Security and Privacy of Machine Learning Algorithms

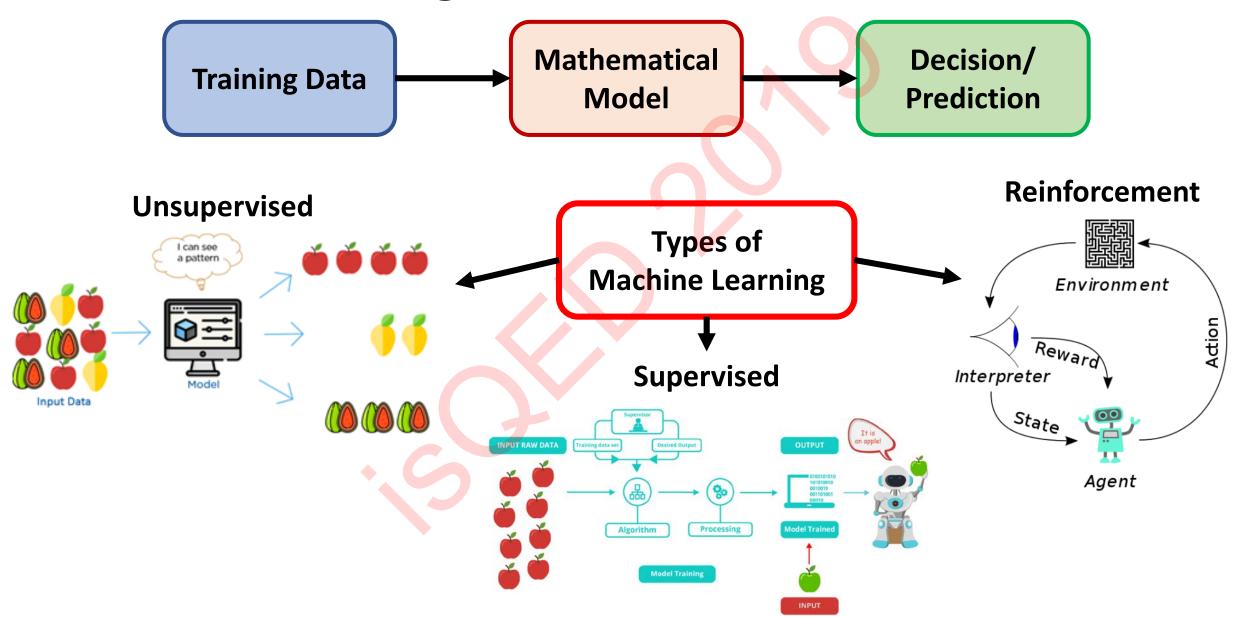
Sandip Kundu

National Science Foundation

on leave from

University of Massachusetts, Amherst

Machine Learning

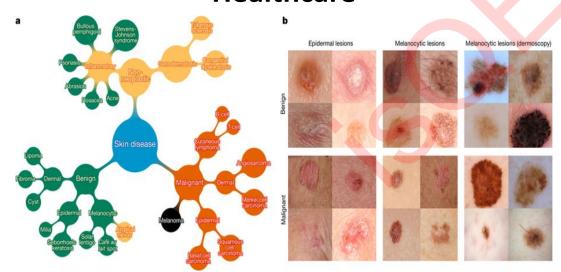


Major applications

Self-driving Cars

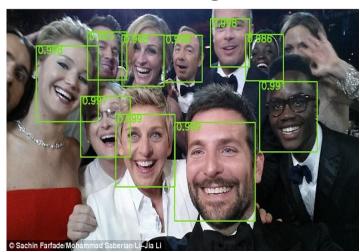


Healthcare



Cybersecurity

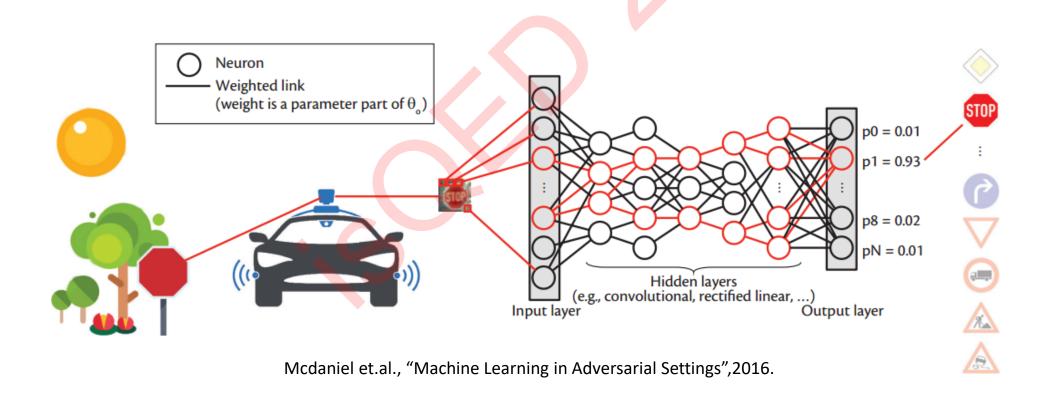
Facial Recognition



Speech Recognition

Self-driving Cars

- Cars incorporating systems to assist or replace drivers
 - Ex. automatic parking, Waymo
- Self-driving cars with ML infrastructure will become commonplace
 - o Ex. NVIDIA DRIVETM PX 2 open AI car computing system



Healthcare Applications

- Diagnosis in Medical Imaging
- Treatment Queries and Suggestions
- Drug Discovery
- Personalized Medicine

