Tech \& Space: A Symbiotic Relationship

Birth of the Industries

Space

1954
Technology

Transistor

Single Cell Silicon $*$

Integrated Circuit

Giant Steps Forward

A 1982 Intel 80286 chip was 26x more powerful than the on

$$
1975
$$ board computers on Voyager 1 \& 2

$$
\text { Pioneer } 10 \text { Travels to }
$$

1972 Asteroid Belt

Mariner 9 Orbits Mars1971

$$
1976
$$

Intel 4004
$1^{\text {st }}$ Microprocessor 2,300 Transistors

Setbacks \& Solutions 1980s

A 2010 iPhone is 689x

 more powerful than the on board computers on the Columbia

Worldwide Achievements 1990s . •댄ㄴ․

Hubble
 was critical to the success of the Hubble project.

China's Launches Shenzhou 1

Commercial
Digital Camera.

Intel Pentium Pro Microprocessor ${ }^{7}$ 5M+ Transistors

Light Years Ahead 2000-2010 : 귿ㄴ

China "Laưnches tạikonaut

2000

USB Flash Drives

Intel Core i5

- Microprocessor 650M transistors

AFrst Private Spacectraft

\qquad
 Entersppace \times

2009 - Qépler Satellite

Today's Achievements

The phone becomes a computer

"Phones": High Performance @ Low Power
 E/

\checkmark Multimedia
convergence
\checkmark User experience
\checkmark Interfaces options
\checkmark Connectivity

90's
 2000

2005
STMiarnaleatronias

Nova A9540 (32 nm) dual-core A9 @ 1.85 GHz
$+4 X$ graphics improvement ${ }^{*}$ Sampling 2011.

DAC - June 2011

Today's Achievements 2011 in. Technology: Compute, Pówer

1985: Cray Super Computer

Comparable Size: VW Bug
Cooled By: Immersion in a liquid called Flourinert

Cost: \$17M
End User: NASA, U.S. Dept. of Defense, major corporations

Today: iPad

Comparable Size: Notepad
Cooled By: Runs off a battery and is air-cooled

Cost: \$499
End Users: Millions of Consumers

Today's Achievements
 2011 in. Technology: Compute, Pówer

Today's Achievements
 2011 in Space *

Computer Power Marches on at the Pace of Moore's Law

Year	Technology	Instructions per Second	vs. baseline	Original Data
195		60	$2.25564 \mathrm{E}-05$. 06 kIPS
1960	mainframe	500,000	0.187969925	$500,000$ calculations per second
197		1,000,000	0.37593985	1 Mflop
198		2,660,000		2.66 MIPS
198	ercomputer	824,000,000	309.7744361	160 megaflops
199	DX	54,000,000	20.30075188	54 MIPS
200	4 Extreme Edition	9,726,000,000	3656.390977	9,726 MIPS
	i7 Extreme Edition	147,600,000,000	55488.7218	147,600 MIPS
201		2,000,000,000	751.8796992	33.35 Mflops, 2000000000 Instructions per second
201		20,000,000,000	7518.796992	

Incredible Accomplishments in Space with So Little Computing Power

Year	Technology	Instructions per Second	vs. baseline
1957Sputnik			
	Strela (Sputnik ground guidance computer)	2,000	0.00075188
	M-1 (Sputnik ground guidance computer)	20,000	0.007518797
	BESM-1 (Sputnik ground guidance computer)	100,000	0.037593985
1959Luna2			
	Ural1 (Luna ground guidance computer)	100	3.7594E-05
	7 Voyager 1 (on board)	100,000	0.037593985
	Voyager 2 (on board)	100,000	0.037593985
	1Columbia (on board)	2,900,000	1.090225564

Moore's Law Doesn't Come For Free

Source: R. Chau, Intel 2003, ITRS 2005

Intel realized:

Something must change!

Power Denstiy Extrapolatios

10,000

SOURCE: INTEL

Today's Achievements

 2011 in. Technology: Smart Homes

- Increased convenience with centralized control of home systems
- Increased security with remote home management
- Increased energy and cost savings with automated lighting and temperature controls

Today's Achievements 2011 in Technology: Smart Cars

- Increased cost and energy savings with gasoline-electric hybrid structure
- Increased performance with sensor monitoring systems
- Increased convenience with GPS tracking and infotainment systems

Today's Achievements 2011 in Technology: Smart Communications

- Increased access to information with content streaming from internet and local storage devices
- Increased access to communication with email and instant messaging services
- Increased access to entertainment with video, music, and gaming applications

Today's Achievements

2011 in Space \& Technology' .

The development of space exploration depends on the progress of semiconductor technologies.

Data is now collected from space by probes without the presence of man because of microelectronic technology.

Sophisticated conntrol systems allow us to operate equipment by remote control in hazardous situations, such as the handling of radioactive materials

Future .Potential .

Going Where No One Has Giqne Before: Space Industry x

Dark Energy

- SDSS III BOSS project will explore the role of dark energy in the forming of galaxies

Outer Milky Way

- SDSS III SEGUE-2 project will uncover rare, primitive stars from the earliest generations of star formation

Extrasolar Planets

- SDSS III MARVELS project will monitor bright stars with the precision needed to detect extrasolar planets

Extraterrestrial Contact

- Search for planets that could support life
- Searching within our solar system: Mars, Europa, meteoroids
- Sending and receiving messages beyond our system

Future .Potential

Going Where No One Has Giqne Before: Technology Industries

Future .Potential .

Going Where No One Has Giqne Before:
Together we are better

We continue to move beyond our small planet into the wide universe beyond, and it will be thanks to the space programs and technology that sent us there.

Thank You!

Спасибо

