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Artificial Intelligence having a profound impact 
on society
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Artificial Intelligence activity dramatically 
increasing
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Evolution of AI

Source: Oracle

isQ
ED 20

19



www.mentor.com
Restricted © 2018 Mentor Graphics Corporation

What enables AI?
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Machine Learning Approaches 
 Symbolists

— Inverse deduction approach
 Connectionists

— Modeling the brain
 Evolutionaries

— Simulate evolutionary biology
 Bayesians

— Probabilistic inference
 Analogizers

— Extrapolating with support vector machines

6
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Data is the fuel
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AI Driving Customer Value

8 RS Keynote - ST Forum, Catania, Apr 2018
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Machine Learning applied

Source: Research Gate
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$ impact of AI
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Democratizing Machine Learning

Source: Google
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Venture Capital Investment in Fabless 
Semiconductor Startups 

Average
$382

Average
$920

Source: Global Semiconductor Alliance (GSA) , IMF, VentureSource, Pitchbook, 
Crunchbase, & Mentor Graphics Analysis Rev 8/16/18

12 WCR, GSA  Sept 18, 2018

YTD

Average
$1,725

Average
$2,485
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AI in Semiconductor:
Neuromorphic vs. Von Neumann Architecture

What They Do Well What They’re Good For

Neuromorphic 
Chips

Detect and predict 
patterns in complex data 
using relatively little 
electricity

Applications that are rich in 
visual or auditory data and 
require a machine to adjust its 
behavior as it interacts with 
the world

Traditional Chips
(Von Neumann)

Readily make precise 
calculations

Anything that can be reduced 
to a numerical problem 
although more complex 
problems require substantial 
amounts of power

Source: MIT Technology Review, Neuromorphic Chips – Microprocessors configured more like Brains Than Traditional 
Chips Could Soon Make Computers far More Astute About What is going on Around Them, Robert D. Hof

RS Keynote - ST Forum, Catania, Apr 201813
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Requirements for Brain-Like Pattern Recognition

14

Memory improvements
— Increased capacity
— Hierarchical memory
— Memory cell connectivity
— “Invariant” memory 

Processor architecture 
improvements

— Parallelism
— Error tolerance
— Continuous feedback
— Integration with memory

Source: MIT Technology Review, Neuromorphic Chips – Microprocessors configured more like Brains Than Traditional Chips Could Soon Make 
Computers far More Astute About What is going on Around Them, Robert D. Hof
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Machine Learning for EDA

Domain expertise in Machine Learning 
and Variability; Software solutions
for IC Analysis and Characterization

Advanced Analysis & 
Characterization of
Integrated Circuits 
Spanning Analog, RF, 
Digital, and Memory.

isQ
ED 20

19



 Founded: 2005

 Mission: Variation-aware design and characterization 
technologies

 Differentiation: Machine learning and usability

 Team: Includes Machine learning and HCI experts

 Locations: Saskatoon, Canada (+ a few ww staff)

 Research: 14 patents total, 9 ML patents, 100s of trade secrets

 Products: Variation Designer and ML Char Suite

 Users: 1000s of production chip designers

 Customers: Most of the top-40 semiconductor companies

 Dec. 1, 2017: Acquired by Mentor, a Siemens Business

The                  Story
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Solido Products

Machine Learning for 1,000x+ faster 
and more thorough verification

Variation Designer

Machine Learning for reducing library 
characterization time by up to 70%

ML Characterization Suite
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Machine Learning for EDA
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Use ML For High Value Problems

• Accelerate time-to-market by months
• Eliminate person years of engineering time
• Improve performance, area, and power by 20%

• Be general; apply to many circuit types, 
process techs, CAD flows, and companiesisQ
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Machine Learning
(Traditional train the model / use the model interpretation)

Get Data

From past work or 
lab-generated, 
targeted cases

Clean and Prep

Remove bad data, 
balance data, fill 

gaps, align formats

Train Model

Build the model on a 
CPU grid using third 

party tools

Use Model

Query the model for 
whatever you need 

to know
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Limitations
(Traditional train the model / use the model interpretation)

• Deals poorly with things that are different than training data
– Like a new chip on a new process!

• No way to improve accuracy on the fly
– Chip design has accuracy tolerances!

• Does not dynamically target regions of interest
– Chip design requires high accuracy in certain areas!

• Iterations are time consuming
– Chip schedules don’t wait!

