Security and Privacy of Machine Learning Algorithms

Sandip Kundu
National Science Foundation
on leave from
University of Massachusetts, Amherst

* Image - Created by Patrickss - Freepik.com
Machine Learning

Training Data -> Mathematical Model -> Decision/Prediction

Types of Machine Learning
- Unsupervised
- Supervised
- Reinforcement

Input Data -> Model (i can see a pattern) -> Apples, Pears

Environment
- State
- Action
- Reward

Agent

Model Trained
- Algorithm
- Processing
- Model Training
- OUTPUT

INPUT

isQED 2019
Major applications

Self-driving Cars

Cybersecurity

Healthcare

Facial Recognition

Speech Recognition
Self-driving Cars

- Cars incorporating systems to assist or replace drivers
 - Ex. automatic parking, Waymo

- Self-driving cars with ML infrastructure will become commonplace
 - Ex. NVIDIA DRIVE™ PX 2 – open AI car computing system

Healthcare Applications

- Diagnosis in Medical Imaging
- Treatment Queries and Suggestions
- Drug Discovery
- Personalized Medicine

Cybersecurity

Spam Filtering

Intrusion Detection System

Biometrics ID

Malware Detection

Signature - based

Anomaly - based

* https://www.tutorialspoint.com/biometrics/biometrics_overview.htm
Facial Recognition

- Secure Authentication and Identification
 - Apple FaceID
 - FBI database – criminal identification
- Customer Personalization
 - Ad targeting
 - Snapchat

* Posterscope, Ouividi EYE Corp Media, Engage M1 – GMC Arcadia

Taigman et.al., “DeepFace: Closing the Gap to Human-Level Performance in Face Verification”, 2014
Other Machine Vision Applications

- **Digital annotation** of real-world
 - Text, language recognition – E.g. Billboards, auto-translation
 - Geo-tagging Landmarks
 - Integration with other services – E.g. ratings for restaurant, directions

- **Augmented Reality**
 - **Gaming** – adaptive integration with real-world
 - **Augmented Retail** – E.g. Clothes Fitting
Speech Recognition

- Envisioned in science fiction since 1960’s
 - HAL 9000, Star Trek

- Natural Language Processing (NLP) has gained increased importance
 - Modeling large vocabularies, accents – translation, transcription services
 - Smartphones – Apple Siri, Google Assistant, Samsung Bixby
 - Home - Amazon’s Echo/Alexa,
 - IBM Watson

http://nlp.stanford.edu/~wcmac/papers/20140716-UNLU.pdf
Machine learning (ML) Process

- Data Acquisition
- Data Preparation
- Model Training
- Model Testing
- Model Deployment
Machine Learning Security and Privacy
Introduction

- ML algorithms in real-world applications mainly focus on **accuracy** (effectiveness) **or/and efficiency** (dataset, model size)
 - Few techniques and design decisions to keep the ML models **secure and robust**!

- Machine Learning as a Service (MLaaS) and Internet of Things (IoT) further complicate matters
 - Attacks can **compromise millions of customers’** security and privacy
 - Concerns about **Ownership** of data, model
ML Vulnerabilities

- Key vulnerabilities of machine learning systems
 - ML models often derived from **fixed datasets**
 - Assumption of similar distribution between training and real-world data
 - **Coverage** issues for complex use cases
 - Need **large datasets, extensive data annotation, testing**

- Strong adversaries against ML systems
 - ML algorithms **established** and **public**
 - Attacker can leverage ML knowledge for **Adversarial Machine Learning (AML)**
 - **Reverse engineering** model parameters, test data – **Financial incentives**
 - **Tampering** with the trained model – **compromise security**
Classification of Security and Privacy Concerns

- **Attack Influence**
 - *Causative* – manipulate *training data* to *introduce* vulnerability
 - *Exploratory* – *find and exploit* vulnerability during *classification*

- **Attack Specificity**
 - *Targeted* – *focused* on specific or small set of points
 - *Indiscriminate* – *flexible* goals

- **Security Violation**
 - *Confidentiality* – *extract* model *parameters* or *private data*
 - *Integrity* – *compromise* model to produce false positives/negatives
 - *Availability* – *render* model *unusable*
Security and Privacy Concerns

Confidentiality
- Get Data
 - Model Inversion
- Prepare Data
- Train Model
 - Poisoning attack
- Model Testing

Integrity
- Train Model
 - Evasion attack
- Deploy Model
 - Model Extraction

Availability
- Deploy Model

Confidentiality, Integrity, Availability

Model Inversion
Get Data
Prepare Data
Train Model
Model Testing
Deploy Model
Confidentiality
Training Data Confidentiality

- Training data is **valuable** and **resource-intensive** to obtain
 - Collection of **large datasets**
 - Data **annotation** and **curation**
 - Data **privacy** in critical applications like healthcare
- Ensuring training data **confidentiality** is **critical**
Confidentiality of Machine Learning Model

