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System-Level SRAM Yield Enhancement 

Abstract 
 
It is well known that SRAM constitutes a large portion of 
modern integrated circuits, with 80% or more of the total 
transistors being dedicated to SRAM in a typical 
processor or SOC. Thus yield management of these 
SRAMs plays a crucial role in insuring design success. 
This paper demonstrates analysis techniques to model 
and improve the yield of SRAMs at the system level by 
proper accounting for the coupling between the 
algorithms targeted for an SOC and the performance, 
power, and yield of SRAMs used in implementing the 
algorithms. It is shown that coupling the algorithm and 
SRAM design phases provides significant advantages over 
independent optimization. 
 
1. Introduction 

With continued technology scaling, an increasing 
proportion of integrated circuits implements SRAM in the 
form of caches, register files, or other structures. With 
that same scaling, however, comes an increasing 
susceptibility of SRAM to manufacturing variations, the 
impact of which results in SRAM failures at the bit, row, 
or column levels. Such failures have existed for many 
years, but have been predominantly caused by defects 
causing topological changes (short and/or opens) in the 
SRAM circuit, thus rendering certain parts inoperable. 
More recently, parametric fluctuations in quantities such 
MOS device threshold voltages have resulted in SRAM 
circuits which are topologically correct, but that fail to 
meet performance or reliability metrics. In [4] for 
example, the authors illustrate an analysis methodology 
that can be used for the independent yield enhancement of 
an SRAM. While clearly an important and relevant 
problem for general design, creating a “perfect” SRAM is 
very difficult and expensive. Thus we examine the 
relationship between (a) the yield specifications placed on 
an SRAM, which are typically stated as the probability of 
a bit, row, or column not operating correctly, and (b) the 
needs, assumptions and requirements of the algorithms 
executing on the design. Clearly, if these needs are 
ignored, then the SRAM is required to provide the correct 
result 100% of the time, and the SRAM designer will then 
have to use any of several techniques (the most popular of 
which is redundancy [1]) in order to insure that the 
SRAM will meet these requirements. If the algorithm 
implemented has the ability to accept and possibly even 
correct memory errors, however, then it becomes possible 

to co-design the algorithm and the memory 
simultaneously and thereby reduce the burden the SRAM 
designer faces with technology scaling and the increasing 
level of ensuing manufacturing variability. 

The remainder of this paper is structured as follows. 
Section 2 introduces a parametric yield model of SRAMs 
and addresses the need for circuits/systems-level co-
design. Sections 3 and 4 introduce two system-level case 
studies. Section 5 highlights the advantages of exploiting 
the system-level design space. Finally, conclusions are 
drawn in Section 6. 
 
2. Problem Formulation 

One of the most prominent challenging by-products of 
feature scaling that is proving extremely difficult to 
manage is random dopant fluctuations (RDF), which 
results in variations of transistor threshold voltages that 
are in close proximity of each other (intra-die variation). 
In advanced technologies, the concentration of dopants is 
down from several thousands per transistor to literally a 
few hundred. These atomic-level intrinsic fluctuations 
cannot be eliminated by external control of the 
manufacturing process and are expected to severely affect 
minimum geometry transistors (which are used 
extensively in SRAM cells) leading to cell failures and 
yield degradation. These failures are manifested as either 
an increase in the cell access time or unstable read and 
write operations. In this paper, we will focus on 
parametric failures, which are failures caused by process 
variations that can be lumped into an effective change in 
the individual transistor threshold voltage. Since for a 
single cell the transistors are in close proximity, RDF will 
be the primary cause of mismatches between the 
transistors.  For a standard 6T SRAM cell, the Vt 

fluctuations (δVt) are considered as six independent 
Gaussian random variables with mean=0 [4](one for each 
transistor). The assumption of independency is justified 
since the placement and the number of dopants in each 
transistor is independent and is a function of that specific 
transistor geometry.  The standard deviation of Vt due to 
RDF depends on the specific manufacturing process, 
doping profile and transistor geometry. Equation (1) 
relates the δVt of a generally sized transistor as referred to 
a minimum sized transistor with δVt=δVt0 

δVt=δVt0
W
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_________________________________________________________________________

1 The corresponding Gaussian approximations rely on mean and 
STD values derived from the same set of Monte-Carlo simulations. 
The results shown are for VDD=1.0V. 

