"<u>12th International Symposium on Quality Electronic Design</u> (ISQED2011)

For how much longer can Moore's Law hold?

R. Fabian Pease Stanford University, CA 94305 Pease@stanford.edu

Why Moore's Law is important.

Its not just the transistors it's the wiring.

Limited by: (Design) ? *no* Defects ? *no longer* Lithography (Patterning)?

'64 bits is probably beyond the limit of useful integration' J. A. Morton, VP Electronics Technology, Bell Labs circa 1969, quoted by C. G. B Garrett

100 defects Poisson distributed among 25 die

100 defects distributed among25 die non-stationarily

Mid 70'sLSI had arrived (4KDRAM), Zilog Z80Yields <50%</td>

Tohoku University, Prof. Ohmi,

'solved' the defect problem

Professor Tadahiro Ohmori, New Industry Creation Hatchery Center, Tohoku University

That left lithography as the key pacing technology 'Everything gets better as we go smaller'

But now we are (getting) stuck

•Optical lithography is used for manufacture with mfs=wavelength/6

•Curiously downplayed (defects cited as drawback)

Beyond 2015 - 2017							
193i SE	SE	<i>PD P/2</i>	<i>PD P/2</i>	<i>PD P/4</i>			
32nm	22nm	15nm	11nm	<u>7nm</u>			
P=112.5nm *	0.71	*0.71	*0.71	*0.71 = 28nm			

One 193i Expose/1 Mask, several Extra Dep/Etch and Cleans steps. Nothing Heroic, including added processing cost.

What have we got that is better to replace this?

ITRS 2008 Reference:

Year of Production MPU Metal 1 Pitch *nm*

Yan Borodovsky

MAPPER technology introduction

MAPPER builds a system with 13,000 parallel electron beams for 10 wph

	Electron source	Key numbers 22nm node:		
A L			HVM	pre-alpha
	Collimator lens	#beams and data channels	13,000	110
		Spotsize:	25 nm	35 nm
		Beam current:	13 nA	0.3 nA
		Datarate/channel	3.5 Gbs	20 MHz
	Aperture array Condensor lens array	Acceleration voltage	5 kV	5 kV
	/	Nominal dose	30 µC/cm ² 30 µC/cm ²	
	Beam Blanker array	Throughput @ nominal dose	10 wph	0.002 wph
	Beam Stop array Beam Deflector array Projection lens array	Pixel size @ nominal dose	3.5nm	2.25 nm
		Wafer movement	Scanning	Static

Imprint Evaluations

Molecular Imprints

Why go smaller?

- Do transistors deliver more computation as features shrink below 30nm?
- Inerconnects get worse (L,C, p.u.l. constant, R p.u.l. increases). AND length tends to be a function more of chip size than gate electrode width
- Why not go 3-D (we already are in a 'disruptive' sense). Alleviates the interconnect challenge

Avoid the topological tyranny of all transistors in one plane. Go upwards

- 3-D wiring enabled by CMP (been here since the 90's)
- 3-D arrays of transistors (3-DIC) comes in various flavors:
 - Chip stacking (already here)
 - Edge connected
 - Area connected using TSV's
 - Wafer Stacking (IBM, Tezzaron, MIT Lincoln Lab)
 - Monolithic (Stanford University)

IBM: 3D ICs Roadmap

3D integration will be applicable a broad range of technologies and applications, from wireless communication to multi-core microprocessors:

IBM: 3D vias specifications

IBM (US) has developed different type of vias corresponding to different applications:

- 3D Packaging via process
- → Application: wireless communications (SiGe power amplifiers) to reduce power consumption
- → Via diameter ~ 50 100 µm
- → Interconnect density ~ 10² pins/cm2

- → Via diameter < 1 µm</p>
- → Interconnect density > 10⁵ pins/cm2

Tezzaron 3DIC Technology

Top Si typically thinned to < 10 um

Figure 1 - Cross-section diagram of two bonded wafers after thinning

Face-to-face Cu thermo-compression bonding

Two face-to-face bonded 130 nm bulk CMOS tiers

Figure 6 – SEM photo close-up of a Super-Contact.

re 5 – SEM^{*} photo of a two-wafer stack.

Tezzaron FaStack[®] Technology

20 µm

Si acceptor wafer

Fig. 6. SEM of an array of polysilicon islands attached to a SiO_2 substrate using Al-Ge eutectic bonding at 435 °C. The excess Al-Ge in between the islands has been etched away.

Filip Crnogorac, Stanford University

Complete melting of implanted regions is necessary to avoid parasitic resistance and poly depletion.

Summary

- Quite a bit longer
- And it's important that it does continue

