
LUPIS: Latch-Up Based Ultra Efficient Processing
In-Memory System

Joonseop Sim, Mohsen Imani, Woojin Choi, Yeseong Kim and Tajana Rosing
UC San Diego, La Jolla, CA 92093, USA

{j7sim, moimani, woc015, yek048, tajana}@ucsd.edu

Abstract—Internet of Things (IoT) involves processing massive
data. This poses a huge challenge in the current computing
systems due to the limited memory bandwidth. Processing
in-memory (PIM) is a promising candidate to minimize this
bottleneck and reduce the performance gap between proces-
sor and memory latency. We propose LUPIS (Latch-Up based
Processing In-memory System) for nonvolatile memory (NVM).
Unlike existing PIM techniques, which mainly focus on bitwise
operation based computations and involve considerable latency
and area penalty, our design facilitates computations like addi-
tion and multiplication with very low latency. This makes the
system faster and more efficient as compared to the state-of-
the-art technologies. We evaluate LUPIS at both circuit-level
and application-level. Our evaluations show that LUPIS can
enhance the performance and energy efficiency by 62× and
484× respectively as compared to a recent GPGPU architecture.
Compared to the state-of-the-art PIM accelerator, our design
presents 12.7× and 20.9× improvement in latency and energy
consumption with insignificant overhead of 21% for area increase
and one cycle for latency delay.

I. INTRODUCTION

The era of the Internet of Things (IoT) has been driven by
evolution of several technologies, including wireless commu-
nication, machine learning, and embedded systems [1], [2].
To assimilate the information transferred between connected
devices, a large amount of data needs to be stored and
processed. The movement of this data between the processing
units and memory is one of the major power consumption and
performance bottlenecks.

Several approaches have been proposed to address the issue
of data movement. Near data computing (NDP) brings the
computing unit close to the memory to avoid data transfer
across the hierarchy. However, these designs need extra pro-
cessing units near main memory. Some implementations put
processing cores in different layers of 3D stacked memories
to reduce the data transfer overhead [3], [4]. They however
increase the energy consumption of the system and the data
still needs to be transferred to the additional processing units.
Processing in memory (PIM) is another promising way to
address the data movement issue by processing data inside
the memory, thus improving both performance and energy
efficiency [5]–[19]. Although many PIM techniques have been
proposed so far, they support limited basic functionalities
such as basic bitwise operations (AND, OR, and IMP), which
are only applicable to specific applications. For example, the
designs shown in [20], [21] support bitwise operations but
can not support arithmetic functions like the addition and
multiplication. The techniques in [22] have been designed

exclusively for accelerating neural network algorithms. Many
applications including machine learning algorithms and image
processing involve complex functions [13], [23], [24]. Hence,
several techniques have been proposed to perform functions
like addition and multiplication in NVM architectures [12],
[25]–[27]. However, they execute these functions by combin-
ing multiple boolean operations (IMP, NOT, NOR). Therefore,
they are inherently slow due to their multi-cycle operation as
well as slow processing speed.

In this paper, we propose a new PIM architecture, called
LUPIS, which enables the addition and multiplication in an
efficient manner. We design a new sensing circuit which
uses the analog properties of NVM. We simplify compu-
tation by exploiting the latch-up effect of thyristor devices
to directly generate the results from the input data without
any intermediate logic. We further leverage the back down
effect at latch up points of thyristor to implement functions
with minimal increase in the number of gates. In addition,
the proposed design performs the operations in a modified
sensing circuit which is compatible with the conventional
current sense amplifier (CSA). It does not need additional cells
to support calculations, thus requires negligible area overhead.
We show that the proposed LUPIS can improve performance
and energy efficiency of many popular applications such as
machine learning and data analysis, which involve a large
number of additions and multiplications.

The main contributions of this paper are listed as follows:
• We propose a high performance and low cost PIM archi-

tecture based on the latch-up effect of thyristors, enabling
single-cycle addition (ADD), and significantly improving
the performance of multiplication (MUL).

