
Hybrid-Comp: A Criticality-Aware Compressed
Last-Level Cache

Amin Jadidi† Mohammad Arjomand‡ Mahmut T. Kandemir† Chita R. Das†
†School of Electrical Engineering and Computer Science, Pennsylvania State University, USA
‡School of Computer and Electrical Engineering, Georgia Institute of Technology, USA

Email: †{axj945,kandemir,das}@cse.psu.edu ‡{marjomand3}@gatech.edu

Abstract—Cache compression is a promising technique to in-
crease on-chip cache capacity and to decrease off-chip bandwidth
usage. While prior compression techniques always consider a
trade-off between compression ratio and decompression latency,
they are oblivious to the variation in criticality of different
cache blocks. In multi-core processors, last-level cache (LLC)
is logically shared but physically distributed among cores. In
this work, we demonstrate that, cache blocks within such non-
uniform architecture exhibit different sensitivity to the access
latency. Owing to this behavior, we propose a criticality-aware
compressed LLC that favors lower latency over higher capacity
based on the criticality of the data blocks. Based on our studies
on a 16-core processor with 4MB LLC, our proposed criticality-
aware mechanism improves the system performance comparable
to that of with an 8MB uncompressed LLC.

I. INTRODUCTION

Despite considerable research in the past three decades
leading to multi-fold improvements in cache efficiencies, the
problem has become more challenging in current and future
generation of processors. Workloads in the next generation of
computing systems are expected to be highly data-intensive.
The processing power is also steadily increasing and major
manufacturers are planning to integrate hundreds of cores on
a die. In such multi-core systems, computer architects employ
high capacity on-chip cache hierarchies to reduce data access
latency. The decision of how large to make a given cache
involves trade-offs: while larger caches often reduce number
of cache misses, this potential benefit comes at the cost of
higher power consumption, longer cache access latencies, and
increased chip area. As we move forward, the processors
demand more and more number of cores which in turn the
issue of providing sufficient on-chip cache capacity becomes
increasingly challenging. Simply scaling cache capacity lin-
early with the number of cores is not practical because of
power limitations and on-chip area. To resolve this issue,
some prior works (e.g., [1], [2], [3], [4], [5], [6]) use various
data compression schemes to achieve larger capacity without
suffering all disadvantages of fabricating larger caches. The
biggest obstacle in adopting cache compression in commercial
processors is the decompression latency. Unlike compression,
which takes place in the background, decompression is on the
critical path which directly affects the system performance.
Therefore, in order to improve the system performance, it is
vital to achieve a fine balance between the extra capacity
achieved by data compression and the extra access delay

imposed by that. Studying previous compression schemes
show that, compression mechanisms always sacrifice one for
the other. Meaning that, sophisticated compression schemes
are capable of achieving higher compression ratios (i.e., larger
cache capacities) but at the cost of longer decompression
latencies (i.e., slower cache accesses), and vice versa. In
this work, we demonstrate that in designing a compressed
cache, data criticality should be considered as the third design
parameter, along with compression ratio and decompression
latency. While typical compression schemes decide to store
a cache block either in compressed or uncompressed format
just based on the content of the cache block, our proposed
mechanism also considers the criticality of the block. In other
words, even if a cache block can be stored in a compressed
format, we might decide to store it in an uncompressed or
less-compressed format based on its criticality (i.e., its latency
sensitivity). Based on our observations, applications exhibit
different sensitivity to the access latency of different cache
blocks. Such variation in latency sensitivity is partially a
function of the underlying architecture where LLC is phys-
ically distributed among cores, forming a cache structure with
non-uniform access latency. Considering this architecture, our
proposed mechanism improves performance of the compressed
cache through the following optimizations:
• Considering the fact that, (i) compression schemes al-

ways offer a trade-off between the compression ratio
and decompression latency, and (ii) local and remote
cache blocks exhibit different sensitivities to the ac-
cess latency, we propose a hybrid mechanism to bal-
ance the extra cache capacity with the imposed de-
compression latency. To this end, our proposed archi-
tecture favors lower latency over higher capacity for
local cache blocks by adopting a fast compression
scheme (i.e., low-compression-ratio low-decompression-
latency). For remote blocks however, we use a strong
compression scheme (i.e., high-compression-ratio high-
decompression-latency) to prioritize capacity.

