi-
precision Cordic-based unified AF supporting RelU, sigmoid,
and tanh. We couldn’t find such a design approach for AFs.
The SIMD architecture realization, with both conventional non-
shared resources and our innovative shared resource design,

demonstrates superior multi-precision capabilities, as shown in
Table III. The table offers a comprehensive resource utilization
and delay comparison for multi-precision sfixed<N,f> PEs with
our Cordic AFs, both with and without shared resources. The
analysis includes both standalone 8-bit and 16-bit precision
and proposed scenarios with SIMD support. In the standalone
PEs scenarios, we used separate hardware for 8-bit and 16-
bit precision while considering SIMD enablement in multi-
precision cases. The proposed SIMD design efficiently reuses
hardware resources without compromising performance.

We have designed standalone MAC units for both 8-bit and
16-bit precisions. We addressed the SIMD (Single Instruction,
Multiple Data) data flow, necessitating a parallel hardware im-
plementation without consuming additional hardware resources.
Our analysis involved incorporating four 8-bit MAC units and a
single 16-bit MAC unit for evaluation without shared resources.
This configuration consumed a total of 139 CLBs (Configurable
Logic Blocks), 627 LUTs (6-bit Lookup Tables), and 179
FFs (Flip-Flops). In comparison, our proposed multi-precision
design with shared resources for 8/16-bit computations required
only 71 CLBs, 302 LUTs, and 31 FFs. This showcases a
significant improvement in resource efficiency, with reductions
of 48.92%, 51.83%, and 82.68%, respectively, with a 7.94%
decrease in optimum frequency performance (fmax).

We have designed 8-bit and 16-bit Cordic-based architec-
tures based on [18], [19] for performance analysis with our
proposed shared resources unified SIMD AF, which again
supports dynamic fraction, distinguishing it from state-of-the-
art designs. This work multi-precision AFs with dynamic
fraction fixed-point computation, marking a novel contribution.
It’s essential to note that both 8-bit and 16-bit precision have
separate hardware resource requirements, including two 8-bit
precision AF units and one 16-bit AF unit in the non-shared
resources architecture. Specifically, the proposed Cordic-based
multi-precision AF design demonstrates a significant 43.50%
reduction in LUTs and a 38.01% decrease in CLBs com-
pared to the non-shared resources Cordic-based design, which
follows a similar approach as [19] but with additional dy-
namic fraction support. It’s important to emphasize that the
proposed design achieves a substantial 72.27% reduction in
FFs, especially in the context of SIMD support, compared
to the standalone Cordic-based AF. Regarding the maximum
clock frequency (fmax), the multi-precision AF exhibits a slight
decrease compared to the Cordic without shared resources,
with an 8.18% reduction for the 16-bit Cordic. These findings
highlight the inherent trade-offs between resource utilization
and performance. In comparison to the Cordic-based design
in [19], which is adopted for multi-precision without shared
resources, our proposed multi-precision Cordic with shared
requires fewer hardware resources, including CLBs and LUTs.
This design is an optimal choice for the SIMD PE and offers
versatile multi-precision support.

V. CONCLUSIONS AND FUTURE WORKS

This paper introduces an innovative architecture for design-
ing multi-precision dynamic fraction fixed-point PEs capable
of accommodating both 8 and 16-bit computations. These PEs
are tailored for SIMD architectures and incorporate multi-



TABLE III
HARDWARE UTILIZATION AND DELAY ANALYSIS FOR 8-BIT AND 16-BIT ONLY DESIGNS VS MULTI-PRECISION SIMD

ARCHITECTURES(NON-SHARED AND SHARED RESOURCES)

Design PE: sfixed<8,f> PE: sfixed<16,f> 4×8 & 1×16 bit PE Proposed 4×8/1×16 bit PE
Parameters Only 8-bit support Only 16-bit support SIMD without shared resources SIMD with shared resources

This Work This Work This Work This Work
Logic Arch. MAC Unit sig & tanh MAC Unit sig & tanh MAC Unit sig & tanh MAC Unit sig & tanh

Resources Utilisation

CLBs 18 44 67 83 139 171 71 106

LUT 87 289 279 487 627 1065 302 605

FF 32 225 51 422 179 972 31 116

Delay Analysis

Logic delay (ns) 1.247 1.273 1.741 1.402 1.741 1.402 1.862 1.471

Route delay (ns) 2.709 2.799 2.930 4.878 2.930 4.878 3.238 5.361

fmax (MHz) 252.78 245.5 214.08 159.50 214.08 159.50 197.51 146.37

precision dynamic fraction fixed-point SIMD MAC units and
DNN accelerator-specific AFs, offering various AF selection
options. The proposed multi-precision PE incorporates state-
of-the-art Cordic-based AFs, adopting the SIMD scheme to
provide the flexibility of using either 8-bit or 16-bit AFs to
meet varying precision requirements. We achieve inference ac-
curacy comparable to the highest reference accuracy attainable
with Tensor-based and ROM-based designs for AFs. Hence,
the proposed architecture for the computational units exhibits
minimal inference accuracy loss across diverse neural network
models and datasets. The hardware performance parameters
underscore the proposed PE’s effectiveness for precision-aware
DNN computations across various models and layers. Users
have the flexibility to select appropriate AFs (e.g., sigmoid,
tanh, ReLU) in addition to precision and fractional bitwidths for
their DNN applications. Further, the architecture enables four 8
bits and one 16 bits MAC computations and two 8 bits and one
16 bits AF computations for higher throughput and low latency.
Future endeavors may entail thorough testing and investigation
across a wider range of DNN models and datasets, thereby
reinforcing the evaluation of the proposed runtime configurable
SIMD-based multi-precision dynamic fraction fixed-point com-
putations for model and dataset-dependent DNN acceleration.
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