* Simm, Jaak, et al. "Repurposing high-throughput image assays enables biological activity prediction for drug discovery." Cell chemical biology (2018) Deep convolutional neural network (Inception v3) Training classes (757) Inference classes (varies by task) Acral-lentiginous melanoma 92% malignant melanocytic lesion Amelanotic melanoma Lentigo melanoma Blue nevus 8% benign melanocytic lesion Halo nevus Mongolian spot * A Esteva et.al., "Dermatologist-level classification of skin cancer with deep neural networks",2017.

Skin lesion image

AvgPool

MaxPool

Concat

Dropout

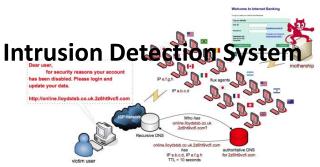
Fully connected

Softmax

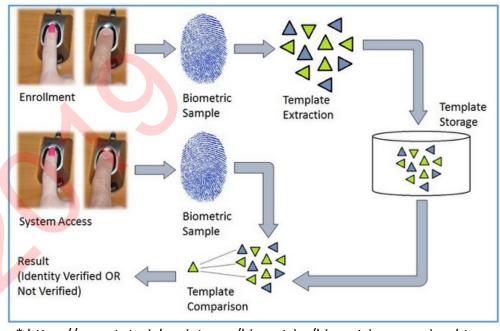
Cybersecurity

Spam Filtering

* http://www.thenonprofittimes.com/news-articles/rate-legit-emails-getting-caught-spam-filters-jumped/

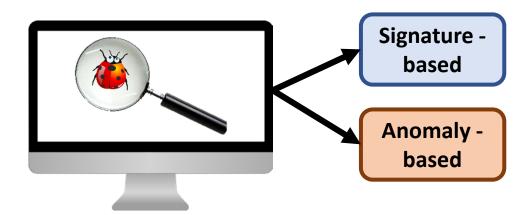


Biometrics ID



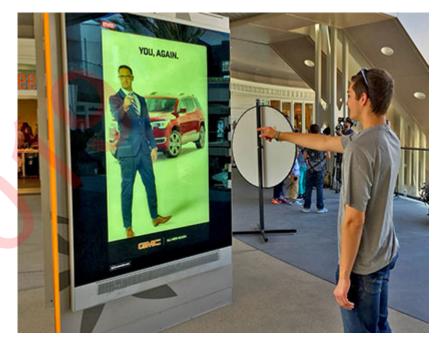
^{*} https://www.tutorialspoint.com/biometrics/biometrics_overview.htm