• Our design requires no additional cell array for process-
ing, hence can be an excellent candidate for the storage
class memory which has been considered as the main
application of memristor-based products.

• Our experimental results show that LUPIS can provide
12.7× speedup and 20.9× energy efficiency as compared
to the state-of-the-art PIM accelerator, APIM [12].

II. RELATED WORK

Several work has proposed ways to address the issue
of data movement between the processor and memory, by
supporting basic functionality inside the memory module.
Near-data computing adds extra computing units close to the
memory in order to locally process the data [28]. However,
this approach demands additional logic layers connected to

978-1-5386-1214-9/18/$31.00 ©2018 IEEE 55 19th Int'l Symposium on Quality Electronic Design

multi-layer memory stack with through-silicon-via (TSV) [3],
[4], hence it requires additional energy consumption and in-
creases the fabrication costs. Processing in-memory is another
solution to address data movement. PIM modifies the existing
memory sense amplifiers to support basic operations and is a
preferable approach due to its lower design complexity and
cost efficiency.

The emerging nonvolatile memory (NVM) technologies
such as phase change memory (PCM) and resistive RAM
(ReRAM) are considered as good candidates for PIM due
to their high density, scalability, and low power consump-
tion [29], [30]. However, the supported functionality in most
of the PIM designs is limited to either bitwise operations or
operations derived from basic bitwise operations which require
multiple cycles. For example, [20], [21] proposed a sensing
circuit to implement the basic bitwise operations such as AND,
OR, and INV. However, they do not support addition and
multiplication which are the key arithmetic functions involved
in many applications such as machine learning algorithms
and image processing [27]. Several designs presented in [12],
[25], [26], [31] have designed the full adder function based
on bitwise operations. Since these approaches implement the
operation by combining multiple basic operations, e.g., NOR
or IMP, they require tens of cycles. They include computing
the intermediate outcomes until obtaining the final results.
Thus, these designs pose inevitable timing overheads. In
addition, the huge area overhead due to the extra processing
cell arrays make them unsuitable for storage class memory
which demands high density integration.

III. PROPOSED DESIGN

A. NVM Sensing Scheme
Emerging nonvolatile memories such as ReRAM, STT-

RAM and PCRAM can be classified as the resistance-based
memories. These technologies store and read the data by
changing the cell resistance, e.g. its high and low resistance
state are interpreted as logic 0 and 1 respectively. One of the
major differences between NVM and DRAM is the sense am-
plifier design. While charge-based DRAM uses a voltage sense
amplifier (VSA) which detects the electronic potential between
the bitline (BL) and bitbar-line (BL), NVM uses a different
current sense amplifier (CSA) due to its better distinguish-
ability of the resistance difference than the VSA. Fig. 1a
shows the sensing scheme of the conventional CSA [32].
The data in a memory cell is determined by assessing the
current from the selected memory cell. When the current
from the selected BL (IBL) and the current from the reference
cell (IREF) are mirrored to (I1) and (I2) respectively, they
are compared to each other and changed to voltage signals
(DOUT) [33]. The state of RCELL < RREF is considered as
logic ”1” and the other case is considered as logic ”0” as
shown in Fig. 1b. The conventional CSA is capable of only
judging the resistance from the selected cell higher and lower
than reference resistance. In this paper, we propose a current
sensing scheme, which also enables arithmetic functions, i.e.
addition and multiplication inside memory module, compatible
with the conventional sensing scheme.

Fig. 1. Conventional Sensing Scheme for NVM

B. Thyristor Latch-Up

We exploit a vertical PNPN structure commonly referred to
a thyristor [34]. Fig. 2a shows the structure used in our design.
The structure has three P-N junctions and is equivalent to two
cross-coupled bipolar junction transistors (BJTs) as shown in
Fig. 2a. This structure has a short-circuit path, often referred
as latch-up in CMOS design. When one of the two BJTs gets
forward biased, it feeds the base of the other BJT. This positive
feedback increases the current until it saturates to Ishort .