 
Given equation (1), we can consider a function 

)...( 1 nxxfy =  where nxx ..,1  are independent 
Gaussian random variables with mean nηη ..,1 and STD  

nσσ ..,1 . It was shown in [4], that the mean and STD of y 
can be estimated using multi-variable Taylor-series 
expansion to be  
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The probability distribution function (PDF) of y will 
also be Gaussian with the calculated mean and STD. To 
illustrate this concept, a Monte Carlo simulation was 
performed on a standard 6T SRAM cell that is shown in 
Figure 1. The parameters of the circuit are detailed in 
Table 1. Note that the choice of the control circuitry and 
device dimensions is for purposes of illustration only, and 
the conclusions should be generalizable to any other 
memory circuit. The simulation uses the Berkeley 70nm 
predictive transistor models [3] as a basis, where we 
assumed that the Vt of the SRAM cell transistors follow a 
Gaussian distribution, with the same distribution function 
parameters as those proposed in [2]. Figure 2 depicts the 
results of the simulation for the both read and write access 
time assuming a nominal voltage of 1.0 volts and a 
nominal read(write) access time of 45ps(36.5ps). The 
effect of variations is obvious in the Gaussian spread of 
the access time.   

 
Table 1 Device dimensions for the circuit presented in Fig. 1 

Precharge (W/L)P = 1/0.07 
Write_control (W/L)N = 2/0.07   

(W/L)P = 0.258/0.07 SRAM cell (W/L)N =0.15/0.07 
 

 
The question at hand now, is, given the fact that 

variations will cause mismatches between transistors that 
lead to memory faults; can these issue be alleviated by 
exploiting the system-level design space to allow enough 
redundancy in the system for it to tolerate a bounded 
amount of variation-induced errors? 

To illustrate this new design space, Monte Carlo 
simulations were performed where the cell access time for 
both read and write is tested under realistic manufacturing 
variations. For example in read mode, a specific access 
time is required and the cell is considered to fail, if that 
access time is not honored. The same methodology 
applies for write operations. Figure 3 illustrates the 
simulation setup where the output of the simulation is (a) 
a matrix of cell failure rate as a function of delay and 
VDD, and (b) a vector of power as a function of VDD.  

 
Figure 3. Simulation setup 
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Figure 2 Read and write PDFs obtained by 
smoothing the Monte-Carlo simulations.1  
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Figure 1 6T SRAM Cell 
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The simulation was performed for a range of supply 
voltages and a range of access times as shown in Figure 4 
and Figure 5 which respectively depict the contour lines 
of equal failure probability for a write and read operation. 
The contour lines depict the following cell failure 
probabilities: 10-4, 10-3, 1, 5, and 10%. From the graphs, it 
becomes clear that read operations are more susceptible to 
failures under the assumptions made in this work.  

The interesting observation to make based on these 
graphs is the large design space that is available between 
the contour lines representing 10-4% error (the current 
target for most applications) and 1% error. For example, 
to operate at 10-4%, the only possible operating point is 
1.1 volts at a delay of 65 ps. While if we relax the error 
requirements to 1% the entire design space bounded by 
the 1% contour is now available allowing operation –for 
example– at 0.95 volt  with the same 65 ps delay. This 
expanded design space allows for many tradeoffs such as 
decreasing power consumption via voltage scaling, or a 
reduction in the memory correction circuits (such as ECC 
and BIST/BISR) necessary to protect against memory 
faults.  In the following sections we will explore the 
feasibility of designing defect tolerant systems that can 
tolerate up to 1% errors in memory. Specifically we will 
present two cases studies, one based on wireless 
communications and the other based on multimedia 
applications with the common theme that both 
applications are by nature redundant and that the system 
can make use of this redundancy to co-design the 
algorithms and the memory structure.  