Malware Detection

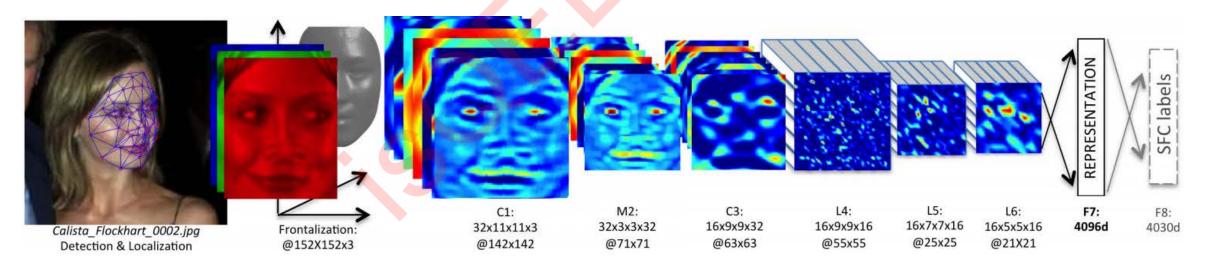


Facial Recognition

- Secure Authentication and Identification
 - Apple FaceID
 - FBI database criminal identification
- Customer Personalization
 - Ad targeting
 - Snapchat



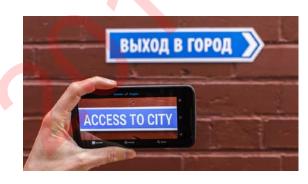
* Posterscope, Ouividi EYE Corp Media, Engage M1 – GMC Arcadia



Other Machine Vision Applications

Digital annotation of real-world

- Text, language recognition E.g.
 Billboards, auto-translation
- Geo-tagging Landmarks
- Integration with other services E.g. ratings for restaurant, directions

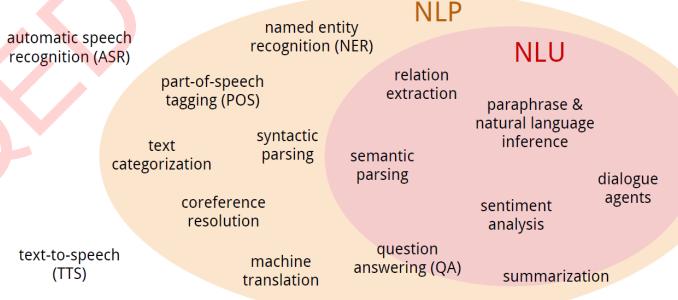


Augmented Reality

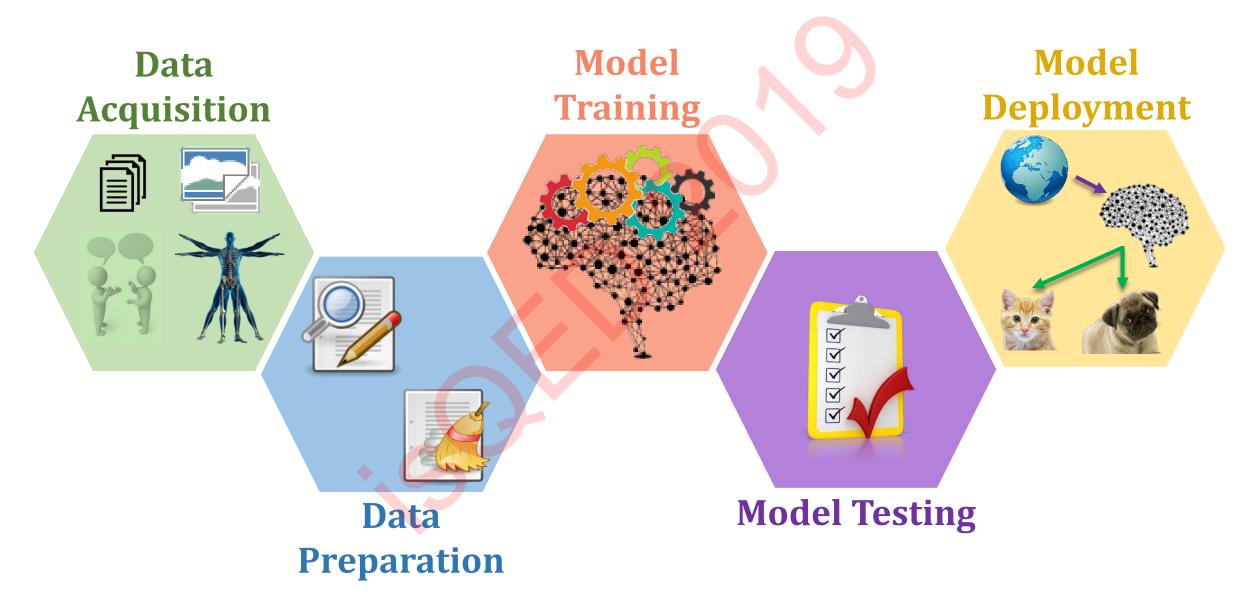
- Gaming adaptive integration with real-world
- Augmented Retail E.g. Clothes Fitting