• We will further discuss that, in an out-of-order execution
processor, some cache blocks cause long ROB (i.e.,
ReOrder Buffer) stalls which directly degrades the system
performance. Therefore, such blocks cannot tolerate long
decompression latencies and our mechanism categorizes
them as critical blocks as well. Meaning that, they can
be compressed only by a fast compression scheme.

978-1-5386-1214-9/18/$31.00 ©2018 IEEE 25 19th Int'l Symposium on Quality Electronic Design

• We will also demonstrate that, by knowledgeably adopt-
ing multiple fast compression schemes, we can improve
the overall data-type/data-pattern coverage which in turn
provides us a compression ratio comparable to that of
strong cache compression schemes while the decompres-
sion latency is kept low.

• We will finally illustrate that, decompression process
can be pipelined in a specific category of compression
schemes. In such schemes, decompression process can be
performed as the compressed data block traverses through
the interconnection network. By performing the con-
secutive stages of decompression over different routers
along the traversal path, we can partially overlap the
decompression delay with the data traversal delay.

II. BACKGROUND AND RELATED WORKS

A. Baseline Platform
As shown in Figure 1, large last-level caches (LLC) in

modern multi-core processors are structured as non-uniform
cache architecture (NUCA) where the LLC is logically shared
but physically distributed among the cores. More precisely,
each cache bank is connected to one core and data movement
between the banks is managed by a network of routers. In
this work, we adopt a mesh topology as our network-on-
chip (NOC) configuration to have an efficient low-overhead
platform. In such non-uniform architecture, accesses to a local
block experience a latency equal to the cache hit-latency while
remote accesses experience variable latencies depending on the
distance between the requesting and the target nodes.
B. Cache Compression

In the context of on-chip caches, some prior works (e.g., [1],
[2], [3], [4], [5], [6]) use various data compression schemes
to achieve larger cache capacity. Table I contains the charac-
teristics of the most well-known cache compression schemes.
ZCA [3] and [7] exploit zero values to compress cache blocks.
FVC [5] and FPC [1] respectively use, frequently repeated
data values and data patterns to encode data blocks into a
compact format. BDI [4] relies on the observation that words
in a cache block are close to each other, making it meaningful
to code them with their difference to a base value. C-pack [2]
and [8] utilize both static patterns and a dynamically updated
dictionary to achieve higher coverage. SC2 [6] leverages
Huffman-based compression to achieve higher compression
ratio. In general, the ultimate goal of cache compression is
to achieve larger capacities while the decompression latency
is kept within a reasonable range. However, compression
schemes usually sacrifice one for the sake of the other.

III. COMPRESSION IMPLICATIONS

A. Latency versus Capacity
Data compression can potentially improve the system per-

formance by reducing the number of off-chip memory accesses
through fitting a larger portion of the working-set (WS) in
the on-chip cache. However, since decompression process is
on the critical path, the average data access latency will be
increased which in turn can negatively outweigh the gain from

Accessing
Local Cache Block

(L2 hit latency)

Accessing
Remote Cache Block

(L2 hit latency + NOC latency)

Core0
L1I L1D

R
ou

te
r

Core2
L1I L1D

Core4
L1D

Core6
L1D

Core1
L1D

Core3
L1D

Core5
L1D

Core7

crossbar

VC
Identifier

output
channels

Routing Unit
VC Allocator

Switch Allocator
input

channels

R
ou

te
r

L2-Bank0 L2- Bank1

L2- Bank2 L2-Bank3

L2-Bank4 L2-Bank5

L2-Bank6 L2-Bank7
L1D VC

Identifier

R
ou

te
r

L1I

R
ou

te
r

L1I

R
ou

te
r

L1I

R
ou

te
r

L1I

R
ou

te
r

L1I

R
ou

te
r

L1I

Fig. 1. Typical tiled multi-core architecture. Tiles are interconnected into a
2-D mesh. Each tile contains a core, private L1I and L1D caches, a shared
L2 cache bank, and a router for data movement between nodes.

