

Physical-Aware, High-Capacity RTL Synthesis for Advanced Nanometer Designs

Sanjiv Taneja Vice President, Product Engineering Cadence Design Systems ISQED2013, March 4-6 Santa Clara, CA

Agenda

1. Market trend and challenges

2. Physical effects of interconnect and congestion

3. Physical aware RTL synthesis

4. Hierarchical flow

5. Summary

Semiconductors – at the heart of the next technology wave

By 2020 there will be over 10 billion mobile internet devices, and the core of each is a specialized semiconductor

- Tablets
- Smartphones
- MP3 players
- Gaming devices
- Car electronics
- Mobile video
- Home entertainment
- Wireless appliances

Source: Morgan Stanley

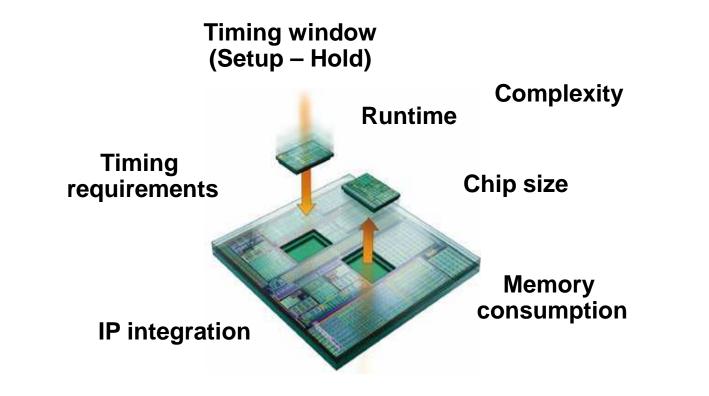
cādence[®]

SoC Design Challenges

		65nm	40 nm	28nm	20nm	14nm
Performance		0.5-1GHz	1-2 GHz	1.5-3GHz	2-5 GHz	>5 GHz
Design size (instances)		10M	20M	50M	100M+	200M+
Power Density (W/cm ²)	Dynamic	100	180	250	425	650
	Leakage	50	120	250	425	650
Mixed Signal Content		Increasing Mixed Signal content in all SoCs				
DFM		DRC	DRC, Litho	DRC, Litho, LDE	DRC, Litho, LDE, DPT	DRC, Litho, LDE, DPT, FINFET etc.

Source: IBS

Physical Interconnect Modeling Challenge Impact of Physical Effects


	65nm	40nm	28nm	20nm	14nm
Performance	0.5-1GHz	1-2 GHz	1.5-3GHz	2-5 GHz	>5 GHz
Design size (instances)	10M	20M	50M	100M+	200M+
Physical Effects for Interconnect	Routing Topology / Detoured Nets Coupling Capacitance / Slew Degradation				
Delay Modeling			-	esistance Estima wareness / Via E	

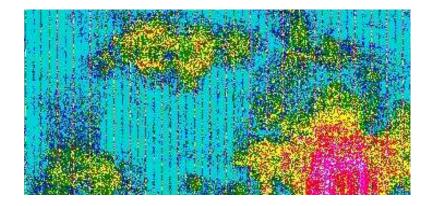
Layer Assignment:At 20nm – resistance per unit length from
20 Ohm/Micron (M1-M5) to 8 Ohm/Micron (M6-M7)
and finally to 0.05 Ohm/Micron (M8)

Via Effect:	At 28nm – wire resistance can increase by 2x due to
	Via resistance from one routing topology to another. IBS

cādence

GigaScale Design Closure Challenges

Floorplan Complexity 1000+ hard IPs, 1000+ pins Block Closure Complexity 10-30 MMMC views Hierarchical Assembly Complexity 50-100M instances 10-25 blocks

