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Abstract—In a 3-D processor-memory system, multiple cache
dies can be stacked onto multi-core die to reduce latency
and power of the on-chip wires connecting the cores and the
cache, which finally increases the power efficiency. However,
there are two challenging issues. The first is the high power
density (resulting from multiple die stacking) that incurs many
temperature-related problems including temperature-dependent
leakage power. The second is the processor-cache traffic con-
gestions that occur at through-silicon vias (TSVs) shared by
multiple stacked caches. In this paper, a runtime cache data
mapping is proposed for 3-D stacked L2 caches to minimize
the overall energy of 3-D chip multiprocessors (CMPs). The
proposed method considers both temperature distribution and
memory traffic of 3-D CMPs. Experimental result shows that
the proposed method achieves up to 22.88% energy reduction
compared to an existing solution which considers only the
temperature distribution.

I. INTRODUCTION

Three-dimensional integrated circuits (3-D ICs), where two

or more layers of active electronic components are integrated

vertically into a single chip, significantly reduces the on-

chip wire length that often becomes a major bottleneck of

performance and/or power dissipation in 2-D ICs [1]. Partic-

ularly, 3-D memory stacking has received a great attention

since it resolves the memory bandwidth challenges of 2-D ICs

by stacking cache memory onto a multi-core die. However,

the high power density resulting from multiple (memory)

die stacking may lead to the temperature-related problems

in reliability (e.g., NBTI), power, performance, and cooling

cost. Especially, the exponential dependence of leakage power

on temperature, in conjunction with the large amount of

cache stacked onto a multi-core die, might aggravate the

energy efficiency of 3-D processor-memory systems [2], when

considering that on-chip SRAM cache often consumes almost

half of total energy in a microprocessor system [3][4].
Dynamic cache reconfiguration (DCR) is an effective

method to reduce cache energy by configuring capacity, line

size, and associativity of cache according to workload char-

acteristics, and turning off unused parts of the cache. For

example, the amount of turned on cache blocks (i.e., capacity)

can be optimally determined and assigned to each core based

on the memory access demands of applications [5] and, then,

the unassigned cache blocks can be turned off to reduce the

operating temperature and the temperature-induced leakage

energy [6][7]. However, excessive power gating of cache

blocks may incur performance degradation due to the increase

in cache misses [7].
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Fig. 1. (a) 3-D CMP consisting of a multi-core layer and multiple stacked L2
cache layers. (b) Multi-core layer consisting of multiple cores with a crossbar
switch. Each core has a L2 cache controller connected to its own TSVs

Fig. 1 shows an abstract structure of 3-D CMPs where

multiple layers of multi-banked L2 cache are stacked onto

a multi-core layer1. Each core has a low-latency and large-

bandwidth access to the cache banks directly stacked on it

(i.e., local cache banks) through through-silicon vias (TSVs).

The core is also able to access cache banks stacked on the

other cores (i.e., remote cache banks), but the corresponding

memory transaction has to be done through the crossbar switch

with longer latency. Since cache banks directly stacked on a

core share the same TSVs, traffic collision might occur even

when cores access different cache banks if the cache banks are

directly stacked on the same core (and share the same TSVs).

In this paper, we propose a dynamic cache reconfiguration

(DCR) scheme that minimizes the energy consumption of 3-

D CMPs with temperature and time-to-deadline constraints.

Given the time-varying temperature profile of cores and L2

cache banks, the proposed solution determines (1) the number

of L2 cache banks (i.e., the amount of cache capacity) logically

allocated to each core and (2) the physical placement of

the allocated L2 cache banks, considering both temperature

distribution and memory traffic of the 3-D CMPs. To the best

of our knowledge, this is the first work on online DCR schemes

for real-time 3-D CMPs that considers both temperature and

memory traffic. Considering both temperature distribution and

cache traffic congestion gives more energy reduction than

1Throughout the paper, we call it 3-D CMP that multiple dies of L2 cache
are stacked onto the single multi-core die.



considering only one without the other, as shown in the

motivational examples in Section III. Since workload charac-

teristics such as memory access behavior change dramatically

at runtime, online adaptive configuration of cache memory is

paramount for energy reduction. We also investigate the impact

of non-uniform cache access latency, cache traffic congestion,

and temperature distribution on the energy consumption of 3-

D CMPs.