TABLE I
CACHE COMPRESSION TECHNIQUES.

Comp. Technical Decomp. Comp.
Scheme Contribution Latency Ratio
ZCA [3] Zero Values 1 Cycle Low
FVC [5] Frequent Values 5 Cycles Modest
BDI [4] Narrow Values 1 Cycle High
FPC [1] Frequent Patterns 5 Cycles High

C-Pack [2] Dynamic Dictionary 8 Cycles High
SC2 [6] Statistical Compression 8/14 Cycles High

having larger cache capacity. To further clarify this issue,
Figure 2 illustrates a hypothetical compression scenario. In
this figure, only WS1 fits in the baseline cache configuration
where all data blocks are stored in uncompressed format. By
adopting compression, WS2 can also fit in the cache along
with WS1. In baseline system, WS1 elements can be accessed
in a latency equal to the cache hit-latency while the latency
of accessing WS2 elements is equal to the off-chip access
latency. After compression however, compressed lines from
WS1 and WS2 both experience a latency equal to the cache
hit-latency plus the decompression latency. Therefore, in one
hand, compression can degrade the performance by increasing
the access latency of WS1 elements. On the other hand, it
potentially improves the performance by eliminating the off-
chip memory accesses for WS2 elements.

In order to have a quantitative evaluation, Figure 3 illus-
trates the impact of data compression on gcc and omnetpp
applications under BDI [4] and FPC [1] compression schemes.
Figure 3.a represents what percentage of the working-set
is covered by WS1 and WS2 under different compression
schemes. Figure 3.b demonstrates the performance loss caused
by imposing longer access latencies to WS1 elements (1
cycle for BDI and 5 cycles for FPC as reporetd in Table I).
Figure 3.c indicates the performance improvement achieved
by eliminating off-chip accesses to WS2 elements. In short,

Baseline → L2 Hit Latency
Compressed → L2 Hit Latency + Decompression Latency

Baseline → Off-Chip Memory Latency
Compressed → L2 Hit Latency + Decompression Latency

WS1 WS2

Fig. 2. Impact of compression on average data access latency. WS1: working-
set that fits in baseline cache. WS2: extra portion of the working-set that fits
in compressed cache.

one can expect to achieve better performance only if the
improvement achieved by optimizing WS2 outweighs the
performance degradation caused by having slower accesses to
WS1. The former is a function of compression ratio and the
latter a function of decompression latency. Therefore, while
a high-compression-ratio high-decompression-latency scheme
can be effective for a capacity-sensitive application, it can
degrade the performance for a latency-sensitive application
(e.g., FPC scheme for omnetpp in Figure 3), and vice versa.
Even though one can determine the ideal compression scheme
for an application by performing off-line evaluations, resolving
this issue at run-time is more practical and is also capable
of capturing the dynamic characteristics over different phases
of execution. We will demonstrate that, because applications
often exhibit different sensitivity to the access latency of
different cache blocks, the compression mechanism should be
aware of such variations in order to achieve a fine-balanced
system, where each individual cache block is handled based
on its sensitivity to the decompression latency.

IV. CRITICALITY-AWARE COMPRESSION

A. Data Criticality
In general, compression schemes value different data blocks

equally. Some data blocks can be compressed which subse-
quently occupy less space while other blocks occupy the whole
cache block. In this work, on the other hand, we distinguish
cache blocks based on their impact on performance. Based
on our studies, computing cores are more sensitive to the
access latency of some cache blocks more than others. We
refer to such cache blocks as critical or latency-sensitive
blocks. Considering this definition of criticality, our proposed
criticality-aware compressed cache architecture distinguishes
cache blocks based on their criticality and guarantees that
critical blocks will be accessed in a tolerable latency. To this
end, we consider two categories of critical blocks.