Speech Recognition

- Envisioned in science fiction since 1960's
 - o HAL 9000, Star Trek
- ❖ Natural Language Processing (NLP) has gained increased importance
 - Modeling large vocabularies, accents translation, transcription services
 - Smartphones Apple Siri, Google Assistant, Samsung Bixby
 - Home Amazon's Echo/Alexa,
 - o IBM Watson



Machine learning (ML) Process



Machine Learning Security and Privacy

Introduction

- ML algorithms in real-world applications mainly focus on accuracy (effectiveness) or/and efficiency (dataset, model size)
 - Few techniques and design decisions to keep the ML models secure and robust!

- Machine Learning as a Service (MLaaS) and Internet of Things (IoT) further complicate matters
 - Attacks can compromise millions of customers' security and privacy
 - Concerns about Ownership of data, model

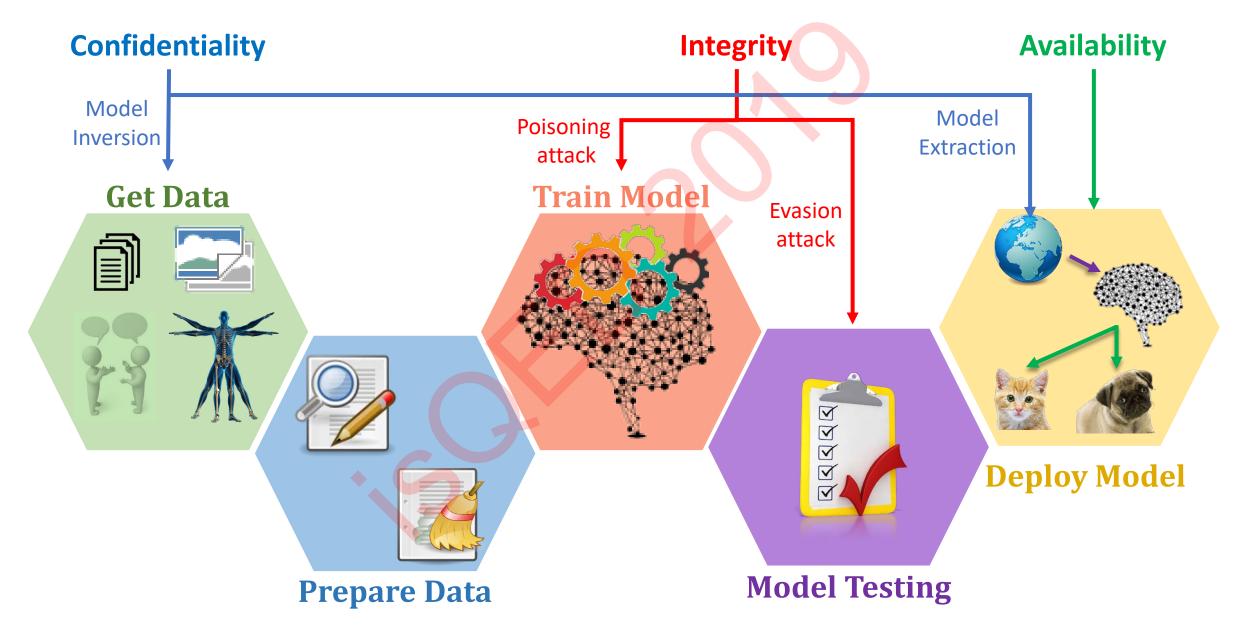
ML Vulnerabilities

- Key vulnerabilities of machine learning systems
 - ML models often derived from fixed datasets
 - Assumption of similar distribution between training and real-world data
 - Coverage issues for complex use cases
 - Need large datasets, extensive data annotation, testing
- Strong adversaries against ML systems
 - ML algorithms established and public
 - Attacker can leverage ML knowledge for Adversarial Machine Learning (AML)
 - Reverse engineering model parameters, test data Financial incentives
 - Tampering with the trained model compromise security

Classification of Security and Privacy Concerns

- Attack Influence
 - Causative manipulate training data to introduce vulnerability
 - Exploratory find and exploit vulnerability during classification
- Attack Specificity
 - Targeted focused on specific or small set of points
 - Indiscriminate flexible goals
- Security Violation
 - Confidentiality extract model parameters or private data
 - Integrity compromise model to produce false positives/negatives
 - Availability render model unusable