The rest of this paper is organized as follows. Section II

presents related works. Section III gives a motivational exam-

ple of our work. Section IV presents the problem definition.

Section V presents analytical formulations to solve the defined

problem. Section VI explains how to apply the analytical

formulations at runtime. Section VII presents the experimental

setup and results followed by conclusion in Section VIII.

II. RELATED WORKS

A key challenge in 3D memory stacking is the heat gen-

erated from the 3D chip with its increased power density. In

case of memory-stacked CMP systems, temperature of each

core directly affects the temperature of cache memory blocks

stacked on the core. There are prior works on the temperature-

aware management for 3D CMP. Yun et al. [8] proposed a

dynamic voltage and frequency scaling scheme for 3D-stacked

L2 DRAM with taking account of both DRAM error-rate

and temperature-induced power consumption. Zhao et al. [9]

proposed thermally aware thread migration among processor

cores to reduce temperature variance and peak temperature

of stacked DRAM. In [10], to reduce energy consumption,

heavily communicating tasks are allocated within the same

vertical stack by taking account of shorter interconnect dis-

tance between vertical adjacent cores.

Another challenge in 3D memory stacking is the increase

in the processor-memory traffic congestion in the bus network

with the increased memory capacity. This issue has not been

properly dealt with in earlier works. In this paper, we propose

a dynamic cache reconfiguration (DCR) solution considering

both the bus traffic congestion while keeping the system

temperature under the maximum temperature limit. To con-

sider workload characteristics such as memory access behavior

changes during runtime, we propose a run-time solution to

minimize the system energy consumption (including the en-

ergy consumption of core, cache, and off-chip memory), using

a multi-core system with stacked L2 cache as an example.

III. MOTIVATION

In this section, we explain the motivation of our work with

an example of 3-D CMPs consisting of two cores and four

stacked L2 cache layers, as shown in Fig. 2. Each cache layer

consists of two cache banks. The capacity of each cache bank

is 256KB, assuming a cache bank has the same area/shape

as that of a core. Cache banks directly stacked on a core

(i.e., local cache banks) are connected to the core through

shared TSVs. Cores are also able to access cache banks stacked

on the other cores (i.e., remote cache banks) through the

crossbar switch with longer latency. The core layer is located
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Avg. power : 4.76 W
Cache access rate : 0.0024 per cycle

Core 1
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Avg. power : 1.91 W
Cache access rate : 0.0391 per cycle
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Fig. 2. Motivational example of 3D CMPs and brief descriptions of two
programs (i.e., Mesa and Gzip) mapped onto cores
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Fig. 3. L2 cache-miss rate with respect to the assigned cache capacity.

next to the heat sink. Let us assume that dynamic power

gating is performed at the granularity of cache bank. Two

threads, e.g., Mesa and Gzip in SPEC2000 benchmark [11],

are mapped onto Core 0 and Core 1, respectively. The average

power consumption of Mesa and Gzip are 4.76W and 1.91W,

respectively. The numbers of L2 cache accesses per cycle of

Mesa and Gzip are 0.0024 and 0.0391, respectively.

Fig. 3 shows the average L2 cache-miss rate of the two

threads (i.e., Mesa and Gzip) with respect to the allocated

cache capacity from 256KB (one bank) to 1MB (four banks)

when the two threads are executed separately. Larger cache

capacity reduces the number of cache misses as shown in Fig.

3, which, in turn, reduces the stall time spent by a core waiting

for external memory data. Note that Mesa shows a larger

drop of cache-miss rate than Gzip as more cache capacity is

allocated.

Fig. 4 shows brief results (i.e., the results of cache data

placement, average temperature distribution, and energy con-

sumption) of three different DCR schemes (i.e., DCR [5], TA

(Temperature-Aware)-DCR [7], and TCA (Temperature- and

Congestion-Aware)-DCR). In case of DCR, cache banks are

allocated to each core such that the total stall time spent by

cores waiting for memory data accesses is minimized in a

power-efficient manner. As shown in Fig. 4 (a), three cache

banks are allocated to Core 0 and two cache banks to Core 1 so

that cache-miss rates of the two threads (Mesa and Gzip) are

converged (shown in Fig. 3), while the rest of cache banks are

turned off to reduce the energy. Also, all the cache banks are

allocated to cores such that only access of local cache banks
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Fig. 4. Results of cache bank placement and energy consumption for the three
differnet DCR schemes; (a) DCR (b) TA-DCR (c) TCA-DCR (proposed).

is allowed, which removes the unnecessary communication

overhead through the crossbar switch. Note that this scheme

does not consider temperature distribution within the 3-D

CMP, which is applicable for 2-D CMPs where temperature

variation on cache memory is relatively small.

