
Rouwaida N. Kanj, Sani R. Nassif
IBM Austin Research Labs

11501 Burnet Road, Austin, TX 78758
{rouwaida,nassif}@us.ibm.com

Fadi J. Kurdahi, Ahmed M. Eltawil, Young-Hwan Park
EECS Department, University of California

Irvine, CA 92697-2625
{kurdahi,aeltawil,younghwp}@uci.edu

System-Level SRAM Yield Enhancement

Abstract

It is well known that SRAM constitutes a large portion of
modern integrated circuits, with 80% or more of the total
transistors being dedicated to SRAM in a typical
processor or SOC. Thus yield management of these
SRAMs plays a crucial role in insuring design success.
This paper demonstrates analysis techniques to model
and improve the yield of SRAMs at the system level by
proper accounting for the coupling between the
algorithms targeted for an SOC and the performance,
power, and yield of SRAMs used in implementing the
algorithms. It is shown that coupling the algorithm and
SRAM design phases provides significant advantages over
independent optimization.

1. Introduction

With continued technology scaling, an increasing
proportion of integrated circuits implements SRAM in the
form of caches, register files, or other structures. With
that same scaling, however, comes an increasing
susceptibility of SRAM to manufacturing variations, the
impact of which results in SRAM failures at the bit, row,
or column levels. Such failures have existed for many
years, but have been predominantly caused by defects
causing topological changes (short and/or opens) in the
SRAM circuit, thus rendering certain parts inoperable.
More recently, parametric fluctuations in quantities such
MOS device threshold voltages have resulted in SRAM
circuits which are topologically correct, but that fail to
meet performance or reliability metrics. In [4] for
example, the authors illustrate an analysis methodology
that can be used for the independent yield enhancement of
an SRAM. While clearly an important and relevant
problem for general design, creating a “perfect” SRAM is
very difficult and expensive. Thus we examine the
relationship between (a) the yield specifications placed on
an SRAM, which are typically stated as the probability of
a bit, row, or column not operating correctly, and (b) the
needs, assumptions and requirements of the algorithms
executing on the design. Clearly, if these needs are
ignored, then the SRAM is required to provide the correct
result 100% of the time, and the SRAM designer will then
have to use any of several techniques (the most popular of
which is redundancy [1]) in order to insure that the
SRAM will meet these requirements. If the algorithm
implemented has the ability to accept and possibly even
correct memory errors, however, then it becomes possible

to co-design the algorithm and the memory
simultaneously and thereby reduce the burden the SRAM
designer faces with technology scaling and the increasing
level of ensuing manufacturing variability.

The remainder of this paper is structured as follows.
Section 2 introduces a parametric yield model of SRAMs
and addresses the need for circuits/systems-level co-
design. Sections 3 and 4 introduce two system-level case
studies. Section 5 highlights the advantages of exploiting
the system-level design space. Finally, conclusions are
drawn in Section 6.

2. Problem Formulation

One of the most prominent challenging by-products of
feature scaling that is proving extremely difficult to
manage is random dopant fluctuations (RDF), which
results in variations of transistor threshold voltages that
are in close proximity of each other (intra-die variation).
In advanced technologies, the concentration of dopants is
down from several thousands per transistor to literally a
few hundred. These atomic-level intrinsic fluctuations
cannot be eliminated by external control of the
manufacturing process and are expected to severely affect
minimum geometry transistors (which are used
extensively in SRAM cells) leading to cell failures and
yield degradation. These failures are manifested as either
an increase in the cell access time or unstable read and
write operations. In this paper, we will focus on
parametric failures, which are failures caused by process
variations that can be lumped into an effective change in
the individual transistor threshold voltage. Since for a
single cell the transistors are in close proximity, RDF will
be the primary cause of mismatches between the
transistors. For a standard 6T SRAM cell, the Vt

fluctuations (δVt) are considered as six independent
Gaussian random variables with mean=0 [4](one for each
transistor). The assumption of independency is justified
since the placement and the number of dopants in each
transistor is independent and is a function of that specific
transistor geometry. The standard deviation of Vt due to
RDF depends on the specific manufacturing process,
doping profile and transistor geometry. Equation (1)
relates the δVt of a generally sized transistor as referred to
a minimum sized transistor with δVt=δVt0