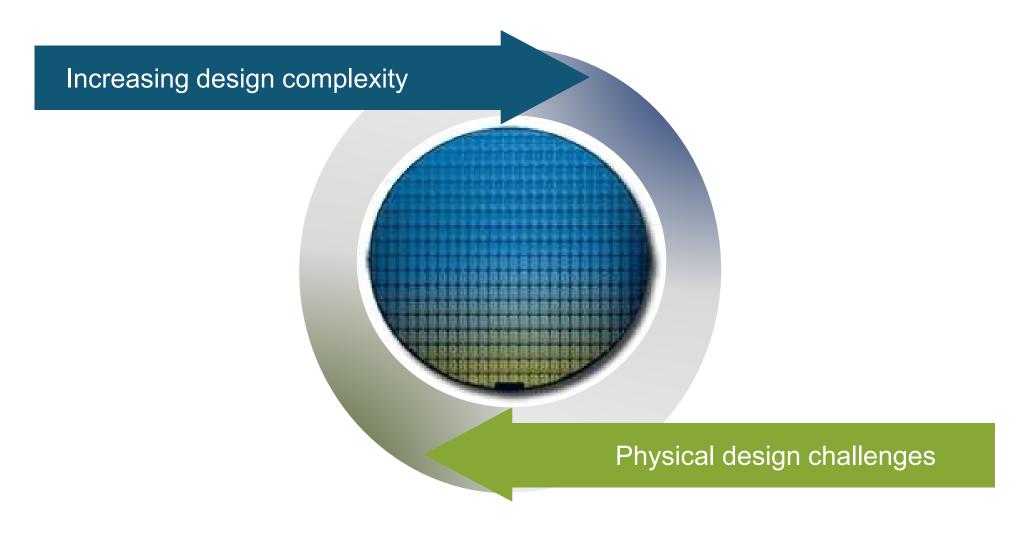

Congestion Challenge

Impact of Physical Effects

- Congestion due to poor floorplan
 - Adjusting floorplan can be the solution
 - Macro and port placement

Congestion due to netlist structure

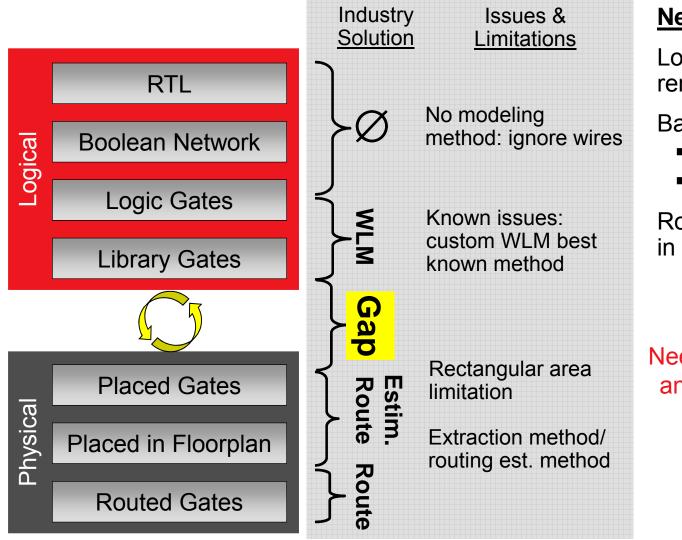
- Cannot be fixed in physical or can cost PPA(*)
- Need re-synthesis for best PPA and convergence in physical


PPA = Performance Power Area

High congestion structures:

- Cross bars
- Barrel shifters
- Memory connected Mux chains

cādence


Need physically aware high-capacity synthesis to bridge the gap

8 © 2013 Cadence Design Systems, Inc. All rights reserved.

cādence[°]

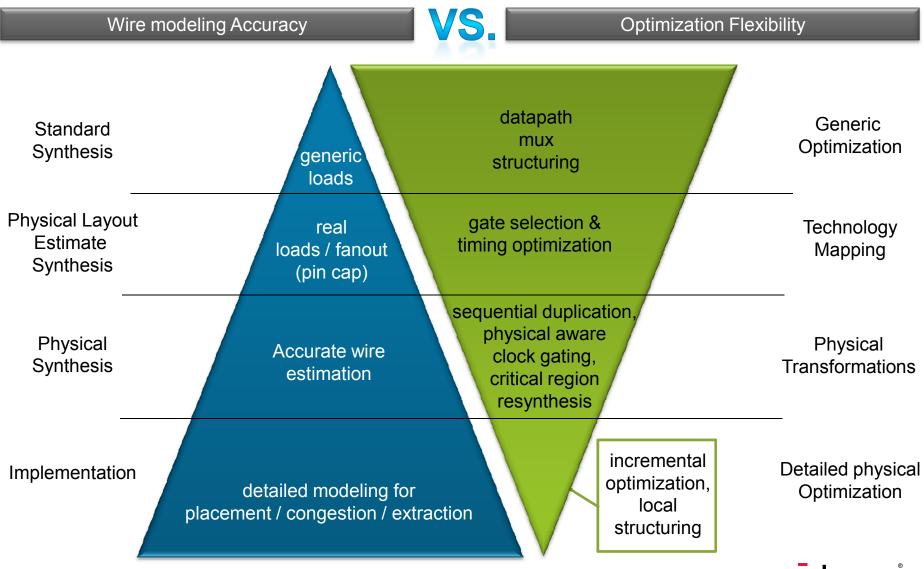
Physical Interconnect Modeling Challenge Impact of Physical Effects