In case of TA-DCR, determining the amount of cache

capacity (i.e., the number of cache banks) is the same as

DCR scheme, however, cache data is mapped onto the physical

cache banks with considering temperature distribution of 3-D

CMPs. In the motivational example, Core 1 (running Gzip)

dissipates lower power than Core 0 (running Mesa), which

results in lower temperature of Core 1 than Core 0. In 3-D

CMPs, power consumption of a core can strongly influence

the temperatures of cache banks directly stacked on the core

[12], thus the average temperatures of cache banks stacked on

Core 1 is lower than those stacked on Core 0 as shown in Fig. 4

(a). To minimize the temperature-induced leakage energy, TA-

DCR tries to map cache data of each core onto the physical

cache banks with the lower temperatures as shown in Fig. 4

(b). Due to the temperature consideration on the cache data

placement, TA-DCR yields the lowest average temperature.

However, placement of cache data onto remote cache banks

(i.e., cache banks directly stacked on the other core) increases

core’s stall time owing to the increased latency through the

crossbar-switch communications as well as memory traffic

congestion at the shared TSVs, which, in turns, increases

leakage energy of both core and cache due to the increased

execution time. In this example, TA-DCR leads a lower energy

consumption than DCR by 5.25%.

The basic idea of our method, i.e., TCA-DCR, is to exploit

a trade-off between the leakage energy induced by the higher

temperature and the leakage energy owing to the longer execu-

tion time (resulting from core’s stall). As shown in Fig. 4 (c),

Core 1 has lower operating temperature than Core 0 because

of lower power consumption of Core 1. However, Core 1

(running Gzip) accesses its cache banks more frequently than

Core 0 (running Mesa) does. Compared with TA-DCR, TAC-

DCR reduces memory traffic congestion at Core 1’s TSVs

and, thus, reduces the stall time of both cores by mapping

Core 0’s data onto its two local cache banks [shown in Fig 4

(c)], instead of only one local cache bank [shown in Fig 4 (b)],

while sacrificing the temperature distribution that incurs more

leakage energy induced by the higher temperature. TCA-DCR

yields additional energy reduction of 5.2% compared with TA-

DCR. Compared with DCR, TCA-DCR reduces the energy

consumption by 13.8%.

IV. PROBLEM DEFINITION AND SOLUTION OVERVIEW

This paper focuses on a multi-core system where 3-D L2

cache is stacked as shown in Fig. 1. The layer closest to the

heat sink consists of multiple cores with its own private L1

cache. Multiple layers of L2 cache, each of which consists of

multiple SRAM cache banks, are stacked on the multi-core

layer. Each cache bank has the same area/shape as that of a

core. In the view of a core, local cache banks can be directly

accessed, while remote cache banks (i.e., cache banks stacked

on the other cores) can be accessed through the crossbar

switch. Off-chip DRAM communicates with cores through I/O

interfaces. Each cache bank can be dynamically turned on and

off according to whether it is necessary or not.

The problem is to find 1) the number of cache banks

allocated to each core and 2) the physical positions of the

allocated cache banks at runtime such that the overall system

energy consumption, Etot, is minimized, while all the deadline

constraints are met and the operating temperature does not

exceed the maximum limit, Tmax. The problem can be defined

as follows. Given the number of cores, M , an allocated thread

set, the number of stacked L2 cache layers, N , and the core’s

clock frequency, f , the problem is formulated as follows.