δVt=δVt0
W

W
L

L minmin (1)

1 The corresponding Gaussian approximations rely on mean and
STD values derived from the same set of Monte-Carlo simulations.
The results shown are for VDD=1.0V.

Given equation (1), we can consider a function

)...(1 nxxfy = where nxx ..,1 are independent
Gaussian random variables with mean nηη ..,1 and STD

nσσ ..,1 . It was shown in [4], that the mean and STD of y
can be estimated using multi-variable Taylor-series
expansion to be

2
1 2

1
2

1)(
)..,(

2
1)..,(i

n

i
i

n
ny

i
x

xxff σηηµ
η

∑ = ∂
∂+=

2

2

1 2
1

2

)(
)..,(

2
1

i
n

i
i

n
y

i
x

xxf σσ
η

∑ = 












∂
∂=

(2)

The probability distribution function (PDF) of y will
also be Gaussian with the calculated mean and STD. To
illustrate this concept, a Monte Carlo simulation was
performed on a standard 6T SRAM cell that is shown in
Figure 1. The parameters of the circuit are detailed in
Table 1. Note that the choice of the control circuitry and
device dimensions is for purposes of illustration only, and
the conclusions should be generalizable to any other
memory circuit. The simulation uses the Berkeley 70nm
predictive transistor models [3] as a basis, where we
assumed that the Vt of the SRAM cell transistors follow a
Gaussian distribution, with the same distribution function
parameters as those proposed in [2]. Figure 2 depicts the
results of the simulation for the both read and write access
time assuming a nominal voltage of 1.0 volts and a
nominal read(write) access time of 45ps(36.5ps). The
effect of variations is obvious in the Gaussian spread of
the access time.

Table 1 Device dimensions for the circuit presented in Fig. 1

Precharge (W/L)P = 1/0.07
Write_control (W/L)N = 2/0.07

(W/L)P = 0.258/0.07 SRAM cell (W/L)N =0.15/0.07

The question at hand now, is, given the fact that

variations will cause mismatches between transistors that
lead to memory faults; can these issue be alleviated by
exploiting the system-level design space to allow enough
redundancy in the system for it to tolerate a bounded
amount of variation-induced errors?

To illustrate this new design space, Monte Carlo
simulations were performed where the cell access time for
both read and write is tested under realistic manufacturing
variations. For example in read mode, a specific access
time is required and the cell is considered to fail, if that
access time is not honored. The same methodology
applies for write operations. Figure 3 illustrates the
simulation setup where the output of the simulation is (a)
a matrix of cell failure rate as a function of delay and
VDD, and (b) a vector of power as a function of VDD.

Figure 3. Simulation setup

0

200

400

600

800

1000

1200

25 35 45 55 65

de lay (ps)

oc

cu
re

nc
es

w rite pd f

gaus s ian

0

200

400

600

800

1000

1200

25 35 45 55 65

delay(ps)

oc

cu
re

nc
es

read pdf

gaussian

Figure 2 Read and write PDFs obtained by
smoothing the Monte-Carlo simulations.1

φ
More
Cells

SRAM Cell

Data_In

write_control

Bitline Precharge

PL

NL

SL SR
NR

PR

BLT BLC
L R

WL

• WL: word line
• BLT: true bit line
• BLC: complementary bit line
• L: left storage node
• R: right storage node