Nets Dominate

Logical physical gap remains

Band-aids include:

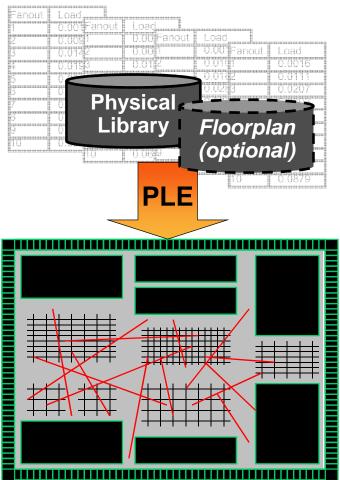
- Over-design
- Multiple iterations


Root cause not addressed in deployed solutions

Need physical awareness in an actionable logic design context

cādence°

Successive refinement of wire modeling


Multiple wire abstractions

0 © 2013 Cadence Design Systems, Inc. All rights reserved.

cādence[®]

Physical Layout Estimation Wireload Model Replacement Improves Netlist Creation

- What is PLE?
 - A physical modeling technique to capture timing closure P&R tool behavior for RTL synthesis optimization
 - Result: better timing-power-area balance
- Uses actual design and physical library info
- Dynamically adapts to changing logic structures in the design
- Same runtime as WLM

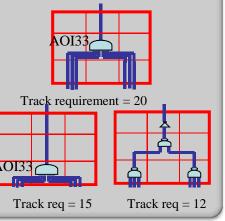
Does a good job modeling the short wires in a design (80-90%)

Improves QoS and predictability over WLM

cādence[°]

Congestion Optimization Techniques Produce a cleaner design to begin physical implementation

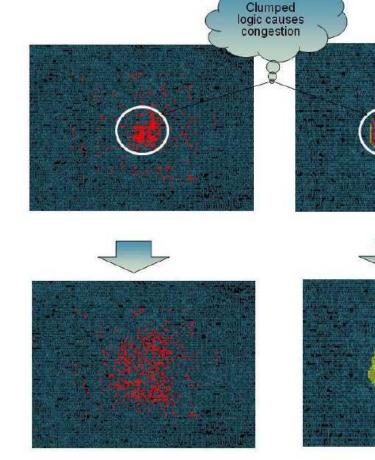
Morphing:


- Incrementally estimates and optimizes congestion
- Uses native, real-time congestion estimation

Global whitespace distribution:

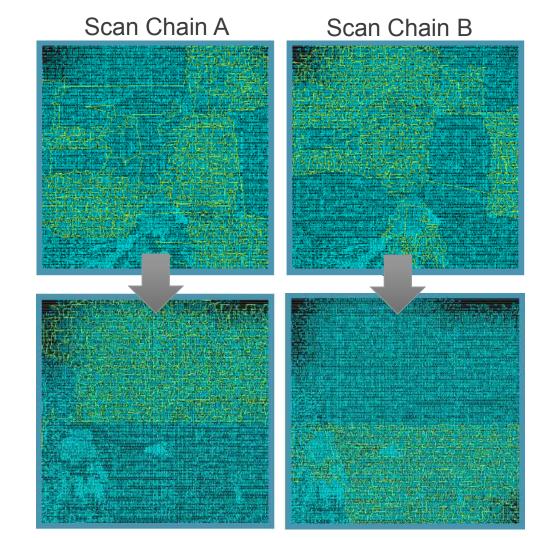
- Re-distribute "whitespace" around placed instances to reduce pin access problem
- Amount of whitespace is calculated based on
 - Instance pin density, Local congestion severity, Global interconnect

Congestion & placement aware IOpt:


- Dynamically estimate congestion for every move
- Incrementally place new gates to reduce congestion
- Structuring and cell selection is congestion-aware and placement-aware

Congestion driven DFT logic placement

- Challenges:
 - Due to dense connectivity, standard placement algorithms can "clump" compression logic causing local Routing congestion
- Solution:
 - Specialized DFT aware congestion driven placement algorithms can mitigate congestion without disturbing signal path placement

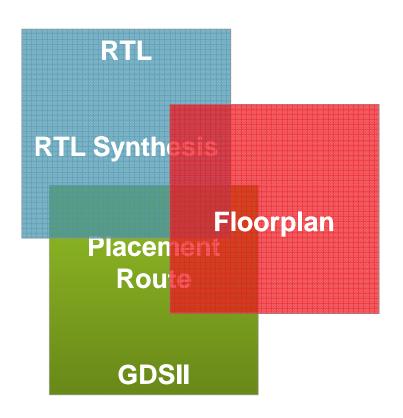


Physical-aware Scan Chain Optimization Superior results

- Challenges:
 - Lack of physical information
 - Scan chain congestion
 - Impact on timing/SI

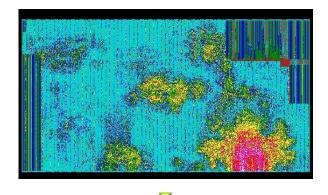
Solution:

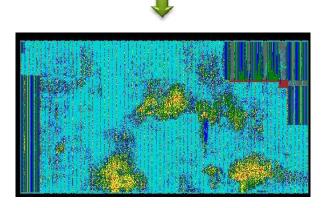
- Scan chain built using DEF physical information
- Proven to reduce scan wire congestion by 40%
- Improved balancing
- Shorter physical scan chains, reducing area and wire congestion



Synthesis capabilities for advanced node

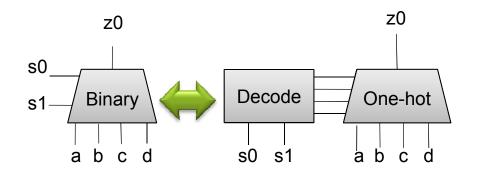
Leakage optimization (MVt opto) for advanced nodes	 Enhanced multi-Vt cell selection during Global Mapping Leakage power more significant at 28nm and below
Improved slew	 Enhanced slew degradation estimation in RC timing analysis
degradation estimation	 Multi-threaded RC timing calculation to deliver fast runtime with accuracy
Layer assignment estimation & modeling	 Estimate layer assignments for critical nets Pass forward layer assignment assumption to physical implementation to ensure convergence
Advanced OCV (on- chip-variation) support	 Logic depth based cell delay variation (derating) More accurate than plain OCV with common cell derating value for all cells

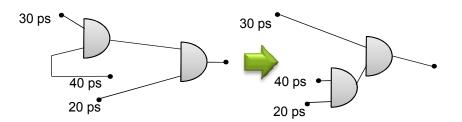

Evolution of Design Flow for a Better Timing Closure



- Physical aware logic synthesis
 - Incremental congestion prevention
 - Structural datapath support
 - Physical aware clock gating
 - Physical aware logic structuring
 - Physical aware mapping

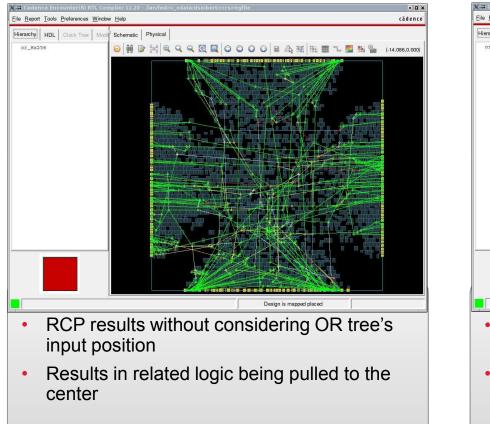
Physical Aware Structuring Minimizes Congestion & Improves Timing

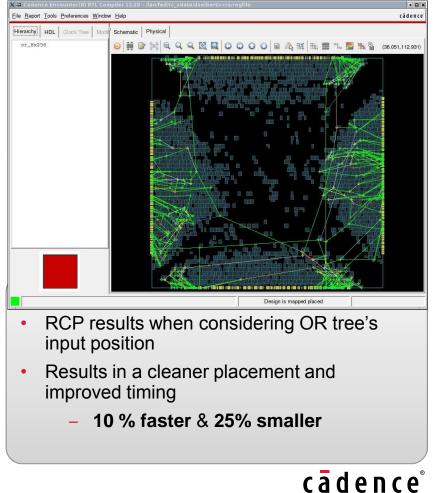

- Target high congestion structures
 - Cross bars
 - Barrel shifters
 - Memory connected Mux chains



^{17 © 2013} Cadence Design Systems, Inc. All rights reserved.