Local Cache Blocks: In NUCA structured caches, local
cache blocks are accessed with the minimum latency which
is equal to the cache hit-latency while the access latency of
remote cache blocks are variable because the data has to go
thought the interconnection network. Based on our studies,
computing cores are more sensitive to the access latency of
local cache blocks. In other words, the imposed decompression
latency is less detrimental for remote cache blocks, as those
blocks already experience longer access latencies compared to
local blocks. For instance, in a 16-core processor structured
as a 4 × 4 mesh topology (detailed configuration is given in
table II), if we assume a uniform access traffic to different
LLC banks, the access latency of a local data is 10 cycles
while for a remote cache block it is about 15 cycles on average,
assuming that the network is empty. For real memory-intensive
applications however, the average access latency to remote
cache blocks will be longer because of the traffic within the
network. Therefore, we need to distinguish local and remote
cache blocks because they experience widely different access
latencies which subsequently affects their sensitivity to the
decompression latency.

W
or

ki
ng

-S
et

 C
ov

er
ag

e (
%

)

10 - IP
C

 Im
pa

ct
 (%

)

omnetpp omnetppgcc gcc gcc omnetpp

IP
C

 Im
pa

ct
 (%

)

gcc omnetpp

WS1

a. Size of WS2 is a function
of compression ratio.

b. Negative impact
of longer access
latency on WS1

30 -

50 -

70 -

90

-1 -

-3 -

-5 -

-7

-2 -

-4 -

-6 -

1 -

3 -

5 -

2 -

4 -

6 -

7

c. Positive Impact
of larger cache

 capacity on WS2

WS2

B
D

I

B
D

I

B
D

I

B
D

I

FP
C

FP
C

FP
C

FP
C

B
D

I

B
D

I

FP
C

FP
C

Fig. 3. Impact of larger cache capacity versus longer cache access latency
on the system performance, in terms of IPC.

Long ROB Stalls: Most of the commercial processors in the
market perform out-of-order execution to achieve maximum
performance. Even though instructions are executed out-of-
order, they are committed in-order. Processors typically adopt
a buffer, called ReOrder Buffer (ROB) to commit the executed
instructions in an in-order fashion. ROB could be stalled
when the instruction at the head of ROB is not finished
yet but many instructions after that are already finished and,
are ready to commit. Such ROB stalls directly degrades the
system performance. The memory request bind to the stalled
instruction at the head of ROB is called critical load [9], [10].
Ghose et al. [9] demonstrate the importance of critical loads
and accordingly proposes a memory scheduler which prioritize
critical memory accesses. Kotra et al. [10] observe this issue
for the cache blocks and accordingly proposes a customized
NUCA platform for non-volatile LLCs. In our studies, we
observe similar behaviors regarding cache blocks. Meaning
that, data blocks which happen to stall ROB are more sensitive
to the access latency and cannot tolerate long decompression
latencies. In this work, we adopt a mechanism similar to that
of [10] to detect critical cache blocks. Figure 4 depicts the
structure of the criticality load predictor used in our work. On
each instruction commit, the head of ROB is used to update
the criticality predictor table (CPT). More precisely, PC of the
head is used to index the CPT (only for load operations). If
it is a hit, numLoadCount is incremented. If this load results
in an ROB stall, the robBlockCount is also incremented. If
the CPT does not contain an entry with the corresponding PC
(miss), a new entry will be inserted into the CPT. On a lookup,
CPT is accessed and based on the value of robBlockCount we
determine whether the target block is critical or not1.

1More information is available in [10]. Note that, in this work we do
not need information such as PC viz, LastStallTime, MaxStallTime, and
TotalStallTime because we do not have to rank the loads in terms of criticality.

Head

numLoadCount robBlockCount

ROB

Criticality Predictor Table (CPT)

PC

CPT is indexd by PC
numLoadCount++ on load
robBlockCount++ if ROB is stalled

Update CPT: Lookup CPT:
robBlockCount ≥ Threshold→Critical

Fig. 4. Configuration of the critical load predictor logic.

B. Non-Uniform Compression
Our goal is to achieve a compressed LLC where critical

data blocks are accessed with a latency comparable to that of
uncompressed cache blocks while the achieved LLC capacity
is comparable to that of strong compression schemes.