φ
More
Cells

SRAM Cell

Data_In

write_control

Bitline Precharge

φ
More
Cells

SRAM Cell

Data_In

write_control

Bitline Precharge

PL

NL

SL SR
NR

PR

BLT BLC

PL

NL

SL SR
NR

PR

BLT BLCBLT BLC
L R

WL

• WL: word line
• BLT: true bit line
• BLC: complementary bit line
• L: left storage node
• R: right storage node

Figure 1 6T SRAM Cell

SPICE
70nm
Berkeley

 Models

φ
More
Cells

SRAM C ell
Data_In

write_control

Bitline Precharge
φ

More
Cells

SRAM C ell
Data_In

write_control

Bitline Precharge

 Monte Carlo
simulation V

 d
 d
 delay

 Error
 probability

Gaussian Vt

Power vs Vdd

The simulation was performed for a range of supply
voltages and a range of access times as shown in Figure 4
and Figure 5 which respectively depict the contour lines
of equal failure probability for a write and read operation.
The contour lines depict the following cell failure
probabilities: 10-4, 10-3, 1, 5, and 10%. From the graphs, it
becomes clear that read operations are more susceptible to
failures under the assumptions made in this work.

The interesting observation to make based on these
graphs is the large design space that is available between
the contour lines representing 10-4% error (the current
target for most applications) and 1% error. For example,
to operate at 10-4%, the only possible operating point is
1.1 volts at a delay of 65 ps. While if we relax the error
requirements to 1% the entire design space bounded by
the 1% contour is now available allowing operation –for
example– at 0.95 volt with the same 65 ps delay. This
expanded design space allows for many tradeoffs such as
decreasing power consumption via voltage scaling, or a
reduction in the memory correction circuits (such as ECC
and BIST/BISR) necessary to protect against memory
faults. In the following sections we will explore the
feasibility of designing defect tolerant systems that can
tolerate up to 1% errors in memory. Specifically we will
present two cases studies, one based on wireless
communications and the other based on multimedia
applications with the common theme that both
applications are by nature redundant and that the system
can make use of this redundancy to co-design the
algorithms and the memory structure.

Figure 4 Equi-probable Contours for Write Operation

3. Case Study I: A Wireless System
 Wireless systems are a perfect example to showcase
the concepts of system redundancy because by nature the
data stream is protected against the harsh wireless channel
through channel coding. Furthermore, a large portion of
on-chip memories are typically dedicated to buffering
data. By understanding the error statistics of integrated
memories, we can tolerate using less than perfect

memories, by inserting or exploiting the controlled
redundancy available in the data stream.

Figure 5 Equi-probable Contours for Read Operation

 Figure 6 illustrates a channel coding configuration
that is typically encountered in wireless communication
applications. For most wireless application this encoding
process is performed by either a Viterbi or a Turbo
encoder, however a multitude of channel codes exist that
address this issue. By coding, it is implied that
redundancy is added to the signal to increase it’s
robustness against impairments in the transmission
medium. Turbo codes are currently used in many systems
due to their robust performance and the ability to come to
within a fraction of a dB of the theoretical ideal solution.
 Performance of channel decoders is specified by
curves that indicate how much energy should be
transmitted to guarantee a specific quality of service
(QoS). Coding gain refers to the savings in average bit
energy required to achieve a specific BER. For example,
it is possible to achieve a coding gain of up to 20 dB
utilizing Turbo decoders. This coding gain comes at an
expense of an increase in the redundancy inserted in the
original data (the code rate) and an increase in the logic
complexity of the circuits required to decode the received
bit stream.
 When discussing memory faults with this background
of wireless communication one can immediately extract a
synergy in approach. In memory architectures,
redundancy, either data redundancy (ECC) or hardware
redundancy (BIST/BISR) are used to protect against
manufacturing faults, whereas in wireless communication
this redundancy is inherent to the method the data stream
is communicated. This inherent redundancy can be
exploited to allow key memories within an SoC to be
defect tolerant. Obviously, not all memories can be defect
tolerant, for example, control memories that supervise the
operation of the SoC have to be error free, similarly
program memory for the processor have to be error free.
This is often achieved at the extra cost of increasing the
supply voltage (hence power) or memory correction
circuitry. However, data buffering memories can be
defect tolerant, since the data stored within these

memories will be processed eventually by the channel
decoder.