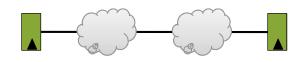
- Physical aware
 - Tradeoff Mux structuring

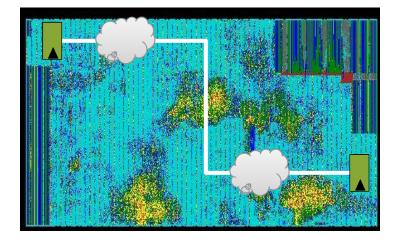

- Physical aware
 - Tree rebalancing (huge inputs)



cādence[°]

Improved Timing & Cleaner Placement Physical Aware Re-Structuring


- Targets OR trees with some shared sub functions
 - Example shown: Four inputs on four sides of module, eight 256-bit OR trees



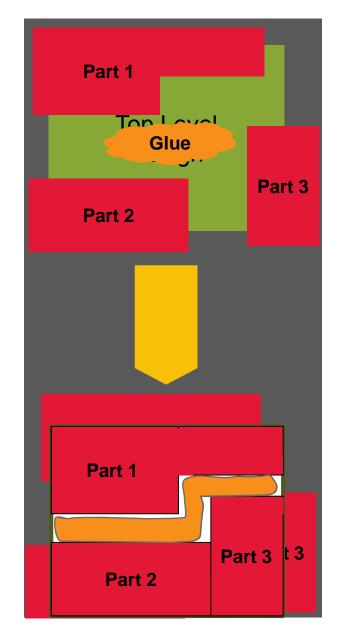
Physical Aware Mapping Optimized Timing with Increased Correlation

- Initial map is purely logical
 - "Logic schematic" with wire estimation
 - Long wires not predictable
 - Enables initial placement

- Map w/ placement has register location
 - Automatic path requirement adjustment
 - Mapping w.r.t. long wire-aware timing
 - Logic "squeezed" to meet timing

Hierarchical Flow

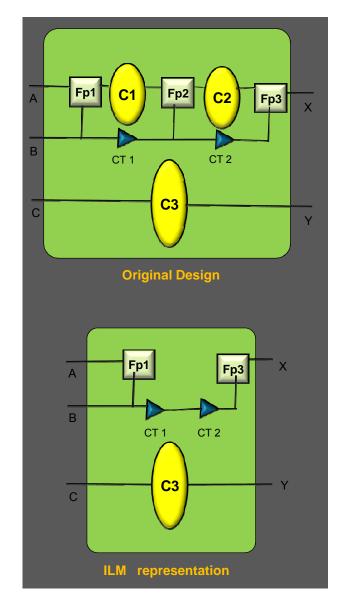
Partitioning/Prototyping


- Generate partitions from top level design
 - Logical and physical partitions
- Create timing budget for individual partitions
- Optimize each partition

Assembling top level design

- Assemble partitions together
- Various models can be used to represent partitions
 - Lib/LEF
 - Full netlist/def/spef
 - ILMs

Performing Top level timing closure


- Interface logic optimization

cādence[®]

Benefits of using ILMs

- Highly accurate representations of the original design.
 - ILMs do not abstract, they simply discard what is not required for modeling boundary timing.
- Small memory footprint and runtime
 - Up to 90% of the logic can be discarded
- Can be adapted easily to any stage of the design process
- Easy to replace one ILM with another

Summary

- Advanced technology nodes pose new challenges for RTL Synthesis
- Physical effects of interconnect and congestion need to be modeled at RTL for a convergent, predictable flow
- Logic structuring and global mapping need to be physically aware in order to generate layout friendly netlist
- Hierarchical methodology needs to evolve to manage complexity while providing accurate modeling in a bottomup flow

cādence®