In Section 4.1, we defined two types of critical data blocks:
(i) Local cache blocks in NUCA, and (ii) cache blocks which
cause long ROB stalls. The question is how critical and non-
critical data blocks should be managed to achieve large cache
capacities without suffering from the imposed decompression
latency. One can naively propose to only compress the non-
critical cache blocks. Although this guarantees a fast access to
critical blocks, we lose opportunities to achieve higher cache
capacities. Additionally, based on our experimental observa-
tions, even critical cache blocks can tolerate few cycles of extra
delay (i.e., 1-2 cycles) without noticeably affecting the system
performance. Considering this observation, we propose a non-
uniform architecture which exploits well-known compression
schemes in a criticality-aware fashion. To this end, we adopt
a fast compression scheme (i.e., low-compression-ratio low-
decompression-latency) for critical cache blocks in order to
favor lower latency over higher capacity. On the other hand, for
non-critical blocks we use a strong compression scheme (i.e.,
high-compression-ratio high-decompression-latency) because
achieving larger capacity has higher priority for this category.

Even though our hybrid architecture is compatible with any
compression scheme, in this work we adopt BDI [4] and
FPC [1] schemes that are easy to implement in hardware.
Since BDI offers a 1-cycle decompression latency, we use
that for critical data blocks. FPC on the other hand, offers
a 5-cycle decompression latency and can be used for non-
critical data blocks. However, in Section 6 we will demonstrate
that a hybrid BDI-FPC scheme covers a wider range of
data-types/data-patterns which consequently provides higher
compression ratio. Therefore, for non-critical blocks, instead
of just using FPC scheme, we pick the best of FPC and BDI
in order to achieve larger cache capacity while for critical data
blocks we always use BDI scheme. Such hybrid approaches
are exploited in other works for different purposes [11], [12].

Note that, recognizing local cache blocks is straightforward
as we can determine the target LLC bank based on the address
of the cache request. Therefore, on a write operation, we can
determine which compression scheme should be used based on
the placement of the target cache block in the NUCA. For the
second category of critical cache blocks however (i.e., ROB
stalls), the first time a block is brought into the cache, we
consider that as a non-critical block. At some point during
the program execution, the criticality predictor (discussed in
Section IV-A) labels that block as critical and we change its
compression scheme upon the next write operation. Similar
adjustment is done if a critical cache block is labeled as non-
critical during the course of execution. Note also that, similar
to previous studies, the tag array is doubled to be able to
address twice an many cache blocks as the baseline. Besides,
we keep one bit per tag entry to distinguish between BDI and
FPC compressed blocks.

C. Relaxing the Decompression Latency
Data traversal in the interconnection network can be ex-

ploited as an opportunity to partially hide the decompression
latency for remote data accesses. Some prior works (e.g., [13],
[14]) exploit compression at the packet-level to optimize per-
formance and power consumption of the NoC. Such techniques
compress data at the network interface controller, prior to
injection in the network. Unlike those techniques, we do not
use compression as a knob to improve the NoC performance.
Instead, we use data traversal as an opportunity to partially
eliminate the decompression latency from the critical path. To
do so, the decompression logic is placed in the routers which
is tightly coupled with LLC banks (see Figure 1).

FPC Pipelined Decompression: Decompression process in
FPC takes 5 cycles and is performed in a pipeline fashion:
1- the length of each code is calculated using the prefix
tags, 2&3- the starting bit address of each word is computed,
4&5: a parallel decoder produces the uncompressed data
from compressed format using the available information. In a
packet-based wormhole switched network, the decompression
pipeline can be designed such that decompression starts as
soon as the header flit of the compressed cache block arrives.
This flit contains all the necessary information for the first
three stages of the decompression pipeline. When the last
flit arrives, we can complete the next two stages and deliver
the data to the processor. This technique effectively reduces
decompression latency of FPC from 5 cycles to 2 cycles (for
the cache blocks that are at least two hops away) as cache
block traverses through the network. Note that, even though
our proposed architecture is compatible with any compression
scheme, this specific optimization is only applicable on com-
pression schemes with pipelined decompression process.

V. METHODOLOGY
Infrastructure. We evaluate our proposed mechanism using

GEM5 simulator [15]. Target system is a 16-core processor
with a cache hierarchy consisting of private 32KB L1 and a
shared 4MB L2. Detailed configuration is given in Table II.

Workloads. For multi-program workloads, we use the
SPEC-CPU2006 benchmarks [16]. We fast-forward each
workload for 2 billion instructions, warmup the caches by
running 200 million instructions, and then simulate the next
200 million instructions.