Figure 6 Channel Coding

A. System Setup
 To quantify the promise of using system redundancy
to compensate for circuit faults a simulation was setup to
test different system coding schemes with various error
configurations in the memory used to store data samples.
The system setup is illustrated in Figure 7. A random bit
generator is used to generate data bits that are fed to a
channel encoder, the output is then fed into an AWGN
channel to simulate a channel. The resulting samples are
then scaled and passed to a quantizer. This process
mimics the performance of an automatic gain control
circuit followed by an analog to digital converter. The
quantized samples are then stored into a memory where
contents of bit locations can be flipped according to any
required statistics (e.g. uniform or Poisson etc.). This part
of the simulation is intended to simulate data memory
faults. Finally the output is fed into the appropriate
decoding scheme and the generated bit stream is
compared to the original transmitted stream to generate a
final bit error rate measurement for different signal to
noise (SNR) ratios. The decoder under test is a rate ½
Turbo decoder with a programmable interleaver memory
depth. Note that a larger interleaver depth implies that the
decoding algorithm handles a larger data-block at a time.
The constraint length of the encoders is 4.

B. Simulation Results
 Three simulation sets were performed with 256, 512
and 1024 bits constituting the interleaver memory which
is assumed to be error free. The data buffering memory on
the other hand is the device under test and is corrupted
uniformly with 1% error. The bit width is assumed to be 5
bits. In all cases, random information bits are generated
and passed through the system described in Figure 7.
 Figure 8 summarizes the simulation results with the
following simulation parameters:
 a) P=0% memory errors for N=256, 512 and 1024,
 b) P=1% errors for N=512 and 1024.
In this simulation, we are comparing the performance of
the baseline system with N=256 with other systems where
the interleaver depth is increased as a means of protection
against memory faults.

 It is interesting to note that the configuration with
(P=0, N=256) offers the worst performance. In fact by
increasing the system redundancy to N=512 and
introducing 1 % errors the faulty system performs better
in terms of BER. Finally, it is also noteworthy to see that
by further increasing the system redundancy to N=1024,
The faulty system (P=1%, N=1024) performs almost
identical to the ideal system (P=0, N=512).

Figure 7 Simulator Setup

 These results stress the fact that rather than striving to
achieve error free operation, co-operative redundancy
utilizes redundancy that is inherently available in the
system to mask or minimize the effects of memory errors
for specific structures. Co-operative redundancy for
wireless communication applications is particularly suited
for large data storage memories since eventually all data
samples are processed by the channel decoder which
utilizes this redundancy to meet a specific SNR or BER
metric. This approach leads to significantly larger error
tolerance than any technique currently used. This is
evident in the fact that the Turbo decoder based system
discussed in this paper can easily tolerate 1 % errors and
in fact can meet all system specifications (at 10-5 BER).

−5 −4.5 −4 −3.5 −3 −2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

P=0%, N=256
P=0%, N=512
P=1%, N=512
P=0%, N=1024
P=1%, N=1024

Figure 8 Performance Comparison

 Source
Coding Channel

Coding Modulation
0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1

Code Rate k /n =1 /2
Channel

Source
DeCoding Channel

DeCoding DeModulation
0 1 1 0 0 1 0 1 0 X 1 1 0 X 0 1 1

Code Rate k / n=1 /2 Errors

 Rando
Bit

Generator

Channel
Coding AWGN

Quantize
And

Scale

Memory
Model

Error
Statistics

Channel
Decoder

BER
Calc .