Fig. 2b shows the voltage and the current behaviors of the
structure. In the initial state, a thyristor has a high resistance
(2MΩ in our experimental setup). When the voltage across the
device (VAB) is increased, the device keeps the high resistance
state until VAB reaches the latch-up voltage (VLU). Latch-up
occurs at VLU and the current through the cell (i.e., from A
to B in Fig. 2a) abruptly increases until the applied bias turns
back to the latch-down voltage (VLD). In order to restore the
thyristor device resistance to the original state, a reverse bias,
VRC, should be applied to VAB. It moves the minor carriers out
from the base regions, and the device is set to the initial state
again. In the rest of the paper, we call this recovery state as
the write back step.

C. Sensing Circuit Design for Addition

We propose a new sensing circuit, which exploits the
thyristor latch-up effect, to enable ADD operation in a cycle.
Fig. 3 is the schematic of the proposed design. The design
consists of two parts: the current mirror and adder. Once three
rows of a memory block corresponding to the input values
(A,B,Cin) are activated, the total current from the activated
rows denoted as IBL is delivered to the selected BL. The current
mirror circuit in Fig. 3 copies the IBL to I1 and I2 and delivers
them to Carry Out (Cout) and Sum branches, respectively. Our

Fig. 2. (a) Thyristor Structure and (b) Voltage-Current Behavior

design computes the outputs by distinguishing the total current
amount reached to the sensing circuit.

Fig. 4a presents the truth table of a full adder. The sum is
the exclusive-or (XOR) result for the three inputs and the carry
out is the majority function of the inputs. The three inputs are
interchangeable in that the order of them does not affect the
output. In the memsistor devices, the amount of the bitline
current is the combination of one Ron and two Ro f f . Based on
this characteristic, there are four different cases depending on
the current amount, I000, I100, I110 and I111, according to the
number of high (0) and low (1) resistances in the memristors
of activated rows.

Fig. 4b shows how the proposed circuit distinguishes the
four current regions to create the desired Cout and Sum. In
our circuit design, there are three major voltage nodes (i.e.,
V1, V2, and V3 shown in Fig. 3) whose potential determine the
final outputs of the Sum and Cout by the following digital logic
gates. The voltage of each node is transferred as a function of
the current in the selected bitline. VT HR is a threshold value
which determines whether an input potential is interpreted as
a logic 0 or 1 (i.e., any value less than VT HR is 0 and any value
above VT HR is 1.) Let Rthy be the resistance of the thyristor
explained in Section III-B. Then, the electric potentials at V1,
V2 and V3 are represented by V1 = I1 · (2R), V2 = I2 · (3R) and
V3 = I2 · (2R ·Rthy)/(2R+Rthy), respectively.

As for the carry-out function, V1 node has higher electric
potential than VT HR in cases of I110, I111 when it delivers a
logic 1 to Cout through two inverters which strengthen the
signal. For the I000 and I100 cases, V1 node has lower potential
than VT HR and Cout presents a logic 0.

The Sum function uses branches where V2 and V3 nodes are
located. As shown in Fig. 4b, V2 node has lower potential than
VT HR only in case of I000 and its inverted logic 1 is delivered to
the MUX, pulling down the Sum potential to the ground, i.e.,
logic 0. In the opposite cases, i.e., I100, I110 and I111, V2 has a

Fig. 3. Proposed Sensing Circuit for Addition

logic 1, and the MUX delivers the data from the connection
where V3 is located, so that V3 decides the outputs for the three
cases. For I100 and I110 case, the V3 shows either logic 0 or
logic 1 depending on the input current in a similar way of V1,
since the thyristor is not activated in this region. However, once
the current increases and reaches the I111 range, the latch-up
occurs in the thyristor device, and thus the electric potential of
V3 abruptly falls below VT HR, making Sum logic 1. With this
logic, our design is able to complete all Sum and Cout results.
Once the final outputs are generated, we reset the thyristor for
the next cycle, by invoking the write-back procedure to turn
the thyristor resistance back to the original state. In case of
N-bit addition, Cout is written back to the memory and is used
to calculate the results for the next bit.

