isQED 2002 March 20, 2002, San Jose

"Tomorrows High-quality SoCs Require High-quality Embedded Memories Today"

Ulf Schlichtmann Senior Director Cells & Memories Infineon Technologies AG

Goal and Outline IC designers: awareness of memory challenges Memory designers: no surprises, hopefully! Dominance of embedded Memories Memory Design Challenges Manufacturability Reliability SoC Design Support

Infineon

Ulf Schlichtmann 21.03.2002 Slide 2

Slide 5

Slide 7

8-Channels ADSL Chip

Infineon

Ulf Schlichtmann

21.03.2002

Slide 6

Slide 8

IWORX: Interworking Controller for 3G Mobile Base Station

Application:

ATM Line Card Controller for "Next Generation (3G) Mobile Infrastructure (UMTS Base Stations)"									
Package:	BGA388								
Process:	0.18 µm CMOS								
	6 Layer Metal (fat)								
Chip Area:	193.7 mm ²								
	13.72 mm x 14.12 mm								
Transistors:	~ 80 Mio.								
Gate Count:	~ 2.250.000								
	(including Tricore [™])								
SRAM:	11 Mbit (140 macros)								
Test Concept:	Full Scan Path								
	63 Chains x ~2000 FF								
	MemoryBIST								

Infineon Infineon Memory Landscape changed dramatically over the last 10 years Embedded DRAM Networking Switch Chip SRAM/ROM, eDRAM, 1T, NVM, Challenges => integrated on SoC SoC vs. SiP Varied types, e.g. RFs, CAMs, ... Complexity: 850k logic gates **Reg Files** New design for each generation 117 mm² (0.20µm C9DD1) Area: Customer > 15 EDA models; very high accuracy Logic 16 Mbit DRAM (4 Macros) Memory: UDSM: Leakage; IR drop; EM; X-talk 460 k SRAM ■ Tight coop. Design <==> TD / Fab Silicon Qualification essential **59 Register Files** (241k total) 100 MHz (1 PLL) Mostly SRAM Frequency: SRAMs ■ Types: SP, DP, ROM Memories on shrinkpath Few EDA models Verification on Silicon Ulf Schlichtmann **Ulf Schlichtmann** 1990 2002 21.03.2002 21.03.2002

A high-quality Embedded Memory ...

- meets requirements specifications
- can be manufactured with high yield at low cost
- can be tested economically
- meets reliability criteria
- enables timely product design

- meets requirements specifications
 - area

Infineon

Ulf Schlichtmann

21.03.2002

Slide 10

- performance
- active power
- standby power
- correct and accurate EDA modeling
- functionality
- can be manufactured with high yield at low cost
- can be tested economically
- meets reliability criteria
- enables timely product design

Key Issues in Excellent Memory Design

- Bit Cell
 - As small as possible (DR waivers)
 - Tradeoff area / leakage / performance
 - Electrically robust
 - Tuned for the specific target fab
 - Running in high volume

Architecture

- Low Leakage / High Speed
- Active Well / Virtual RailGlobal / Local Bitlines
- Multi-Banking
- Timing Control Circuitry
- Compiler-Optimized
- Redundancy

- Sense Amplifier
 - Voltage / Current SensingRobustness analysis
 - (sensitivity, MC) – Layout critical (matching)

- Macro Layout
 - Power Routing: IR Drop, EM, Size Power-ring
 - Crosstalk
 - DfM rules (incl. DRC runsets)

A high-quality Embedded Memory ...

- meets requirements specifications
- can be manufactured with high yield at low cost
- can be tested economically
- meets reliability criteria
- enables timely product design

Infineon

Ulf Schlichtmann

21.03.2002

Slide 23

Choice of Redundancy Solutions Required for Overall Optimum

A high-quality Embedded Memory ...

- meets requirements specifications
- can be manufactured with high yield at low cost
- can be tested economically

meets reliability criteria

- Electromigration
- Soft Error Rate (SER)
- enables timely product design

VIf Schlichtmann

21.03.2002

Slide 24

Radiation induced Soft Error Rate in embedded SRAMs

technologies boo										5	Summary	
											Memory Dominance on Socs continues to increase	
	Select the Monory Protect : Z. Select the Technology / Valle HOLP out port SRAM	pr : 3. Beliet the Design Package : v2.20 cm							\sim	Ľ	UDSM effects force changes in embedded memory design	
	 Select the size and options of the Newcry two one openity multiple values for each parameter by using spaces as separators 								<u> </u>			
	Mmmory State [] [] [] [] [] [] [] [] [] [] [] [] []	Parameter	Symbol	Unit	config1	config2 (Config3	config4			Memory Designers:	
	38xx84x83x6	WordWidth			16	8	16	8			- Work very closely with SoC Designers and TD / Eab people	
	WoodWathill [4, 124]	BeltomAddress			False	False	False	False			- Work Very closely with 600 Designers and 1D / Tab people	
	the one electric multiple malane for each spheres	DataBes			Split	Split	Split	Split			 Design for robustness, manufacturability, analyzability 	
	Database Dispit Dicements	SingleDitWrite			False	False	False	False	0			
	SemetryA DTall Diversal Diversal BackenA DFalse Dirve BackenB DFalse Dirve	Aspect ratio							01		SoC Designers:	
	Brogelativene DFaire DTrue	Memory Size	Silve	bits	16384	8192	32768	16384		1.1	 Perform reviews (concept: architecture: design) 	
		Wdth	Width	um	404.44	221 4	401.24	221	SO	2		
	5. Select the operating conditions (Process/Voltage/Temperature) and subsit t	Area	Area	mm2	0.234	0.128	0.439	0.242			 Insist on detailed silicon reports 	
	WORST D SHOW DATA	Density	Density	Kbits/mm2	68.445	62.629	72.978	66.248		>	 Ensure that manufacturability is addressed 	
		Peak Current	Imex	mA								
	East concretion of	Average power for Read operation	Pread	uW/MHz 1	118.075	63.37	123.02	68.315				
		Average power for White operation	Purite	uW/MHz	93.854	52.694 1	00.816	59.656				
	datasheets for evaluations	Average Power for a Read and Write Operation	Paug	uW/MHz 1	105.965	58.032 1	11.918	63.985		1		
		Read access time	Taa	na	3.091	3.034	3.379	3.328				
21.03.2002 Slide 33	Easy comparison of memory configurations								21.03.2002 Slide 34	ו		