1 bit 1 bit
Float

5 bit 5 bit1 bit

4. Case Study II: An H.264 Video Decoder
 Multimedia is another perfect example that presents a

set of challenging applications targeting SoCs, and
happens to be naturally error tolerant. H.264 [6] is
emerging as the most promising video standard with
higher quality, better compression and many features.
Figure 9 illustrates a typical configuration for an H.264
Video codec.

Similar to communication systems, multimedia
systems also have inherent error resilience. In such
systems, the quality of an output image or sequence of
video frames is measured in terms of Peak Signal-to-
Noise Ratio (PSNR) which compares the output image(s)
to a reference set and computes the PSNR function as:

Where xi and yi are the pixels at location i of the output
and reference images, respectively and … denote the
summation over all the image pixel locations. Even in the
case of ideal transmission conditions, residual errors
occur due to quantization and/or filtering so systems
typically have less-than-perfect PSNR values. As a result,
standard compliance for key multimedia kernels such as
DCT does not require perfect signal recovery as
compliance criteria. In order to cope with imperfect signal
recovery, some multimedia systems have explicit error
resiliency built into the algorithms.

Figure 9 H.264 System

Video compression algorithms utilize two
characteristics of image sequences, spatial correlation and
temporal correlation. Motion compensation (inter
prediction) is the standard way to extract temporal
correlation from video and intra prediction uses spatial
correlation. The underlying assumption of motion
compensation is that scene change is due mainly to object
and camera motion and the difference between temporally
adjacent pictures is so small that many parts of the current
frame can be borrowed from previously decoded frames
which are stored in a memory called the decoded picture
buffer, or DPB. Inter prediction is the way to create a
prediction model from one or more previously encoded

video frames or fields. Since DPB stores decoded images,
it requires large memory space and can easily be the
dominant memory in SoC design of H.264 or other
similar standard such as MPEG-2 or MPEG-4 [5] which
also require reference picture buffer as large as 16Mb.
Therefore, our study is focused on the DPB.

In our experiments [7] we simulated both permanent
and transient errors. In this paper, we concentrate on
permanent errors only. More specifically, we concentrate
on parametric failures described in Section 2 since the
impact of those variations can be further amplified by
power management. In this case, it is possible to utilize
BIST engines to scan the memory upon power-up and
build a defect map for target memories [8] (the DPB in
this case). This map can be stored either locally or in
external memory (and cached in on demand). This defect
map permits the identification of locations where errors
exist and targets only those pixels stored in these
locations for repair.

In DPB, decoded YUV components which represent
Luma (brightness) and Chroma (color) of the image are
stored. In the 4:2:0 sampling format (‘YV12’), U and V
each have half the horizontal and vertical resolution of Y.
Each YUV component has 8 bit depth (in the simulated
H.264 decoder) and a total of 12 bits are used to make one
pixel because only one U and V components are
necessary for every four Y components.

While we recognize that many error concealment
schemes that attempt to overcome transmission errors rely
on both temporal and spatial redundancies, the temporal
components are more complicated to implement and
would require more elaborate schemes but at the cost of
more hardware and power consumption. This is certainly
an area of future research. Therefore, we limited our
scheme to use just adjacent pixels to rebuild defective
pixels and several schemes are applied to find best
performance in terms of PSNR and compared visually.
Those techniques are described in details in [7]. The
highest performance techniques were:
(1) Protecting the 4 Most Significant Bits (MSBs) of
memory: The MSBs of pixel values typically contain the
most useful information. Thus, it would make sense to
protect the MSB’s of each word in the memory. From an
implementation point of view protecting selected bits in a
word can be accomplished by column-wise banking.
(2) 8-pixel median image filtering: 8 neighboring pixels
are sorted by its values, two median pixels are chosen,
then mean of those two median is used to replace the
defective pixel. While this technique would increase the
hardware and/or performance requirements it would result
in only small increase in power consumption since only
the defective pixels will be processed (about 0.1mW of
power in 0.18µ [7]).
 Figure 10 and Figure 11 show the impact of those
techniques on the “Foreman” and “News” clips for
various bitrates when 3% errors are injected into the DPB