In our experimental setup, we assume VT HR = VDD/2, and
set R=20kΩ to yield the described voltage transfer functions.
The latch-up also affects the potential of the V2 node. However,
the potential V2 does not drop below VT HR in our design, since
the thyristor resistance on the conductance state is very low
compared to 2R, a higher portion of the supply voltage is
applied between V2 and V3. This keeps the V2 over the VT HR
and V3 below VT HR with a marginal window in the case of
I111.

D. Multiplier Design

Implementing multiplication in memory is challenging due
to the large number of parallel computations and shift opera-
tions for each multiplicand bit. The multiplication is performed
in three stages, partial product generation, fast addition, and
final product generation. The partial product generation stage,
generates n partial products, where n represents the size of

Fig. 4. Voltage Transfer as a Input Current (IBL)

the multiplier. They are propagated to the next stage. The fast
addition method used in [12], optimizes the latency involved in
the addition of the generated partial products. They implement
tree-based carry save addition to push carry propagation to the
last stage, hence enabling faster operations. A carry save adder
implements half-addition at each bit. It takes in three inputs
and generates two outputs, sum and carry, resulting in a 3:2
reduction. Successive carry save additions reduce the initial n
partial products into two numbers which are then added in the
final stage.

Although we use similar techniques as those in [12] to
support multiplication, our work is different from the imple-
mentation perspective. We design novel circuits using thyristor
device to enable single-cycle computations. For single-bit
addition, which is the basic operation to implement MUL,
the design in previous work has larger latency than the
proposed design. Moreover, it uses interconnects to enable
shift operations which requires large number of additional
transistors. It induces significant area overhead, which grows
exponentially as the block size increases. Our design generates
intermediate results at the sensing circuits and writes them
back for further computations. Hence, the shift operations
are dealt with while writing the results back to the memory.
This does not require the expensive interconnects used by the
previous work. Furthermore, we can utilize the thyristor write-
back, which happens at the end of the ADD operation, to hide
the write latency.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Performance and energy consumption of the proposed de-
sign have been obtained from circuit-level simulations in a
45nm CMOS process and design kits of Cadence Virtuoso and
Spectre simulators. We use VTEAM memristor model [35]
for our resistance-based memory design and simulation with
Ron and Ro f f of 10KΩ and 10MΩ respectively. The thyristor
device has been designed and simulated using Silvaco ATLAS
TCAD software to investigate the latch-up effects to the PIM
architecture and optimize the process conditions.

To evaluate the efficiency of LUPIS for practical applica-
tions by designing a cycle-accurate simulator which models
the memory functionality. We compare proposed design with

TABLE I
PERFORMANCE OF 1-BIT ADDER FOR LUPIS AND OTHER TECHNOLOGIES

[25] [26] [12] [37] This work
No. Memristors 3N+5 3N+3 3N+8 N+2 3N
Cell efficiency 38% 50% 27% 33% 100%

Latency 149.6ns 31.9ns 14.3ns 9.9ns 33.3ps
Energy 3237fJ 690fJ 289fJ 214fJ 7.9fJ

AMD Southern Island GPU, Radeon HD 7970 device, which
is one of the most recent GP-GPU architectures. We compared
the efficiency of LUPIS to the GPU architecture for four
OpenCL applications: Sobel, Robert, Fast Fourier transform
(FFT) and DwHaar1D. For image processing, we used random
images from Caltech 101 [36] library, while for non-image
processing applications inputs were generated randomly. These
applications involve many additions and multiplications, and
we further approximated other common operations such as
square root with the two operations. In the application level,
we also modified source code of the applications so that ap-
plications utilize PIM-based addition/multiplications as much
as possible, e.g., using Taylor expansion.