Security and Privacy Concerns



Confidentiality

Training Data Confidentiality

- Training data is valuable and resource-intensive to obtain
 - Collection of large datasets
 - Data annotation and curation
 - Data privacy in critical applications like healthcare
- Ensuring training data confidentiality is critical

QUARTZ

Waymo's driverless cars have logged 10 million miles on public roads

Sloan Kettering's Cozy Deal With Start-Up Ignites a New Uproar

By Charles Ornstein and Katie Thomas

Sept. 20, 2018

Confidentiality of Machine Learning Model

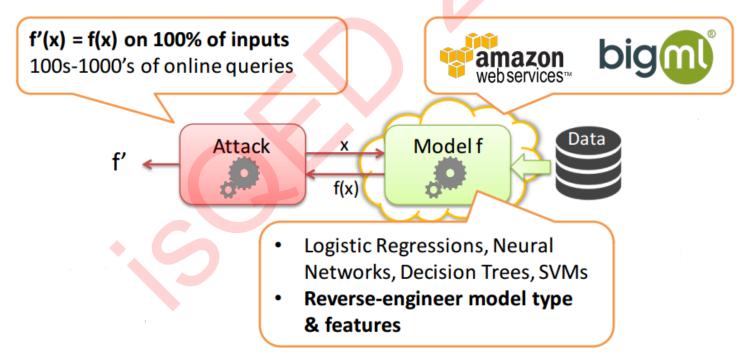
- Ensuring confidentiality of ML model is critical
 - Model IP ownership primary source of value for company/ service
 - Cloud-based MLaaS models highly lucrative for attackers
 - Model confidentiality also ensures training data privacy

Attacks

- Model Extraction Attack: Extract model parameters via querying the model.
 Generate equivalent or near-equivalent model.
- Model Inversion Attack: Extract private and sensitive inputs by leveraging the outputs and ML model.

Model Extraction

- **Goal:** Adversarial client learns close approximation, f', of f using as few queries as possible
 - Service provider prediction APIs themselves used in attack
 - APIs return extra information confidence scores



^{*} Tramer et.al., "Stealing Machine Learning Models via Prediction APIs.", 2016.

Extraction Countermeasures

- **Restrict information** returned
 - o E.g. do not return confidence scores
 - Rounding return approximations where possible
- **Strict** query constraints
 - E.g. disregard incomplete queries
- **Ensemble methods**
 - Prediction = aggregation of predictions from multiple models
 - Might still be susceptible to model evasion attacks
- Prediction API minimization is not easy
 - API should still be useable for legitimate applications

^{*} Tramer et.al., "Stealing Machine Learning Models via Prediction APIs.", 2016.