Decoded Picture
Buffer (DPB)

()2

2

10
255log10)(

ii yx
dbPSNR

−
=

to model parametric variations. We can derive two major
conclusions from the results shown in Figure 10 and
Figure 11. First, that either techniques can significantly

Figure 10 PSNR values for the “News” video clip

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

10.00 100.00 1000.00 10000.00

datarate(kps)

A
ve

ra
ge

 (Y
U

V)
 P

SN
R

(d
b

Decoded Image
Corrupted Image
4MSB protect
Filtering (Median)

Figure 11 PSNR values for the "Foreman" video clip

improve the PSNR quality of the corrupted output,
achieving what is generally accepted as good quality
output with PSNR values greater than 30db. Secondly,
that the absolute PSNR difference between the different
techniques and the uncorrupted image decreases as data
rates decrease and more quantization is applied in order to
meet those data rates. At 159kbps, for example, the
difference between the PSNRs of the uncorrupted video
and that of the filtered one is only a few dbs and a largely
imperceptible drop in quality is observed.

5. Power savings potential
These results obtained for both case studies (wireless
receiver and multimedia decoder) motivate us to consider
the expansion of the design space of both systems to
encompass more aggressive power/performance points.
Referring back to Figure 4 and Figure 5, we note that
depending on the application, and target performance, the
memory error rate floor can be raised to around 1-10%. In
this case, the aggressive design points allow the further
reduction of the supply voltage while maintaining the

same delay level, or alternatively, achieve lower delays at
the same voltage than before, or a combination of both.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1% 5% 10%

Acceptable error rate

po
w

er
 s

av
in

gs

0.001%

0.0001%

Figure 12. Power savings for different error floor
assumptions

Figure 12 shows the expected power savings between
non-aggressive and aggressive error floors assuming the
same delay targets. These savings can be over 38% when
comparing the 10% and 10-4% error floors.

6. Conclusion
This paper proposed a paradigm shift in system level
design. The inherent error resilience of many applications
and the implementation of system level,
manufacturability-aware techniques allows the
“absorption” and concealment of relatively large amounts
of system memory errors. Experimental results indicate
that this error tolerance can be exploited in order to
improve the power efficiency of the overall system.

7. References
[1] W. Maly, "Design Methodology for Defect Tolerant

Integrated Circuits," Proc. of CICC 1988.
[2] A.J. Bhavnagarwala, X. Tang, J.D. Meindl, “ The Impact

of Intrinsic Device Fluctuations on CMOS SRAM Cell
Stability”, IEEE JSSC, Vol. 36, #4, April 2001, pp. 658-
665

[3] “Berkeley Predictive Technology Model (BPTM)”,
http://www-device.eecs.berkeley.edu/~ptm/

[4] “Statistical Design and Optimization of SRAM Cell for
Yield Enhancement”, S. Mukhopadhyay, H. Mahmoodi,
and K. Roy, ICCAD 2004

[5] H. Arakida et. al. “A 160mW, 80nA Standby, MPEG-4
Audiovisual LSI with 16Mb Embedded DRAM and a
5GOPS Adaptive Post Filter”. Proc. ISSCC 2003. Paper
2.3.

[6] H.264 white paper, http://www.vcodex.com/h264.html
[7] Omitted for blind review
[8] Shoukourian, S.; Vardanian, V.; Zorian, Y.; SoC yield

optimization via an embedded-memory test and repair
infrastructure. Design & Test of Computers, IEEE Volume
21, Issue 3, May-June 2004 Page(s):200 – 207

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

10.00 100.00 1000.00 10000.00

data rate (kbps)

A
ve

ra
ge

 Y
U

V
P

NS
R

(d
b)

Decoded Image
Corrupted Image
4MSB protect
Filtering (Median)