TABLE II
MAIN CHARACTERISTICS OF SIMULATED SYSTEM.

Processor
CMP ALPHA ISA, out-of-order, 16 cores

Configuration @2.5GHz, 4×4 Mesh, 128 ROB entries
Memory Hierarchy

L1 Caches 32KB/4 way, private, 1-cycle, MSHR:(4I,32D)
L2 Cache 4MB/64B/8 way, SNUCA, 10-cycle, MSHR:32
Coherency Snooping MESI: 4×4 grid packet switched
Protocol NoC; XY routing; 2 cycle per-hop latency
DRAM 16GB, 4 channels, 1 DIMM/channel,
Memory 2 ranks/DIMM, 8 devices/rank, FR-FCFS,

Configuration 667 MHz bus,8 Byte data bus, DDR3 1333 MHz,
tRP-tRCD-CL: 15-15-15 ns, 8 DRAM banks,

R-buffer hit: 36ns, R-buffer miss: 66ns

TABLE III
CHARACTERISTICS OF THE EVALUATED WORKLOADS FOR LAST-LEVEL CACHE.

Workload MPKI BDI FPC Hybrid Comp Workload MPKI BDI FPC Hybrid Comp
MP1: namd, xalancbmk, zeusmp, gcc 2.3 5.2 2.2 7.1 MP8: bzip, gcc, xalancbmk, zeusmp 8.9 2.5 1.7 2.8
MP2: gcc, GemsFDTD, gromacs, h264ref 0.7 1.5 1.9 2.2 MP9: xalancbmk, xalancbmk, gcc, gcc 2.65 1.3 1.7 1.8
MP3: soplex, sphinx3, tonto, xalancbmk 0.5 1.4 1.7 1.8 MP10: deal, soplex, namd, bzip2 4.15 1.6 1.5 2.0
MP4: namd, tonto, cactusADM, dealII 1.5 2.0 1.7 2.6 MP11: sphinx3, tonto, zeusmp, gcc 10.5 12.8 2.2 16
MP5: xalancbmk, gcc, namd, omnetpp 1.0 1.3 1.7 1.8 MP12: bzip, zeusmp, xalancbmk, dealII 10.8 2.4 1.7 2.9
MP6: xalancbmk, cactusADM, dealII, gcc 2.7 1.8 1.7 2.4 MP13: deal, bzip2, zeusmp, xalancbmk 11.0 2.3 1.8 3.0
MP7: omnetpp, omnetpp, gcc, gcc 1.6 1.3 1.7 1.9 MP14: bzip2, cactusADM, dealII, gcc 8.85 1.8 1.6 2.2

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

bzip
cact.

deal.
gcc gems.

grom.
h264.

mcf
namd

omne.
sopl.

sphi.
tont.

xala.
zeus.

Mean

C
o
m

p
re

ss
io

n
 R

at
io

BDI FPC SC2 Hybrid-Comp

Fig. 5. Comparison of compression ratio for different schemes: BDI [4], FPC [1], SC2 [6], and Hybrid-Comp.

 0

 2

 4

 6

 8

 10

 12

MP1
MP2

MP3
MP4

MP5
MP6

MP7
MP8

MP9
MP10

MP11
MP12

MP13
MP14

Mean

M
is

s-
P

er
-K

il
o
-

In
st

ru
ct

io
n
 (

M
P

K
I)

Uncompressed BDI FPC Hybrid-Comp

Fig. 6. Effect of data compression on the number of misses per kilo instruction at the last-level cache.