B. Device Optimization

In order to optimize the process conditions of a thyris-
tor used in our proposed design, a device simulation was
performed using Silvaco Atlas. As shown in Fig. 5a, we
used a lateral PNPN structure consisting of a p-type Si
substrate, n+contact, n-well, and p+contact, with doping con-
centrations of 1× 1016cm−3, 1× 1020cm−3, 2× 1016cm−3

and 1× 1020cm−3. A width of 0.1 um was used for the 2-
dimensional simulation. For the latch up simulation, 1.0 us
was used for Shockley-Read-Hall life times for both electrons
and holes, and the Selberherr model was applied for the impact
ionization. Fig. 5(b) illustrates the simulation result with
d1=d2=0.2um. Based on this simulation result, we exploited
a VLD of 0.89 V, a VLU of 0.98 V, a RH of 1.9 MΩ, and a RL
of 1.7 kΩ, where RL and RH are the resistance of thyristor
in the higher and lower conductance state respectively. As
shown in Fig. 5c and Fig. 5d, RH and VLU can be easily
controlled by changing either the device structure or the
doping concentration of the p- and n- regions. This is because
RH and VLU in the high resistance regime are dominated by
the characteristics of the reverse biased PN junction at the
central p- and n- regions, so we can tune them by varying the
device structure and/or doping process conditions. Since there
is a clear dependency between RH and VLU , i.e. VLU increases
as increasing RH based on our simulation results, the thyristor
ensure a stable support of device characteristics that upper
circuit and system design need with marginal process window.

C. Energy and Performance Comparison

Circuit level: Table I shows the 1-bit addition results of
proposed LUPIS and other prior technologies. As explained
in Section II, most of the current PIM approaches including
selected ones [12], [25], [26], [37] use bitwise-based logics
(i.e. calculating IMP, NOR, NOT) to execute 1-bit addition.
Thus, they require inevitable sub-cycle executions for the

Fig. 5. (a) A cross-sectional schematic and current-voltage characteristics of
the simulated lateral PNPN structure with a width of 0.1 um, (b) d1=d2=0.2
um, (c) various d1=d2 for 0.2, 0.22, 0.25, and 0.3 um, and (d) various ND/NA
for 1/2×1016, 2/3×1016, 3/4×1016, and 4/5×1016cm−3

intermediate bitwise computations, creating huge latency bot-
tleneck, e.g., the long latency of SET cycle [12]. In contrast,
since our LUPIS design executes the ADD operation in the
sensing circuit in a single cycle, the total latency is determined
only by the sensing circuit delay, without any extra latency
from the memristor. Thus, our proposed design can achieve
higher speedup than all the other techniques. Furthermore, our
design shows superior cell efficiency since it does not require
additional cells. This makes our design a good candidate for
NVM-based PIM architectures, in particular, for the storage
class memory which should handle a large amount of data.

Application level: There are several applications which can
benefit by the PIM-based addition and multiplication. Fig. 6
shows the speedup and energy efficiency improvement of, i)
the proposed design and ii) a state-of-the-art PIM technique,
APIM [12], over the AMD GPU core. The results present that
our proposed design can achieve significantly better energy
and performance efficiency. Apart from the superior efficiency
improvement, our evaluation also shows that LUPIS energy
consumption increases linearly with the data set size, since the
PIM capability can highly hide the cost of data movements. In
contrast, the energy and execution time of the GPU case do not
scale linearly with the data size, as the larger dataset requires
higher costs for the data movements before processing. To
sum up, our design can achieve up to 62× speedup and
484× lower energy consumption than the GPU architecture.
As compared to APIM, the results present 12.7× and 20.9×
higher efficiency for speedup and energy respectively.