- Ensuring **confidentiality** of ML model is **critical**
 - Model **IP ownership** - primary source of value for company/service
 - Cloud-based MLaaS models – highly lucrative for attackers
 - Model confidentiality also ensures training **data privacy**

- **Attacks**
 - **Model Extraction Attack**: Extract **model parameters** via querying the model. Generate equivalent or near-equivalent model.
 - **Model Inversion Attack**: Extract **private and sensitive inputs** by leveraging the outputs and ML model.
Model Extraction

- **Goal:** Adversarial client learns close approximation, f', of f using as few queries as possible
 - Service provider prediction APIs themselves used in attack
 - APIs return extra information – **confidence scores**

 \[
 f'(x) = f(x) \text{ on } 100\% \text{ of inputs} \\
 100s-1000's \text{ of online queries}
 \]

Extraction Countermeasures

- **Restrict information** returned
 - E.g. do not return confidence scores
 - **Rounding** – return approximations where possible

- **Strict query constraints**
 - E.g. disregard incomplete queries

- **Ensemble methods**
 - Prediction = aggregation of predictions from multiple models
 - Might still be susceptible to *model evasion* attacks

- Prediction API minimization is not easy
 - API should still be useable for legitimate applications

Model Inversion Attack

- **Optimization goal**: Find inputs that maximize returned confidence value to infer sensitive features or complete datapoints from a training dataset
 - Exploits confidence values exposed by ML APIs

An image recovered using a new model inversion attack (left) and a training set image of the victim (right). The attacker is given only the person’s name and access to a facial recognition system that returns a class confidence score.

* Fredrikson et.al., “Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures.”, 2015
Privacy of the Training or Test Data

- Extracting patients’ genetics from **pharmacogenetic dosing models**
 - **Queries** using known information – E.g. demographics, dosage
 - **Guess** unknown information and check model’s response - assign weights
 - Return guesses that produce **highest confidence score**

Inversion Countermeasures

- Incorporate model inversion metrics to increase robustness
 - Identify sensitive features
 - Analyze effective feature placement in algorithm – E.g. sensitive features at top of a decision tree maintain accuracy while preventing inversion from performing better than guessing
 - Approximate/Degrade confidence score output – E.g. decrease gradient magnitudes
 - Works against non-adapting attacker

- Ensuring privacy needs to be balanced against usability
 - Privacy Budget

- Differential Privacy mechanisms using added noise
 - Might prevent model inversion
 - Risk of compromising legitimate results in critical applications
Integrity
Introduction

- Ensuring **Integrity** of a Machine Learning model is **difficult**
 - Dependent on **quality** of training, testing datasets
 - Coverage of corner cases
 - Awareness of adversarial examples
 - **Model sophistication** – E.g. small model may produce incorrect outputs
 - **Lifetime management** of larger systems
 - Driverless cars will need constant updates
 - Degradation of input sensors, training data pollution

- Adversarial examples may be **Transferable** *
 - Example that fools Model A might fool Model B
 - Smaller model used to find examples quickly to target more sophisticated model

Integrity Attacks

- Adversary can cause misclassifications of attacks to appear as normal (false positives/negatives)
 - Attack on training phase: Poisoning (Causative) Attack: Attackers attempt to learn, influence, or corrupt the ML model itself
 - Compromising data collection
 - Subverting the learning process
 - Degrading performance of the system
 - Facilitating future evasion
 - Attack on testing phase: Evasion (Exploratory) Attack: Do not tamper with ML model, but instead cause it to produce adversary selected outputs.
 - Finding the blind spots and weaknesses of the ML system to evade it
Adversarial Detection of Malicious Crowdsourcing

- Malicious crowdsourcing, or crowdturfing used for tampering legitimate applications
 - Real users paid to promote malicious intentions
 - Product reviews, Political campaigns, Spam

- Adversarial machine learning attacks
 - Evasion Attack: workers evade classifiers
 - Poisoning Attack: crowdturfing admins tamper with training data

Physical Perturbations

- Adversarial perturbations detrimentally affect Deep Neural Networks (DNNs)
 - Cause misclassification in critical applications
 - Requires some knowledge of DNN model
 - Perturbations can be robust against noise in system

- Defenses should not rely on physical sources of noise as protection
 - Incorporate adversarial examples
 - Restrict model information/visibility
 - **DNN Distillation** – transfer knowledge from one DNN to another
 - **Gradient Masking**

Papernot et.al., “Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks”, 2015.
Adversarial Attacks Against ASR DNNs

- Automatic Speech Recognition (ASR) and Natural Language Understanding (NLU) increasingly popular – E.g. Amazon Alexa/Echo
 - Complex model = Large parameter space for attacker to explore

- Attacker goals
 - Psychoacoustic hiding – perceived as noise by human
 - Identify and match legitimate voice features
 - Pitch, tone, fluency, volume, etc
 - Embed arbitrary audio input with a malicious voice command
 - Temporal alignment dependencies add complexity
 - Environment/ System variability can affect attack
 - Software tools like Lyrebird can prove useful