Find bi and pi,j,k; ∀i, j = 1, ..,M, ∀k = 1, ..., N ;

such that Etot =
M∑
i=1

Ecore
i + Ecache

i + EDRAM
i (1)

is minimized

subject to
Xc

i +Xs
i (bi, pi,j,k)

f
≤ di; ∀i, j, k (2)

M∑
i=1

bi ≤ M ·N (3)

T core
i ≤ Tmax; ∀i (4)

T bank
l ≤ Tmax; ∀l = 1, ...,M ·N (5)

where bi is the number of cache banks allocated to Core i.
pi,j,k is 1 if cache data of Core i is mapped onto the cache

bank stacked on Core j at kth cache layer. Otherwise pi,j,k is

0. Ecore
i is the energy consumed by Core i, Ecache

i the energy

consumed by cache banks allocated to Core i, and EDRAM
i

the DRAM energy consumption due to DRAM accesses from

Core i. Xc
i is the number of clock cycles executed by Core

i for ideal CPU operation and Xs
i is the number of clock



Algorithm 1: Overall flow of the proposed method
1: for each core do
2: if end of execution of thread then
3: Workload profiling and estimation
4: end if
5: end for
6: for each core do
7: if start of execution of thread then
8: Find the energy-minimal number of stall cycles (Section V)
9: Find bi and pi,j,k (Section VI)

10: end if
11: end for

cycles stalled in Core i waiting for the completion of memory

accesses, which is a function of bi and pi,j,k (explained in

Section V). di is the time-to-deadline constraint of the thread

allocated to Core i. T core
i and T bank

l are the temperatures of

Core i and Cache bank l, respectively.

Algorithm 1 shows the overall flow of the proposed method.

The proposed method is largely divided into workload pre-

diction (line 1-5) and setting of bi and pi,j,k (line 6-13),

which are invoked at the end/start of every thread execution

on each core. In the workload prediction step, we profile

runtime information (e.g., the number of cache hits/misses

and computational execution clock cycles) of current thread

execution and estimate runtime information for the next thread

execution. In the bi and pi,j,k setting step, the number (bi) and

positions (pi,j,k) of cache banks for each core is determined

based on the estimated runtime information. By adjusting bi
and pi,j,k, the number of stall cycles of core i is changed,

which affects the whole energy consumption of the cores,

cache, and DRAM. The energy-optimal number of stall cycles

is obtained from our analytic energy model (Section V) and

bi and pi,j,k are adjusted so that the estimated number of stall

cycles reaches the given optimal value at runtime (Section VI).

V. ANALYTIC FORMULATION FOR ENERGY-MINIMAL

CACHE CONFIGURATION

Application workload running on a core is divided into

two parts, i.e., computational workload, Xc, and memory stall

workload, Xs, as shown in Fig. 5. The memory stall workload,

Xs
i , is stall clock cycles of Core i waiting for the completion of

memory accesses, which depends on the cache configuration,

i.e., bi and pi,j,k and presented as follows.

Xs
i (bi, pi,j,k) = Nhit

i (bi) · chit +Nmiss
i (bi) · cmiss

+Naccess
i · ccg(pi,j,k) (6)

where Nhit
i , Nmiss

i , and Naccess
i are, respectively, the number

of L2 cache hits, misses, and accesses from Core i. chit and

cmiss are, respectively, the average access latency (in terms

of the number of clock cycles) in the cases of cache hit and

cache miss, where there is no memory traffic congestion and

cores access only their local cache blocks. ccg denotes the

average additional cache access latency owing to both the

memory traffic congestion at shared TSVs and the crossbar-

switch communication. The estimation of ccg will be explained

XsXc

Fig. 5. Execution cycles of a thread consisting of computational workload,
Xc, and memory stall workload, Xs, in a core.

in Section V-A.

Because the number of cache misses per instruction (i.e.,

cache-miss rate) decreases as more cache capacity is allocated

to a core (as shown in Fig. 3), the number of cache misses

from Core i, Nmiss
i , can be modeled as a power law as follows

[13].

Nmiss
i (bi) =

Nmiss
i (b̃i)

(bi/b̃i)ε
(7)

where b̃i represents the number of cache banks allocated to

Core i in the previous execution of thread. The exponent, ε,
is directly related to the memory access demand of running

threads and typically lies between 0.3 and 0.7. To estimate ε at

runtime, the monitoring circuits proposed in [5] are adopted.

The number of cache hits, Nhit
i , is represented as follows.

Nhit
i (bi) = Naccess

i −Nmiss
i (bi) (8)

Based on the number of computational cycles (Xc
i ), the

number of memory stall cycles (Xs
i ) and operating tempera-

ture (T core
i ), energy consumption of Core i, Ecore

i , is presented

as follows [14].