 

 
Figure 4 Equi-probable Contours for Write Operation 

3. Case Study I: A Wireless System  
 Wireless systems are a perfect example to showcase 
the concepts of system redundancy because by nature the 
data stream is protected against the harsh wireless channel 
through channel coding. Furthermore, a large portion of 
on-chip memories are typically dedicated to buffering 
data. By understanding the error statistics of integrated 
memories, we can tolerate using less than perfect 

memories, by inserting or exploiting the controlled 
redundancy available in the data stream.   

 
Figure 5 Equi-probable Contours for Read Operation 

 Figure 6 illustrates a channel coding configuration 
that is typically encountered in wireless communication 
applications. For most wireless application this encoding 
process is performed by either a Viterbi or a Turbo 
encoder, however a multitude of channel codes exist that 
address this issue. By coding, it is implied that 
redundancy is added to the signal to increase it’s 
robustness against impairments in the transmission 
medium. Turbo codes are currently used in many systems 
due to their robust performance and the ability to come to 
within a fraction of a dB of the theoretical ideal solution.  
 Performance of channel decoders is specified by 
curves that indicate how much energy should be 
transmitted to guarantee a specific quality of service 
(QoS). Coding gain refers to the savings in average bit 
energy required to achieve a specific BER. For example, 
it is possible to achieve a coding gain of up to 20 dB 
utilizing Turbo decoders. This coding gain comes at an 
expense of an increase in the redundancy inserted in the 
original data (the code rate) and an increase in the logic 
complexity of the circuits required to decode the received 
bit stream. 
 When discussing memory faults with this background 
of wireless communication one can immediately extract a 
synergy in approach. In memory architectures, 
redundancy, either data redundancy (ECC) or hardware 
redundancy (BIST/BISR) are used to protect against 
manufacturing faults, whereas in wireless communication 
this redundancy is inherent to the method the data stream 
is communicated. This inherent redundancy can be 
exploited to allow key memories within an SoC to be 
defect tolerant. Obviously, not all memories can be defect 
tolerant, for example, control memories that supervise the 
operation of the SoC have to be error free, similarly 
program memory for the processor have to be error free. 
This is often achieved at the extra cost of increasing the 
supply voltage (hence power) or memory correction 
circuitry. However, data buffering memories can be 
defect tolerant, since the data stored within these 



 

memories will be processed eventually by the channel 
decoder. 
 

 
Figure 6 Channel Coding 

A. System Setup  
 To quantify the promise of using system redundancy 
to compensate for circuit faults a simulation was setup to 
test different system coding schemes with various error 
configurations in the memory used to store data samples. 
The system setup is illustrated in Figure 7. A random bit 
generator is used to generate data bits that are fed to a 
channel encoder, the output is then fed into an AWGN 
channel to simulate a channel. The resulting samples are 
then scaled and passed to a quantizer. This process 
mimics the performance of an automatic gain control 
circuit followed by an analog to digital converter. The 
quantized samples are then stored into a memory where 
contents of bit locations can be flipped according to any 
required statistics (e.g. uniform or Poisson etc.). This part 
of the simulation is intended to simulate data memory 
faults. Finally the output is fed into the appropriate 
decoding scheme and the generated bit stream is 
compared to the original transmitted stream to generate a 
final bit error rate measurement for different signal to 
noise (SNR) ratios. The decoder under test is a rate ½ 
Turbo decoder with a programmable interleaver memory 
depth. Note that a larger interleaver depth implies that the 
decoding algorithm handles a larger data-block at a time. 
The constraint length of the encoders is 4.  
 