VI. EVALUATION

A. Compression Ratio
Figure 5 demonstrates the compression ratio of different

compression schemes over SPEC2006 [16] applications. As
discussed in Section 2, BDI uses narrow data values to
compress a cache block. FPC on the other hand, exploits
frequent data patterns. Employing these two schemes in a
unified architecture can cover a wider range of data types
which considerably improves the average compression ratio.
Our proposed architecture, uses these two schemes in a hybrid
criticality-aware fashion and achieves a compression ratio
comparable to that of SC2 [6]. Note that, SC2 uses Huffman-
based statistical compression and has a decompression latency
of 8/14 cycles (depending on the position of critical word in
the cache block), while our proposed architecture achieves
a 1-5 cycles decompression latency (depending on the type
of compression scheme and position of data in NUCA).
Therefore, our proposed architecture outperforms SC2 in terms
of both the compression ratio, owing to the data type coverage
achieved by using multiple compression schemes, and the
decompression latency. Note that, in the compressed cache,
the tag array is doubled to be able to address twice as
many cache lines as the baseline. Therefore, the maximum
compression ratio reported in Figure 5 is limited to 2. SC2

can outperform our approach (in terms of compression ratio)
for some applications if we use larger tag caches.

Note that, Arelakis et al. [12] also propose a hybrid com-
pression mechanism. However, they focus on the content of
each cache block (i.e., run-time data-type prediction) rather
than its criticality, and is orthogonal to our work.

B. Misses-Per-Kilo-Instructions (MPKI)
MPKI can be used as a metric to analyze the caching

efficiency in cache-sensitive applications. As can be seen in
Figure 6, MPKI is reduced in compressed caches, thanks
to the extra cache capacity achieved by compression. Ta-
ble III reports the compression ratios of BDI, FPC, and
our hybrid architecture for the studied workloads. Comparing
the reported compression ratios in Table III with MPKI in
Figure 6 demonstrates the direct impact of compression ratio
on MPKI. Our proposed architecture reduces MPKI by 25% on
average compared to the baseline cache configuration while it
outperforms BDI and FPC schemes by about 10% on average.

C. Average Data Access Latency
Figure 7 reports average data access latency in LLC nor-

malized to the baseline cache with no compression. Since we
have doubled the size of tag array in the compressed cache,
it can at most pack twice as many cache lines as the baseline
cache. Therefore, as shown in Figure 7, the average data
access latency for a double size LLC (i.e., 8MB) indicates the
maximum improvement that can be achieved by compression.
In a compressed cache, decompression latency determines the
latency of hit accesses while compression ratio affects the hit-
rate. Comparing average data access latency of FPC and BDI
demonstrates the importance of decompression latency. Even
though, for about half of the applications FPC provides better
compression ratio compared to BDI, for all the workloads
reported in Figure 7, FPC achieves longer access latencies
(in some cases even worse than the baseline) because of its
long decompression process. Our proposed architecture on the

 0.4

 0.6

 0.8

 1

 1.2

MP1
MP2

MP3
MP4

MP5
MP6

MP7
MP8

MP9
MP10

MP11
MP12

MP13
MP14

Mean

N
o
rm

al
iz

ed
 A

v
er

ag
e

D
at

a
A

cc
es

s
L

at
en

cy

FPC-4MB BDI-4MB Hybrid-Comp 8MB

Fig. 7. Average last-level cache access latency normalized to the baseline 4MB LLC with no compression.

-6

-3

 0

 3

 6

 9

 12

 15

MP1
MP2

MP3
MP4

MP5
MP6

MP7
MP8

MP9
MP10

MP11
MP12

MP13
MP14

MeanW
ei

g
h

te
d
 S

p
ee

d
u

p
 (

%
) FPC-4MB BDI-4MB Hybrid-Comp 8MB

Fig. 8. Comparison of weighted speedup: BDI–4MB [4], FPC–4MB [1], Hybrid-Comp–4MB, and uncompressed 8MB cache.

other hand, outperforms FPC and BDI in terms of compression
ratio, and has a decompression latency comparable to that of
BDI. Therefore, as can be seen in Figure 7, our proposed
architecture outperforms both BDI and FPC, and achieves an
average access latency close to that of a double size LLC.