Ecore
i (T core

i , Xs
i ) = Xc

i · ec(T core
i ) +Xs

i · es(T core
i ) (9)

ec(T core
i ) = asf

bs + al(T
core
i ) · f bl(T

core
i ) + c(T core

i )
(10)

es(T core
i ) = θ · ec(T core

i ) (11)

where ec and es represent energy consumption per cycle

[15] in the computational and memory stall state of a core,

respectively. as, al, bs, bl, and c are empirical constants and

functions, and f is core’s clock frequency. In Eqn. (10), the

first term represents core’s switching energy, while the second

and third terms together represent core’s leakage energy as

a function of temperature. θ represents the ratio of energy

consumption per clock cycle of memory stall to that of

computation (0.6 in our experiments).

Dynamic energy consumed by the cache banks allocated to

Core i, Ecache,dyn
i , is represented as follows.

Ecache,dyn
i = Nhit

i (bi) · ehit +Nmiss
i (bi) · emiss (12)

where ehit and emiss are dynamic energy consumption per

cache-bank hit and miss, respectively. Given the temperatures



of cache banks, the leakage energy consumed by the cache

banks allocated to Core i, Ecache leak
i , is presented as follows.

Ecache,leak
i =

M∑
j=0

N∑
k=0

pi,j,k · eleak(T bank
j,k ) · (Xc

i +Xs
i ) (13)

where T bank
j,k is temperature of the cache bank directly stacked

on Core j at kth cache layer. eleak (T ) is the leakage energy

per cycle consumed in a cache bank at the temperature of T
and is presented as follows.

eleak(T ) = α · (T )2 + β · T + γ (14)

where α, β, and γ are extracted from CACTI [16], a cache

power estimation tool, with 0.1% of maximum estimation error

for all operating temperature range from 50◦C to 120◦C.

Based on the relation between bi and Xs
i [shown in Eqn.

(6) and (7)], Eqn. (12) and (13) can be represented as follows.

Ecache,dyn
i = μ1 − μ2 ·Xs

i (15)

Ecache,leak
i = eleak(T avg

i ) · μ3 · (μ4 ·Xs
i − μ5)

−μ6 (16)

where μ1, μ2, μ3, μ4, μ5, and μ6 are positive empirical

constants, and T avg is the average temperature of the cache

banks allocated to Core i. We omit the derivations of Eqn.

(15) and (16) due to the page limit, which are given in our

technical note [17].

Off-chip DRAM is accessed when (last-level) L2 cache miss

occurs. Thus, the DRAM energy consumed by the accesses

from Core i, EDRAM
i , is presented as follows.

EDRAM
i (Xs

i ) = eDRAM ·Nmiss
i (Xs

i ) = μ7 ·Xs
i − μ8 (17)

where eDRAM is energy consumption per DRAM access, μ7

and μ8 are positive empirical constants. (The derivation of

Eqn. (17) is also given in the technical note [17].)

Fig. 6 shows the total energy consumption, Etot
i = Ecore

i +
Ecache

i + EDRAM
i with respect to the number of stall cycles

when gzip in SPEC2000 [11] is executed in Core i. The

number of stall cycles varies with the cache configuration,

i.e., bi and pi,j,k. In Fig. 6, Etot
i is convex with respect to the

number of stall cycles, Xs
i . Therefore, Xs

i,opt which minimizes

Etot
i is obtained by solving the differential equation as follows.

∂Etot
i (Xs

i )

∂Xs
i

= 0 (18)

Bisection method [18] is applied to solve Eqn. (18) for all

the cores in the 3-D CMP. The computational complexity is

O(log2 Nb), where Nb is the number of possible bi values (i.e.,
M·N). Since the number of stall cycles of each core depends

on its own cache configuration, the proposed runtime solution

determines bi and pi,j,k so that the number of stall cycles of

each core reaches the energy-minimal value, i.e., Xs
i,opt.

A. Estimation of Additional Stall Cycles

When multiple cores (e.g., Core a and Core b) simultane-

ously try to access the cache banks directly stacked on the

same core (e.g., Core c), memory traffic congestion occurs to

0.00

0.05

0.10

0.15

0.20

1.71.61.51.41.3

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

The number of stall cycles (10Mcycles)

 Etot

 Ecore

 Ecache

 EDRAM

1.2

Fig. 6. Energy consumption with respect to the number of stall cycles, Xs
i .

get the ownership of the cache banks connected to the same

TSVs even though the multiple cores access different cache

banks. In addition, when cores communicate with cache banks

directly stacked on the other cores (i.e., remote cache banks),

the memory transaction has to be through a crossbar switch.

