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Why Moore’s Law 1s important.
[ts not just the transistors 1t’s the wiring.
Limited by: (Design) ? no

Defects ? no longer
Lithography (Patterning)?




‘64 bits 1s probably beyond the limit of useful integration’
J. A. Morton, VP Electronics Technology, Bell Labs circa 1969, quoted by C. G. B Garrett
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Mid 70’s LSI had arrived (4KDRAM), Zilog Z80
Yields <50%
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Tohoku University, Prof. Ohmi,

‘solved’ the defect problem
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That left lithography as the key pacing technology
‘Everything gets better as we go smaller
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But now we are (getting) stuck

*Optical lithography 1s used for manufacture with mfs=wavelength/6

*All forms of cheating being employed
‘RET --—________
JImmersion " T"-- > D(X,y)
*Double exposure
*Double patterning
*Design for lithography

*Cost/mf may not continue to decrease
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wafer

EBL
*Still too slow
EUVL
*Still not ready
*NanoPrinting
*Curiously downplayed (defects cited as drawback)




Beyond 2015 - 2017
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What have we got that is
better to replace this?
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Leap ahead




MAPPER technology introduction

GDMAPPER

lithography

MAPPER builds a system with 13,000 parallel electron beams for 10 wph

I
|

Election souice

Collimator lens

Aperture array
[ Condensor lens array

Bean Blanker array

] Bean Stop array
=~ Beam Daflect or arr ay

. Lij ection lens array

Key numbers 22nm node:

#beams and data channels
Spotsize:

Beam current:
Datarate/channel

Acceleration voltage
Nominal dose

Throughput @ nominal dose
Pixel size @ nominal dose
Watfer movement

SEMATECH. Maskless Lithoaraphv and Multibeam Mask Writer Workshop May 2010

HVM pre-alpha
13,000 110

25 nm 35 nm

13 nA 0.3 nA
35Gbs 20 MHz

5 kV 5kV

30 uC/cm2 30 uC/cm?
10 wph  0.002 wph
3.5nm 2.25 nm

Scanning Static




Imprint Evaluations

& Full-field 38 nm Flash || |4 Routine Results:

critical layer (& » CDU within field <1.5nm
» LER <2.0nm
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30 nm storage class
memory device

~2.4 nm Feature
(Rogers et al, lllinois)

28 nm half-pitch |

(a) Master
RMS«0.22nm

16 nm half-pitch

{c) Replica2
RMS=0.40nm
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Why go smaller?

* Do transistors deliver more computation as
features shrink below 30nm?

* Inerconnects get worse (L,C, p.u.l. constant,
R p.u.l. increases). AND length tends to be a
function more of chip size than gate electrode

width

* Why not go 3-D (we already are in a
‘disruptive’ sense). Alleviates the interconnect

challenge




Avoid the topological tyranny of all
transistors in one plane.
Go upwards

« 3-D wiring enabled by CMP (been here since
the 90’s)

« 3-D arrays of transistors (3-DIC) comes in
various flavors:
— Chip stacking (already here)

« Edge connected
« Area connected using TSV’s

— Wafer Stacking (IBM, Tezzaron, MIT Lincoln Lab)
— Monolithic (Stanford University)




IBM: 3D ICs Roadmap

3D integration will be applicable a broad range of technologies and applications,
from wireless communication to multi-core microprocessors:

commanication NN
communication ;
stabilization : -

memory stacks

Via density 1 02

(pins/cm2) . 10 1o 105 108
Via size (um) 200 50 1:0 1 02

2007

3D Packaging High-density 3D | __




IBM: 3D vias specifications E

IBM (US) has developed different type of vias corresponding to different applications:
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2 pm
* High-density 3D via process

- Application: cache memory stack on
microprocessors to enhance computing

Spp— performances
» 3D Packaging via process - Via diameter < 1 um
- Application: wireless communications (SiGe = Interconnect density > 10° pins/cm2

power amplifiers) to reduce power consumption
- Via diameter ~ 50 — 100 um
= Interconnect density ~ 102 pins/cm2

Courtesy of IBM
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Tezzaron 3DIC Technology

Top Si typically thinned to < 10 um

Super-Contact

Dielectric(SIO2/SIN)

B GatePoly

== S5Ti (Shallow Trench lsolation)
B W (Tungsten contact & vias)
= Cu Interconnect (M1 - M5)

Cu Bondpoints (M6, Top Metal) l

Figure 1 — Cross-section diagram of two bonded wafers after thinning

Face-to-face Cu thermo-compression bonding

Two face-to-face bonded 130 nm bulk CMOS tiers
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re 5 — SEM photo of a two-wafer stack.

Tezzaron FaStack® Technology
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Figure 6 — SEM photo close-up of a Super-Contact.



3-D IC’s with unlimited upward extendability

Stanford University team

1111:Planes

\ GeGe
AN Gee

‘Nitride

“3nm




Al-Ge bonding at 435 “C for 30 min

Fig 6. SEM of an amray of polysilicon islands attached to a 510, substrate
using Al-Ge eutectic bonding at 435 °C. The excess Al-Ge in between the
1slands has been etched away.

Filip Crnogorac, Stanford University




Process to fabricate transistors on the upper levels
(Rajendran, PhD thesis, 20006)
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Dopant activation — Laser annealing (M. O. Thompson, Cornell Univ.)
Gate dielectric formation — LPCVD

resistance and poly depletion.




Summary

* Quite a bit longer
 And it's important that it does continue