Model Inversion Attack

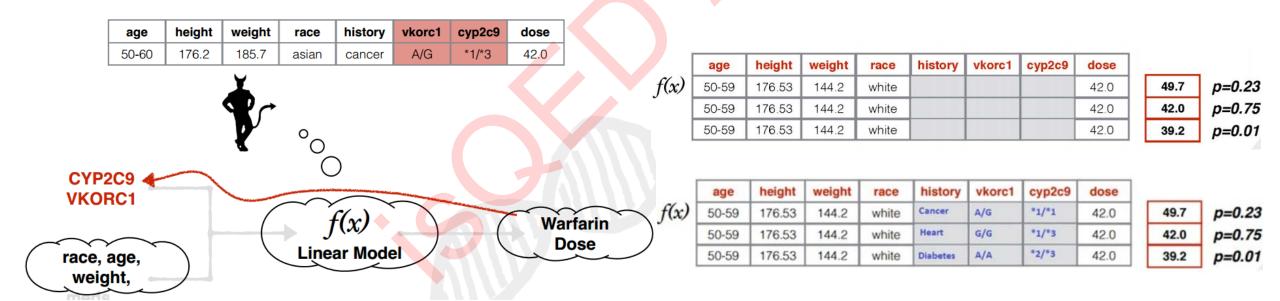
- ❖ Optimization goal: Find inputs that maximize returned confidence value to infer sensitive features or complete datapoints from a training dataset
 - Exploits confidence values exposed by ML APIs

An image recovered using a new model inversion attack (left) and a training set image of the victim (right). The attacker is given only the person's name and access to a facial recognition system that returns a class confidence score.

^{*} Fredrikson et.al., "Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures.", 2015

Privacy of the Training or Test Data

- Extracting patients' genetics from pharmacogenetic dosing models
 - Queries using known information E.g. demographics, dosage
 - Guess unknown information and check model's response assign weights
 - Return guesses that produce highest confidence score



Inversion Countermeasures

- Incorporate model inversion metrics to increase robustness
 - Identify sensitive features
 - Analyze effective feature placement in algorithm E.g. sensitive features at top of a decision tree maintain accuracy while preventing inversion from performing better than guessing
 - Approximate/ Degrade confidence score output E.g. decrease gradient magnitudes
 - Works against non-adapting attacker
- Ensuring privacy needs to be balanced against usability
 - Privacy Budget
- Differential Privacy mechanisms using added noise
 - Might prevent model inversion
 - Risk of compromising legitimate results in critical applications

Introduction

- Ensuring Integrity of a Machine Learning model is difficult
 - Dependent on quality of training, testing datasets
 - Coverage of corner cases
 - Awareness of adversarial examples
 - Model sophistication E.g. small model may produce incorrect outputs
 - Lifetime management of larger systems
 - Driverless cars will need constant updates
 - Degradation of input sensors, training data pollution
- Adversarial examples may be Transferable *
 - Example that fools Model A might fool Model B
 - Smaller model used to find examples quickly to target more sophisticated model

Integrity Attacks

- Adversary can cause misclassifications of attacks to appear as normal (false positives/ negatives)
 - Attack on training phase: Poisoning (Causative) Attack: Attackers attempt to learn, influence, or corrupt the ML model itself
 - Compromising data collection
 - Subverting the learning process
 - Degrading performance of the system
 - Facilitating future evasion
 - Attack on testing phase: Evasion (Exploratory) Attack: Do not tamper with ML model, but instead cause it to produce adversary selected outputs.
 - Finding the blind spots and weaknesses of the ML system to evade it

Adversarial Detection of Malicious Crowdsourcing

- Malicious crowdsourcing, or crowdturfing used for tampering legitimate applications
 - Real users paid to promote malicious intentions
 - Product reviews, Political campaigns, Spam
- Adversarial machine learning attacks
 - Evasion Attack: workers evade classifiers
 - Poisoning Attack: crowdturfing admins tamper with training data