B. Simulation Results 
 Three simulation sets were performed with 256, 512 
and 1024 bits constituting the interleaver memory which 
is assumed to be error free. The data buffering memory on 
the other hand is the device under test and is corrupted 
uniformly with 1% error. The bit width is assumed to be 5 
bits. In all cases, random information bits are generated 
and passed through the system described in Figure 7.  
 Figure 8 summarizes the simulation results with the 
following simulation parameters:  
 a) P=0% memory errors for N=256, 512 and 1024,  
 b) P=1% errors for N=512 and 1024.  
In this simulation, we are comparing the performance of 
the baseline system with N=256 with other systems where 
the interleaver depth is increased as a means of protection 
against memory faults. 

 It is interesting to note that the configuration with 
(P=0, N=256) offers the worst performance. In fact by 
increasing the system redundancy to N=512 and 
introducing 1 % errors the faulty system performs better 
in terms of BER. Finally, it is also noteworthy to see that 
by further increasing the system redundancy to N=1024, 
The faulty system (P=1%, N=1024) performs almost 
identical to the ideal system (P=0, N=512).   
 

 
Figure 7 Simulator Setup 

 These results stress the fact that rather than striving to 
achieve error free operation, co-operative redundancy 
utilizes redundancy that is inherently available in the 
system to mask or minimize the effects of memory errors 
for specific structures. Co-operative redundancy for 
wireless communication applications is particularly suited 
for large data storage memories since eventually all data 
samples are processed by the channel decoder which 
utilizes this redundancy to meet a specific SNR or BER 
metric. This approach leads to significantly larger error 
tolerance than any technique currently used. This is 
evident in the fact that the Turbo decoder based system 
discussed in this paper can easily tolerate 1 % errors and 
in fact can meet all system specifications (at 10-5 BER).  
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Figure 8 Performance Comparison 
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4. Case Study II: An H.264 Video Decoder 
 Multimedia is another perfect example that presents a 

set of challenging applications targeting SoCs, and 
happens to be naturally error tolerant. H.264 [6] is  
emerging as the most promising video standard with 
higher quality, better compression and many features. 
Figure 9 illustrates a typical configuration for an H.264 
Video codec.  

Similar to communication systems, multimedia 
systems also have inherent error resilience. In such 
systems, the quality of an output image or sequence of 
video frames is measured in terms of Peak Signal-to-
Noise Ratio (PSNR) which compares the output image(s) 
to a reference set and computes the PSNR function as: 

Where xi and yi are the pixels at location i of the output 
and reference images, respectively and  …  denote the 
summation over all the image pixel locations. Even in the 
case of ideal transmission conditions, residual errors 
occur due to quantization and/or filtering so systems 
typically have less-than-perfect PSNR values. As a result, 
standard compliance for key multimedia kernels such as 
DCT does not require perfect signal recovery as 
compliance criteria. In order to cope with imperfect signal 
recovery, some multimedia systems have explicit error 
resiliency built into the algorithms.  
 

 
Figure 9 H.264 System 

Video compression algorithms utilize two 
characteristics of image sequences, spatial correlation and 
temporal correlation. Motion compensation (inter 
prediction) is the standard way to extract temporal 
correlation from video and intra prediction uses spatial 
correlation. The underlying assumption of motion 
compensation is that scene change is due mainly to object 
and camera motion and the difference between temporally 
adjacent pictures is so small that many parts of the current 
frame can be borrowed from previously decoded frames 
which are stored in a memory called the decoded picture 
buffer, or DPB. Inter prediction is the way to create a 
prediction model from one or more previously encoded 

video frames or fields. Since DPB stores decoded images, 
it requires large memory space and can easily be the 
dominant memory in SoC design of H.264 or other 
similar standard such as MPEG-2 or MPEG-4 [5] which 
also require reference picture buffer as large as 16Mb. 
Therefore, our study is focused on the DPB. 