• Often fails to solve chip problems due to accuracy and schedule
isQ
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Adaptive ML With Data 
Acquisition In The Loop

– Learns about the subject on the fly
• E.g. a new chip on a new process

– Targets areas of interest
• Worst case PVTs, tails of MC distributions
• Temperature inversions, low-voltage drop-offs

– Improves accuracy dynamically
• E.g. can achieve < 2% or 2 ps on a standard cell rise delay

– Solves way more chip design challenges than 
“train the model/use the model” ML

Initial Design of 
Experiments

Accuracy-Aware 
Supervised Learning

Target Areas of 
Interest

Model Building 
Optimization

Self-Verification

Knowledge 
Extraction
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Main Requirement for Adaptive ML

Real-time data acquisition capability
E.g. SPICE simulator that can be driven

Some creativity
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Case Study 1: Fast PVT

• Challenge: Reduce SPICE corner simulations
...and still get the right answer ;)

• E.g.:
Process (5): TT, FF, SS, SF, FS
Temp (4): -40, 25, 100, 150
Vdd (8): 0.45, 0.52, 0.58, 0.65, 0.78, 0.9, 1.1, 1.4
Extraction condition (3): best, worst, typical
5 * 4 * 8 * 3 = 480 combinations

• Goal: Full coverage with far fewer than 480 simulationsisQ
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PVT Brute-Force 
Solution

For every PVT combination,
simulate in SPICE
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Adaptive ML With Data 
Acquisition In The Loop

– Learns about the subject on the fly
• E.g. a new chip on a new process

– Targets areas of interest
• Worst case PVTs, tails of MC distributions
• Temperature inversions, low-voltage drop-offs

– Improves accuracy dynamically
• E.g. can achieve < 2% or 2 ps on a standard cell rise delay

– Solves way more chip design challenges than 
“train the model/use the model” ML

Initial Design of 
Experiments

Accuracy-Aware 
Supervised Learning

Target Areas of 
Interest

Model Building 
Optimization

Self-Verification

Knowledge 
Extraction
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Initial Design of 
Experiments

Accuracy-Aware 
Supervised Learning

Target Areas of 
Interest

Model Building 
Optimization

Self-Verification

Knowledge 
Extraction

Basic Fast PVT Example:
Initial Design of Experiments
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Initial Design of 
Experiments

Accuracy-Aware 
Supervised Learning

Target Areas of 
Interest

Model Building 
Optimization

Self-Verification

Knowledge 
Extraction

Basic Fast PVT Example:
Accuracy-Aware Supervised Learning
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Initial Design of 
Experiments

Accuracy-Aware 
Supervised Learning

Target Areas of 
Interest

Model Building 
Optimization

Self-Verification

Knowledge 
Extraction

Basic Fast PVT Example:
Accuracy-Aware Supervised Learning
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Goal: Perfect accuracy for worst cases

Simulate those!

Basic Fast PVT Example:
Target Areas of Interest

Initial Design of 
Experiments

Accuracy-Aware 
Supervised Learning

Target Areas of 
Interest

Model Building 
Optimization

Self-Verification
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Basic Fast PVT Example:
Model Building Optimization

Initial Design of 
Experiments
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Model Building 
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Basic Fast PVT Example:
Model Building Optimization
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Basic Fast PVT Example:
Self-Verification
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Temp * Vdd

Temp

Process

Vdd

Impact on Gain

Tested          Pred

Initial Design of 
Experiments

Accuracy-Aware 
Supervised Learning

Target Areas of 
Interest

Model Building 
Optimization

Self-Verification

Knowledge 
Extraction

Basic Fast PVT Example:
Knowledge Extraction
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Fast PVT:
Value

• 2-50X faster (more speedups with more corners)
• SPICE-accurate
• Shows cause of problems to help debug
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Fast PVT:
More real-world 

requirements

• Lots of outputs (e.g. 100)
• Tricky responses (i.e. n-ary, multi-modal)
• Scale: Variables (e.g. 20) and corners (e.g. 10K)
• Fully utilize cluster resources (e.g. 100 CPUs)
• Recover when SPICE fails
• Differentiate between outliers and errors
• Automatically verify that the answer is right
• No mistakes, ever!isQ
ED 20
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Case study 2: High-Sigma 
Monte Carlo

• Challenge: Monte Carlo and SPICE accurate high-sigma 
analysis
– Need an order of magnitude more simulations for every 

0.5 sigma!
• 4 sigma: ~1M simulations
• 4.5 sigma: ~10M simulations
• 5 sigma: ~100M simulations
• 5.5 sigma: ~1B simulations
• 6 sigma: ~10B simulations