These traffics cause additional stall cycles per cache access.

The additional stall cycles of Core a due to competing with

Core b for accessing cache banks directly stacked on Core c
is denoted as ccga,b,c, which can be computed by summing the

conditional expectations of the possible conditions of conges-

tions between the two competing cores, i.e., no congestion and

congestion. ccga,b,c, is presented as follows.

ccga,b,c = P 0
a,b,c · E[ccga,b,c|0] + P 1

a,b,c · E[ccga,b,c|1] (19)

where Pn
i,j,k and E[ccgi,j,k|n] are, respectively, the probability

of the congestion condition n (n = 0 when there is no

congestion, otherwise n = 1) and the corresponding expected

congestion delay (i.e., additional stall cycles) when Core a
competes with Core b for accessing the cache banks directly

stacked on Core c. When no congestion occurs (i.e., n = 0),

there are no additional stall cycles for cache access owing to

the competitions between cores, therefore E[ccga,b,c|0] becomes

zero.

When there exists congestion (i.e., n = 1), the probability,

i.e., P 1
a,b,c, is presented by the portion of time that the cache

banks directly stacked on Core c are busy owing to the

accesses from Core b thus, not available from Core a. The

portion of time can be computed using a M/M/1 queuing

model [19]2. Let us assume that a cache bank has an access

latency of t. Then the maximum service rate of the cache bank,

i.e., μ, is 1/t. Let us also assume that the cache banks directly

stacked on Core c face an average arrival rate of accesses of

λb,c from Core b. Then P 1
a,b,c can be presented as follows.

P 1
a,b,c =

λb,c

μ
= t · λb,c (20)

When the two cores (i.e., Core a and Core b) competing

the same resource (i.e., the cache banks directly stacked

2Let us consider a single server that processes customers at the rate of μ,
facing customers at the rate of λ, where services and arrivals are both Poisson.
Then the utilization of the server is the proportion of time that the server is
busy and presented as λ/μ [19].
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on Core c), the waiting time for getting the ownership is

approximately one-half of the latency of the resource, (i.e.,

t/2) [20], therefore, the expected congestion delay, ccga,b,c, is

presented as follows.

ccga,b,c = P 1
a,b,c · E[ccga,b,c|1] =

t2

2
· λb,c (21)

Based on the analysis of the two-core congestion model, we

derive general formulas which compute the congestion delay

of Core i where the other m cores competes with Core i for

the banks directly stacked on the same core, i.e., Core k, as

shown in Fig. 7 (a). Using the two-core congestion model, the

memory traffics from the m multiple cores, which compete

with Core i, can be aggregated as shown in Fig. 7 (b) with

assumptions as follows. We assume that cache access arrivals

are Poisson with access rate of λ as in many previous studies

[21]. Then, for the cache banks stacked on Core k, the mean

cache access rate generated by the m cores is
∑m

j=1 λj,k [19]

and the expected congestion delay of Core i, gcgi,k is presented

as follows.

gcgi,k =
t2

2
·

m∑
j=1

λj,k (22)

We measured the accuracy of Eqn. (22) from a modified

Tsim simulator [22] and found that the absolute estimation

error of Eqn. (22) is no more than 0.2 clock cycles in 98% of

simulation cases and less than 0.3 clock cycles in 80% of the

cases. Details of our experiment environment are explained in

Section VII.

In conclusion, the additional stall cycles of Core i is

estimated as follows. The number of stall cycles of Core i due

to memory traffic congestion for accessing the cache banks

stacked on Core k is given by multiplying the number of

cache bank accesses, Ai,k (Naccess
i =

∑M
k=1 Ai,k) and the

average additional cache access cycles owing to memory traffic

congestion, gcgi,k, i.e., Ai,k · gcgi,k. Then the total number of

additional stall cycles of Core i, i.e., the third term in Eqn.

(6), is re-written as follows.

Naccess
i · ccg(pi,j,k) =

M∑
k=1

Ai,k · gcgi,k · cxbari,k (23)

where cxbari,k =1 if i = j, otherwise cxbari,k =cxbar where cxbar is

the additional latency consumed by a crossbar switch.
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Fig. 8. Overview of runtime cache data placement methodology.