Lea et.al., “Adversarial Attacks Against Automatic Speech Recognition Systems via Psychoacoustic Hiding”, 2018
Defenses Against AML

- **Evasion**
 - Multiple classifier systems (B. Biggio et al., IJMLC 2010)
 - Learning with Invariances (SVMs)
 - Game Theory (SVMs)

- **Poisoning**
 - Data sanitization (B. Biggio et al., MCS, 2011)
 - Robust learning (PCA)
 - Randomization, information hiding, security by obscurity

- **Randomizing collection of training data (timings / locations)**
 - using difficult to reverse-engineer classifiers (e.g., MCSs)
 - denying access to the actual classifier or training data
 - randomizing classifier to give imperfect feedback to the attacker (B. Biggio et al., S+SSPR 2008)
Availability
Model/ Dataset Dissemination

- Model access can be in 3 forms
 - **Local** – Smartphone AI NPUs
 - **Cloud** – Amazon SageMaker, Microsoft Azure ML
 - **Hybrid** – Federated ML

- Training datasets difficult to generate
 - **Open datasets** – useful for small startups
 - Lack details, annotations
 - **Commercial datasets** – no incentive to share
 - Provides large advantage for provider

Attacker Goals

- Degrade learner’s performance
 - Man-in-the-middle attack during Online Training
 - Generate false positive/negatives for valid inputs

- Delay output availability in time-critical applications
 - Driverless cars

- DDoS attacks on Cloud-based ML models may affect millions of customers

- Access and timing control needed
 - Authentication of training sources
 - Default defensive response for delayed output
Federated ML

- Allows edge devices to update model
 - **No centralized data**
 - Training data stays **local**
 - **Averaging** to generate new shared model
 - *Secure Aggregation* needed
 - Issue of up-to-date access across all connected devices
 - Bandwidth, latency, scheduling
 - Cross-compatibility with different models for same application is difficult

- Still in development

Source: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
Ensuring Future Robustness of Machine Learning Model
Future Research Areas

- Complexity of Machine Learning itself an issue
 - New attacks models constantly emerging – *timely detection* critical
 - Generation and incorporation of **Adversarial Examples**
 - **Data Privacy** is crucial to enhance ML security
 - *Differential Privacy* has tradeoffs
 - *Homomorphic Encryption* still nascent

- Security introduces *overhead* and can affect performance
 - **Optimizations** needed to ensure ML efficiency

- Tools to increase robustness of Machine Learning need research
 - *Unlearning, re-learning*
 - *ML Testing*
 - *Sensitivity Analysis*
Unlearning and Re-learning

- Ability to unlearn is gaining importance
 - Pollution attacks or carelessness – Mislabeling and Misclassification
 - Large changing datasets difficult to maintain
 - Anomaly detection not enough
 - EU GDPR regulations – Privacy
 - Completeness and Timeliness are primary concerns *
 - Statistical Query Learning* and Causal Unlearning** proposed in literature
 - Suitable for small deletions

- Re-learning or Online learning
 - Faces similar issues to un-learning
 - Can be very slow
 - More suitable for large amounts of deletions or new information

** Cao et. al., “Efficient Repair of Polluted Machine Learning Systems via Causal Unlearning”, 2018
ML Testing – Fuzz Testing

- Provide *invalid, unexpected* or *random* data to identify defects and vulnerabilities
 - Fuzz Testing works well with *structured inputs*

- Fuzzing can identify exploitable ML *implementation bugs* [1]
 - Valid inputs can compromise system
 - Points of attack
 - Insufficient integrity checks during *Feature Extraction*
 - Overflow/Underflow
 - NaN, Loss of precision
 - Vulnerabilities found in many open-source packages – OpenCV, Scikit-learn

- Fuzz Testing can aid security of general-purpose DNNs [2]
 - *Automation* and *parallelization* important – DNNs can be very big
 - *Input mutations* and coverage-criteria based *feedback* guidance specific to DNNs allow detection of *corner-cases*

Sensitivity Analysis

- Study of how the uncertainty in the output of a system can be attributed to different sources of uncertainty in its inputs
 - ML feature extraction sensitivity analysis well-researched

- Detection of biases in training/test datasets is crucial *
 - Model accuracy dependent on datasets used – *real-world* performance can be different
 - Datasets can have expiration dates
 - Privacy issues can render datasets incomplete
 - Identify training datasets which generalize better
 - Study sensitivity of ML accuracy to change in datasets

* Sanders, Saxe, “Garbage In, Garbage Out - How Purportedly Great ML Models Can Be Screwed Up By Bad Data”, 2017
Conclusion

- ML supply chain and revenue model is evolving
 - IP protection issue
- Protecting training data set and model IP is necessary for confidentiality
- Protection against evasion, poisoning attacks is necessary for integrity
- Real-time and robustness guarantees are necessary for availability
Thank you