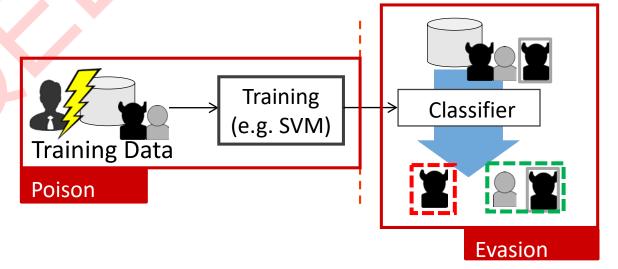
BBC

Vietnam admits deploying bloggers to support government

By Nga Pham 12 January 2013

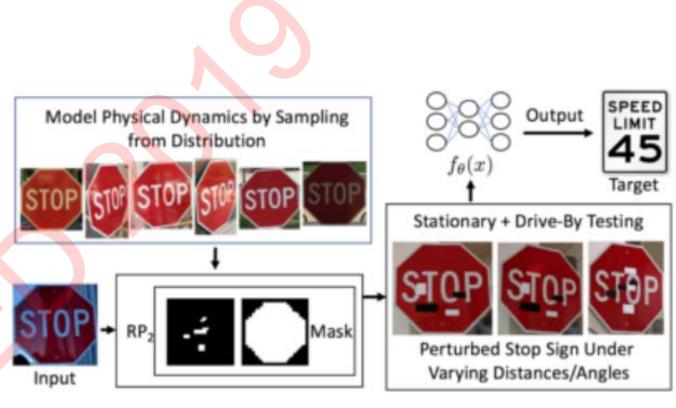
THE VERGE

Samsung fined \$340,000 for faking online comments



Physical Perturbations

- Adversarial perturbations detrimentally affect Deep Neural Networks (DNNs)
 - Cause misclassification in critical applications
 - Requires some knowledge of DNN model
 - Perturbations can be robust against noise in system
- Defenses should not rely on physical sources of noise as protection
 - Incorporate adversarial examples
 - Restrict model information/ visibility
 - DNN Distillation transfer knowledge from one DNN to another
 - o **Gradient Masking**



Eykholt et.al., "Robust Physical-World Attacks on Deep Learning Visual Classification", 2018.

Papernot et.al., "Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks", 2015.

Adversarial Attacks Against ASR DNNs

- ❖ Automatic Speech Recognition (ASR) and Natural Language Understanding (NLU) increasingly popular – E.g. Amazon Alexa/ Echo
 - Complex model = Large parameter space for attacker to explore

Attacker goals

- Psychoacoustic hiding perceived as noise by human
- Identify and match legitimate voice features
 - Pitch, tone, fluency, volume, etc
- Embed arbitrary audio input with a malicious voice command
- Temporal alignment dependencies add complexity
- Environment/ System variability can affect attack
- Software tools like Lyrebird can prove useful



Lea et.al., "Adversarial Attacks Against Automatic Speech Recognition Systems via Psychoacoustic Hiding", 2018

Defenses Against AML

Evasion

- Multiple classifier systems (B. Biggio et al., IJMLC 2010)
- Learning with Invariances (SVMs)
- Game Theory (SVMs)

Poisoning

- Data sanitization (B. Biggio et al., MCS, 2011)
- Robust learning (PCA)
- Randomization, information hiding, security by obscurity
- Randomizing collection of training data (timings / locations)
 - o using difficult to reverse-engineer classifiers (e.g., MCSs)
 - denying access to the actual classifier or training data
 - randomizing classifier to give imperfect feedback to the attacker (B. Biggio et al., S+SSPR 2008)

Model/ Dataset Dissemination

- Model access can be in 3 forms
 - Local Smartphone Al NPUs
 - Cloud Amazon SageMaker, Microsoft
 Azure ML
 - Hybrid Federated ML

- Training datasets difficult to generate
 - Open datasets useful for small startups
 - Lack details, annotations
 - Commercial datasets no incentive to share
 - Provides large advantage for provider

Source: Gboard - https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

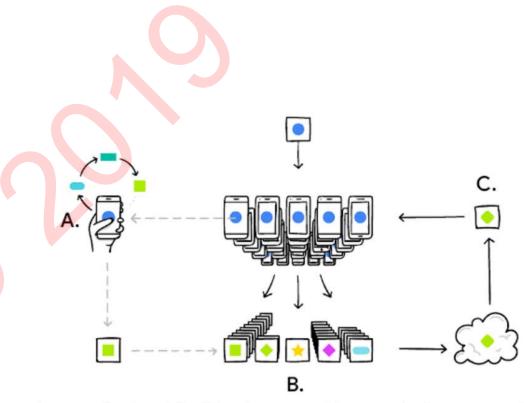
Attacker Goals

- Degrade learner's performance
 - Man-in-the-middle attack during Online Training
 - Generate false positive/negatives for valid inputs
- Delay output availability in time-critical applications
 - Driverless cars
- DDoS attacks on Cloud-based ML models may affect millions of customers