VI. RUNTIME ENERGY-OPTIMAL CACHE CONFIGURATION

Fig. 8 shows the overview of the proposed runtime cache

data placement methodology. The information required for the

runtime cache data placement consists of the energy model

parameters, the number of clock cycles for each core executing

instructions (Xc
i ), the number of cache hits/misses (Nhit

i ,

Nmiss
i ), mean arrival rate of cache accesses from each core

(λj,k), and the current temperature of each core and cache

bank (T core
i , T bank

l ). We obtained parameters for the energy

model at design-time. At runtime, Xc
i , Nhit

i , Nmiss
i , λj,k,

T core
i , and T bank

l are collected at every 10ms, which is the

least time interval in the OS time scheduler.

When the runtime solution is invoked at first, initialization is

performed only once such that all the cache data of each core

are allocated to local cache banks, that removes the additional

stall cycles due to memory traffic congestion and crossbar

switch communication. When a thread is started, deallocation

followed by reallocation of cache bank is performed for all

the cores to find best bi and pi,j,k while satisfying all the

constraints [i.e., Eqn. (2), (3), (4), and (5)]. Fig. 9 shows an

example of how to find the best bi and pi,j,k. For all the cores,

when Core i has less number of stall cycles than Xs
i,opt [i.e.,

point A in Fig. 9 (a)], deallocation of cache banks allocated

to Core i is performed to move the number of stall cycles

to the optimal point as long as not exceeding the deadline

constraint, i.e., Eqn. (2). For the cores that has larger number

of stall cycles than Xs
i,opt [i.e., point B in Fig. 9 (a)], the

deallocation process is skipped since they needs more cache

banks to reduces the off-chip memory accesses and, thus, the

number of stall cycles. For all the cores, if the temperature

constraints, i.e., Eqn. (4), and (5) are violated, deallocation

process is also performed until the temperatures of cores

and cache banks keep from the maximum temperature limit,

without considering the number of stall cycles.

Cache bank reallocation is invoked after the deallocation

process such that the total energy is minimized while all the

constraints are met, i.e., Eqn. (2), (3), (4), and (5). Fig. 9 (b)

shows the total energy with respect to the number of stall

cycles in the views of Core i and Core j, respectively. In

Fig. 9 (b), Core j (point D) reduces more energy than Core

i (point C) due to one additional cache bank allocation. This

shows that allocation of one additional cache bank to each core

in descending order of their slopes of the current operating
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Fig. 9. Energy consumption with respect to the number of stall cycles,
showing how to find the best cache data placement.

points minimizes the total energy in 3-D CMPs because of

the concavity of the total energy with respect to the number

of stall cycles.

VII. EXPERIMENT

A. Setups

We performed experiments using a CMP consisting of a 4-

core layer and four stacked L2 cache layers each of which

consists of four cache banks. The core used in our experiment

is Alpha 21264 processor in 65nm process technology. Each

core has 32KB L1 instruction and data cache. The size of

each core is 2.85mm×2.78mm. The number of cache ways

per bank is eight and the capacity of each cache bank is

256KB [16]. Hotspot [1] is used for estimating temperatures

of the cores and cache banks in the 3-D CMP. Our experiment

was performed with SPEC2000 benchmark programs [11].

Fig. 10 shows the results of instructions per cycle (IPC)

and L2 cache access rate of eight programs in SPEC2000.

Performance results are obtained from Simplescalar simula-

tor [24] based on Alpha21264 processor. From SPEC2000

benchmark programs, we constructed three test cases, i.e.,

Set A, Set B, and Set C. Set A consists of the programs

with high IPC and low cache access rate, i.e., CPU-bound

applications (gzip, wupwise, mesa, and gcc), whereas Set B

consists of the programs with high cache access rate and

low IPC, i.e., memory-bound applications (swim, mcf, art, and

parser) where execution time is dominated by memory access

time. Set C consists of programs which are combinations of

memory-bound applications (mcf and art) and CPU-bound

applications (mesa and wupwise).

B. Result

We have evaluated the impact on energy consumption for

the following cache data placement policies.

DCR [5]: This technique allocates the energy-minimal number

of cache banks to each core without considering time-varying

temperature.