D. Performance
Figure 8 demonstrates the impact of different compression

techniques on the system performance in terms of weighted
speedup. Latency-sensitive workloads (i.e., workloads with
low MPKI shown in Figures 6) do not gain from the extra
last-level cache capacity achieved by compression; however,
the imposed decompression latency can degrade their per-
formance. For instance, comparing Figures 6 and 8 illus-
trates that, workloads with low MPKI (e.g., MP1 to MP5)
incur performance loss under FPC cache compression scheme.
Our proposed mechanism however, do not experience any
performance loss for such latency-sensitive workloads as it
fundamentally prioritize latency over capacity. On the other
hand, capacity-sensitive workloads (i.e., workloads with high
MPKI reported in Figures 6) considerably gain from the
extra last-level cache capacity achieved by data compression
(e.g., MP10 to MP14 in Figure 8). Overall, our proposed
mechanism outperforms both FPC and BDI, thanks to its
lower average data access latency, and achieves a performance
improvement (i.e., 5.3% on average) comparable to that of an
8MB uncompressed LLC (i.e., 6% on average).

Note that, simply adopting a hybrid FPC-BDI scheme makes
an average improvement of only 1.4%. By considering critical
and non-critical data blocks we can achieve an improvement of
4.1% on average. Finally by using the decompression relaxing
technique we reach an average improvement of 5.3%.

VII. CONCLUSION

In this paper, we propose data criticality as a parameter that
should be considered in designing compressed caches, along
with compression ratio and decompression latency. Based
on our studies on a 16-core processor with 4MB last-level
cache, the proposed criticality-aware architecture improves the
system performance comparable to that of with an 8MB LLC.

ACKNOWLEDGMENT
This work is supported in part by NSF grants 1526750,

1302557, 1213052, 1439021, 1626251, 1409095, 1629915,
1629129, and 1302225 and a grant from Intel.

REFERENCES

[1] A. R. Alameldeen et al., “Adaptive cache compression for high-
performance processors,” SIGARCH Comput. Archit. News, Mar. 2004.
[Online]. Available: http://doi.acm.org/10.1145/1028176.1006719

[2] X. Chen et al., “C-pack: A high-performance microprocessor cache
compression algorithm,” IEEE Trans. VLSI, 2010. [Online]. Available:
http://dx.doi.org/10.1109/TVLSI.2009.2020989

[3] J. Dusser et al., “Zero-content augmented caches,” in ICS, 2009.
[Online]. Available: http://doi.acm.org/10.1145/1542275.1542288

[4] G. Pekhimenko et al., “Base-delta-immediate compression: Practical
data compression for on-chip caches,” ser. PACT ’12. [Online].
Available: http://doi.acm.org/10.1145/2370816.2370870

[5] J. Yang et al., “Frequent value compression in data caches,” in MICRO,
2000. [Online]. Available: http://doi.acm.org/10.1145/360128.360154

[6] A. Arelakis and P. Stenstrom, “Sc2: A statistical com-
pression cache scheme,” ser. ISCA ’14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2665671.2665696

[7] M. Arjomand et al., “A morphable phase change memory architecture
considering frequent zero values,” in ICCD, Oct 2011, pp. 373–380.

[8] M. Arjomand, A. Jadidi, M. T. Kandemir, and C. R. Das, “Leveraging
value locality for efficient design of a hybrid cache in multicore
processors,” in ICCAD, Nov 2017, pp. 1–8.

[9] S. Ghose et al., “Improving memory scheduling via processor-side
load criticality information,” in ISCA, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2485922.2485930

[10] J. B. Kotra et al., “Re-nuca: A practical nuca architecture for reram
based last-level caches,” in IPDPS, 2016.

[11] A. Jadidi et al., “Exploring the potential for collaborative data compres-
sion and hard-error tolerance in pcm memories,” in DSN, June 2017,
pp. 85–96.

[12] A. Arelakis et al., “Hycomp: A hybrid cache compression
method for selection of data-type-specific compression methods,”
ser. MICRO. ACM, 2015, pp. 38–49. [Online]. Available:
http://doi.acm.org/1d0.1145/2830772.2830823

[13] Y. Jin et al., “Adaptive data compression for high-performance
low-power on-chip networks,” ser. MICRO 41. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2008.4771804

[14] P. Zhou et al., “Frequent value compression in packet-
based noc architectures,” ser. ASP-DAC ’09. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1509633.1509640

[15] N. Binkert et al., “The gem5 simulator,” SIGARCH
Comput. Archit. News, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718

[16] C. D. Spradling, “SPEC CPU2006 benchmark tools,” SIGARCH CAN,
vol. 35, no. 1, pp. 130–134, Mar. 2007.