In our experiments [7] we simulated both permanent 
and transient errors. In this paper, we concentrate on 
permanent errors only. More specifically, we concentrate 
on parametric failures described in Section 2 since the 
impact of those variations can be further amplified by 
power management. In this case, it is possible to utilize 
BIST engines to scan the memory upon power-up and 
build a defect map for target memories [8] (the DPB in 
this case). This map can be stored either locally or in 
external memory (and cached in on demand). This defect 
map permits the identification of locations where errors 
exist and targets only those pixels stored in these 
locations for repair. 

In DPB, decoded YUV components which represent 
Luma (brightness) and Chroma (color) of the image are 
stored. In the 4:2:0 sampling format (‘YV12’), U and V 
each have half the horizontal and vertical resolution of Y. 
Each YUV component has 8 bit depth (in the simulated 
H.264 decoder) and a total of 12 bits are used to make one 
pixel because only one U and V components are 
necessary for every four Y components.  

While we recognize that many error concealment 
schemes that attempt to overcome transmission errors rely 
on both temporal and spatial redundancies, the temporal 
components are more complicated to implement and 
would require more elaborate schemes but at the cost of 
more hardware and power consumption. This is certainly 
an area of future research. Therefore, we limited our  
scheme to use just adjacent pixels to rebuild defective 
pixels and several schemes are applied to find best 
performance in terms of PSNR and compared visually. 
Those techniques are described in details in [7]. The 
highest performance techniques were:  
(1) Protecting the 4 Most Significant Bits (MSBs) of 
memory: The MSBs of pixel values typically contain the 
most useful information. Thus, it would make sense to 
protect the MSB’s of each word in the memory. From an 
implementation point of view protecting selected bits in a 
word can be accomplished by column-wise banking.  
(2) 8-pixel  median image filtering: 8 neighboring pixels 
are sorted by its values, two median pixels are chosen, 
then mean of those two median is used to replace the 
defective pixel. While this technique would increase the 
hardware and/or performance requirements it would result 
in only small increase in power consumption  since only 
the defective pixels will be processed (about 0.1mW of 
power in 0.18µ [7]). 
      Figure 10 and Figure 11 show the impact of those 
techniques on the “Foreman” and “News” clips for 
various bitrates when 3% errors are injected into the DPB 
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to model parametric variations.  We can derive two major 
conclusions from the results shown in Figure 10 and 
Figure 11. First,  that either techniques can significantly 

Figure 10 PSNR values for the “News” video clip 
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Figure 11 PSNR values for the "Foreman" video clip 

improve the PSNR quality of the corrupted output, 
achieving what is generally accepted as good quality 
output with PSNR values greater than 30db. Secondly, 
that the absolute PSNR difference between the different 
techniques and the uncorrupted image decreases as data 
rates decrease and more quantization is applied in order to 
meet those data rates. At 159kbps, for example, the 
difference between the PSNRs of the uncorrupted video 
and that of the filtered one is only a few dbs and a largely 
imperceptible drop in quality is observed. 

 
5.  Power savings potential 
These results obtained for both case studies (wireless 
receiver and multimedia decoder) motivate us to consider 
the expansion of the design space of both systems to 
encompass more aggressive power/performance points. 
Referring back to Figure 4 and Figure 5, we note that 
depending on the application,  and target performance, the 
memory error rate floor can be raised to around 1-10%. In 
this case, the aggressive design points allow the further 
reduction of the supply voltage while maintaining the 

same delay level, or alternatively, achieve lower delays at 
the same voltage than before, or a combination of both. 
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Figure 12. Power savings for different error floor 
assumptions 

Figure 12 shows the expected power savings between 
non-aggressive and aggressive error floors assuming the 
same delay targets.  These savings can be over 38% when 
comparing the 10% and 10-4% error floors. 
 
6. Conclusion 
This paper proposed a paradigm shift in system level 
design. The inherent error resilience of many applications 
and the implementation of system level, 
manufacturability-aware techniques allows the 
“absorption” and concealment of relatively large amounts 
of system memory errors. Experimental results indicate 
that this error tolerance can be exploited in order to 
improve the power efficiency of the overall system.  
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