TA-DCR [7]: This technique allocates the energy-minimal

number of cache banks, considering the temperature distribu-

tion and assuming that there is no memory traffic congestion.

TCA-DCR-DT: This technique determines the number and the
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Fig. 10. IPC (instructions per cycle) and cache access rate of programs in
SPEC2000.

positions of allocated cache banks at design-time, considering

both temperature distribution and memory traffic congestion.

TCA-DCR-RT (proposed): This method determines the num-

ber and the positions of allocated cache banks, considering

both the temperature, memory traffic congestion at runtime.

Fig. 11 shows the results of energy consumption, which are

normalized with respect to that of DCR. Overall, TCA-DCR-

RT yields up to 23% further reductions in energy consumption

compared with DCR and TA-DCR. Such an improvement is

due to the consideration of the temperature distribution and

memory traffic congestion together in TCA-DCR-RT. In Fig.

11, in case of Set B (i.e., memory-bound programs), TCA-

DCR-RT shows relatively smaller energy reduction than in

cases of Set A and Set C. It is because, in Set B, cache-miss

rate of each program converges at a larger cache capacity than

Set A and Set C. As the cache capacity required by each

program increases, it has less possibility to reallocate cache

data of each program to exploit both temperature distribution

and memory traffic congestion.

In Fig. 11, note that the cache energy consumption in

TA-DCR is lower than that in DCR while the core energy

consumption in TA-DCR is higher than that in DCR. TA-DCR

places cache data of each core by exploiting the temperature

distribution of the 3-D CMP, which leads to a decrease in the

temperature-induced cache energy. However, TA-DCR may

also lead to an increase of stall cycles in cores due to unin-

Fig. 11. Comparison of energy consumption for each test case. Set A, Set
B, and Set C consist of CPU-bound programs, Memory-bound programs, and
combinations of the two programs.



telligent cache data placement by not considering the memory

traffic congestion as well as the crossbar switch latency.

Therefore, the later offsets the energy reduction resulting from

the former, thus TA-DCR yields smaller total energy reduction

compared with TCA-DCR-RT. For example, in Set C, even

though TA-DCR reduces cache energy consumption by 21%

compared to DCR, core energy consumption of TA-DCR

increases by 12.0%, therefore TA-DCR yields only 14.1% of

total energy reduction compared with DCR.

In order to evaluate TCA-DCR-RT as a runtime solution, we

prepared a design-time solution of TCA-DCR-DT. In TCA-

DCR-DT, all the runtime information (i.e., cache miss rate,

cache access rate, the number of computational clock cycles,

and temperature of each core and cache bank) is given as

average values. As shown in Fig. 11, TCA-DCR-RT reduces

the total energy consumption up to 11.2% compared with the

TCA-DCR-DT.

We measured the runtime overhead of TCA-DCR-RT on

the modified TSIM simulator [22] at 3GHz. For the runtime

computation of finding the best cache data placement, the time

overhead ranges between 31.5μs and 126μs, with its corre-

sponding energy overhead ranging from 119μJ to 583μJ .

After the optimal cache configuration is obtained, there are

transition overheads to change the number of cache banks

allocated to each core. When the number of assigned cache

banks to a core is decreased, dirty cache blocks in the cache

banks which will be turned off must be written back to off-

chip DRAM for data coherency. The energy overhead for

write-back operation was up to 47.52μJ . When the number of

assigned cache banks to a core is increased, it costs wakeup

time to switch cache banks back to the active mode from

the power-gating mode. According to [23], the wake-up time

is negligible (i.e., four clock cycles). The area overhead of

implementing power-gating technique in L2 caches is about

5% [6].

VIII. CONCLUSION

In this paper, we address the problem of cache data mapping

for a multi-core architecture with 3D-stacked L2 cache to

minimize the overall system energy. Unlike the classical ap-

proaches, our method considers memory traffic congestion as

well as temperature distribution in the 3-D CMP. The proposed

method places cache data to the specific physical position by

exploiting the trade-off between the energy induced by mem-

ory traffic congestion and the energy induced by temperature

of the cache block. We solved this problem with a runtime

solution and the experiment results show that the proposed

method yields up to 22.88% improvement in energy reduction

compared to an existing runtime cache configuration method

which only considers the temperature distribution [7].
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