- Access and timing control needed
 - Authentication of training sources
 - Default defensive response for delayed output

Federated ML

- Allows edge devices to update model
 - No centralized data
 - Training data stays local
 - Averaging to generate new shared model
 - Secure Aggregation needed
 - Issue of up-to-date access across all connected devices
 - Bandwidth, latency, scheduling
 - Cross-compatibility with different models for same application is difficult



Your phone personalizes the model locally, based on your usage (A). Many users' updates are aggregated (B) to form a consensus change (C) to the shared model, after which the procedure is repeated.

Source: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Still in development

Ensuring Future Robustness of Machine Learning Model

Future Research Areas

- Complexity of Machine Learning itself an issue
 - New attacks models constantly emerging timely detection critical
 - Generation and incorporation of Adversarial Examples
 - Data Privacy is crucial to enhance ML security
 - Differential Privacy has tradeoffs
 - Homomorphic Encryption still nascent
- Security introduces overhead and can affect performance
 - Optimizations needed to ensure ML effiency
- Tools to increase robustness of Machine Learning need research
 - Unlearning, re-learning
 - ML Testing
 - Sensitivity Analysis

Unlearning and Re-learning

- ❖ Ability to **unlearn** is gaining importance
 - Pollution attacks or carelessness Mislabeling and Misclassification
 - Large changing datasets difficult to maintain
 - Anomaly detection not enough
 - EU GDPR regulations Privacy
 - Completeness and Timeliness are primary concerns *
 - Statistical Query Learning* and Causal Unlearning** proposed in literature
 - Suitable for small deletions
- **Re-learning** or **Online** learning
 - Faces similar issues to un-learning
 - Can be very slow
 - More suitable for large amounts of deletions or new information

^{*} Yinzhi Cao, "Towards Making Systems Forget with Machine Unlearning", 2015

^{**} Cao et. al., "Efficient Repair of Polluted Machine Learning Systems via Causal Unlearning", 2018

ML Testing – Fuzz Testing

- Provide invalid, unexpected or random data to identify defects and vulnerabilities
 - Fuzz Testing works well with structured inputs
- Fuzzing can identify exploitable ML implementation bugs [1]
 - Valid inputs can compromise system
 - Points of attack
 - Insufficient integrity checks during Feature Extraction
 - Overflow/Underflow
 - NaN, Loss of precision
 - Vulnerabilities found in many open-source packages OpenCV, Scikit-learn
- Fuzz Testing can aid security of general-purpose DNNs [2]
 - Automation and parallelization important DNNs can be very big
 - Input mutations and coverage-criteria based feedback guidance specific to DNNs allow detection of corner-cases

^[1] Stevens et.al, "Summoning Demons: The Pursuit of Exploitable Bugs in Machine Learning", 2017.

^[2] Xie et.al, "DeepHunter: Hunting Deep Neural Network Defects via Coverage-Guided Fuzzing", 2018.

Sensitivity Analysis

- Study of how the uncertainty in the output of a system can be attributed to different sources of uncertainty in its inputs
 - ML feature extraction sensitivity analysis well-researched
- Detection of biases in training/test datasets is crucial *
 - Model accuracy dependent on datasets used *real-world* performance can be different
 - Datasets can have expiration dates
 - Privacy issues can render datasets incomplete
 - Identify training datasets which generalize better
 - Study sensitivity of ML accuracy to change in datasets

^{*} Sanders, Saxe, "Garbage In, Garbage Out - How Purportedly Great ML Models Can Be Screwed Up By Bad Data", 2017

Conclusion

- ML supply chain and revenue model is evolving
 - IP protection issue
- Protecting training data set and model IP is necessary for confidentiality
- Protection against evasion, poisoning attacks is necessary for integrity
- Real-time and robustness guarantees are necessary for availability

Thank you