

2002 IEEE 3rd International Symposium on QUALITY ELECTRONIC DESIGN March 19-20, 2002 – San Jose, CA

Design Success: Foundry Perspective

Jim Kupec CEO of AmmoCore Technology, Inc. Previous President of UMC-USA

"It is not the strongest of the species to survive, nor the most intelligent, but rather the one most responsive to change."

Charles Darwin, "On the Origin of the Species by Natural Selection", 1859

Technology is Rapidly Advancing

Technology is Rapidly Accelerating

ITRS Roadmap Acceleration Continues...Half Pitch

Year of Production

Technology Node – DRAM Half-Pitch (nm)

* Courtesy of ITRS

Disintegration Allows More Advanced Resources But...

The Big Hard Chips

Big Chips are Real 20 x 20 mm

* Chip courtesy of Xilinx

The Big Hard Chip

Rapidly Expanding Design Gap

Million Gates

	1997	1999	2001	2003
IC Physical Size (cm ²)	4.8	8.0	8.5	9.0
Area after Mem (cm ²)	2.9	4.8	5.1	5.4
Auto-layout Tx (M)	23.0	67.2	81.6	129.6
Equivalent Gates (M)	5.8	16.8	20.4	32.4

Sources: SIA, Dataquest

- New systems will need to take advantage of advances in IC manufacturing technology
- Finer process geometries provide ability to manufacture >30M gates on a single die
- Ability to implement large Systems in silicon will decline due to physical design limitations

Physical design methodologies will not scale

Design Gap Creates Opportunity... If Early Adoption is Successful

Sensitivity of Profits over Product Life

* From Accelerating Innovation

Challenges of Big Multi-Million Gate Chips

- Deep Submicron Effects Are Critical
- Physical Methodologies Do Not Scale
- Engineering Team Coordination Raises
 Overhead Factors
- IP Integration

DSM Challenges

Metal Modeling

- Coupling
- Antenna
- Electro Migration

* Courtesy of UMC

Modularized Technology

* Courtesy of UMC

Platform Technology

EDA: Challenges of Big Chips (multi-million gates > 10M)

SQED

SRAM: Challenges

DRAM: Challenges

Most Successful 16K DRAM

- Handcrafted
- Fixed Size
- Technology Bound
- Extremely Optimized

* Courtesy of Mostek, circa 1976

EDRAM

- Place Macro
- Limited Implementation
- 8M 256 Mbit
- Process Complexity Adder
- Non-evolved IP

FUTURE

EDRAM Future

- Technology lags ASICS
- Process Cost Adder
- Package Solution Competition

Summary

- Design must be able to coordinate multiple IP sets
 - " Trust but Verify "
- New EDA tools/ methodologies required to cope w/ large densities and DSM
 - " Target Needs "
- Adaption opportunities are accelerating
 - Proverbial Inflection Point "