• Goal: MC and SPICE accuracy in 1000s of simulations
(because that is all we have time for in production flows!)isQ
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Brute-Force Solution Run millions or billions of
Monte Carlo samples in SPICE ;)
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Initial Design of 
Experiments

Accuracy-Aware 
Supervised Learning

Target Areas of 
Interest

Model Building 
Optimization

Self-Verification

Knowledge 
Extraction

Generate (don’t simulate) millions or billions of MC samples;
Simulate a small, intelligently selected population

Build a model that predicts the order of the samples in output space

Simulate starting from the high-sigma tail, working inward

Run more simulations in areas of uncertainty, if needed
Run simulations to determine full PDF

Ensure that predicted order and actual order from SPICE align

Reveal dominant terms in sorting models to show where problem areas are
isQ
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HSMC: Things That Were Hard

42

Scaling to 1T samples, 100K process variables

Demonstrating correctness

Corner cases

Binary outputs

Fully adaptive operation

Building trust
isQ
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PVTMC Verifier Example

43

 Verification equivalent 
to 45M brute force 
simulations

 In only 1,299
simulations – fewer 
than a single Monte 
Carlo analysis at a 
single corner

 Full 4-sigma 
verification across all 
operating conditions

 > 30,000x fasterisQ
ED 20
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PVTMC Verifier Example

44

 Verification equivalent 
to 15.36M brute force 
simulations

 In only 310 
simulations – fewer 
than a single Monte 
Carlo analysis at a 
single corner

 Full 4.5-sigma 
verification across all 
operating conditions

 > 45,000x fasterisQ
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Solido High-Sigma Monte Carlo – bl_delay

45
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Memory – Column – q_out (pass/fail output) –
Solido HSMC

46
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Adaptive ML For Engineering: 
Challenges & Solutions

Bi
g,

 re
al

-t
im

e 
da

ta • Optimized 
streaming parsers

• Parallelizable 
algorithms

• Massively scalable 
solutions

• Automated 
recovery and repair

• Big data debugging

Co
m

pl
ex

ity • Advanced 
supervised learning

• Big toolbox of 
modeling 
technologies

• Smart screening 
and filtering Co

rr
ec

tn
es

s • Accuracy-aware 
modeling

• Reinforcement 
Learning

• Self-verifying 
algorithms

• Benchmarking 
Infrastructure

U
sa

bi
lit

y • Easy for users with 
little to no ML 
training

• Make it defensible 
in design reviews

• Delight users!
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Adaptive ML for Engineering Challenges:
Big, real-time data

• Challenge:
– Schedule-driven chip development
– High streaming data rates and

massive data archives

• Key technologies:
– Optimized streaming parsers
– Parallelizable algorithms
– Efficient and scalable cluster management
– Automated recovery and repair
– Big data debugging

isQ
ED 20

19



Adaptive ML for Engineering Challenges:
Complexity

• Challenge:
– High dimensionality, high-order interactions, 

discontinuities, non-linearities

• Key technologies:
– Design of experiments tech
– Advanced supervised learning
– Intelligent screening and filtering
– Outstanding benchmarking infrastructure
– Big toolbox with lots of experience with tools
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Adaptive ML for Engineering Challenges:
Correctness

• Challenge:
– Engineering problems require the right answer

• Key technologies:
– Accuracy-aware modeling
– Reinforcement learning
– Self-verifying algorithms
– Extensive internal benchmarking infrastructure
– Customer-side benchmarking infrastructureisQ

ED 20
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Adaptive ML for Engineering Challenges:
Usability

• Challenge:
– Engineers are not ML experts

• Key technologies:
– Simple configurations that ask users questions 

they know the answer to
– Adaptive ML algorithms that “do the right 

thing”
– Results and visualizations that are easy to 

understand and defend
– Actionable and automated knowledge 

extraction with intuitive visualizationsisQ
ED 20
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Some other Machine Learning acceleration 
opportunities in EDA
 SPICE Simulation
 Digital Simulation
 Extraction
 Behavioral modeling
 Equivalence checking
 Place & Route
 Design Rule Checking

 Ref: Center for Advanced Electronics Through Machine Learning

53
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Siemens Vision – The Digital Twin

54
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The old rigid labels are dissolving…

CAE

EDA

CAD

ALM

IoT

CAM

HMI

MOM

PLM

The old rigid labels are dissolving
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Merging into new, more transformational solutionsMerging into new, disruptive solutions
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Digital twin powers each phase of innovation

Ideation Realization Utilization
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