D. Overhead

Fig. 7 shows the area and latency overhead of our design
compared to the TC-adder [37], the most competitive design
in cell efficiency, as described in Section IV-C. The area
overhead has been estimated by the ratio of the additional

number of cells and gates as compared to the conventional
memory design. As shown in Fig. 7a, LUPIS has 21% area
overhead, which outperforms the TC-Adder by 10× since it
just takes insignificant modifications to the conventional CSA
circuit and no additional cells are required.

As for the latency overhead, our design requires the write
back step after the sensing operation to initialize the state
of thyristor for the next operations. As shown in Fig. 7b,
the overhead caused by the write back inclusion is one
cycle. This is negligible compared to the latency in the TC-
Adder requiring 9 cycles per operation [37]. Furthermore, the
overhead due to the write back step can be utilizing in the
the MUL operation to hide the latency of shift operations as
explained in Sec. III-D.

V. CONCLUSION

We have presented an ultra efficient PIM architecture which
effectively enables addition and multiplication inside memory
by utilizing the thyristor latch-up effect. The proposed design
also addresses the low cell-efficiency issue of other PIM
technologies due to redundant cell requirements for logic op-
erations by executing the calculations in the sensing circuitry.
The experimental results show that, compared to a state-of-
the-art PIM accelerator, our design presents 12.7× and 20.9×
improvement of latency and energy consumption.

VI. ACKNOWLEDGMENT

This work was supported by NSF grants #1730158 and
#1527034.

REFERENCES

[1] I. Wigmore, “Internet of things (iot),” TechTarget, 2014.
[2] B. Yao et al., “Multifractal analysis of image profiles for the character-

ization and detection of defects in additive manufacturing,” Journal of
Manufacturing Science and Engineering, 2017.

[3] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen,
C.-Y. Cher, C. H. Costa, J. Doi, C. Evangelinos, et al., “Active memory
cube: A processing-in-memory architecture for exascale systems,” IBM
Journal of Research and Development, vol. 59, no. 2/3, pp. 17–1, 2015.

[4] V. Seshadri, K. Hsieh, A. Boroum, D. Lee, M. A. Kozuch, O. Mutlu,
P. B. Gibbons, and T. C. Mowry, “Fast bulk bitwise and and or in dram,”
IEEE Computer Architecture Letters, vol. 14, no. 2, pp. 127–131, 2015.

[5] G. H. Loh, N. Jayasena, M. Oskin, M. Nutter, D. Roberts, M. Meswani,
D. P. Zhang, and M. Ignatowski, “A processing in memory taxonomy
and a case for studying fixed-function pim,” in Workshop on Near-Data
Processing (WoNDP), 2013.

[6] A. M. Aly, A. Sallam, B. M. Gnanasekaran, L.-V. Nguyen-Dinh, W. G.
Aref, M. Ouzzani, and A. Ghafoor, “M3: Stream processing on main-
memory mapreduce,” in Data Engineering (ICDE), 2012 IEEE 28th
International Conference on, pp. 1253–1256, IEEE, 2012.

[7] M. Imani et al., “Nngine: Ultra-efficient nearest neighbor accelerator
based on in-memory computing,” in ICRC, IEEE.

[8] Y. Kim et al., “Orchard: Visual object recognition accelerator based on
approximate in-memory processing,” in ICCAD, 2017.

[9] M. Imani et al., “Nvalt: Non-volatile approximate lookup table for gpu
acceleration,” Embedded Systems Letters, 2017.

[10] M. Imani et al., “Resistive cam acceleration for tunable approximate
computing,” IEEE Transactions on Emerging Topics in Computing,
2017.

[11] M. S. Razlighi et al., “Looknn: Neural network with no multiplication,”
in DATE, pp. 1775–1780, IEEE, 2017.

[12] M. Imani, S. Gupta, and T. Rosing, “Ultra-efficient processing in-
memory for data intensive applications,” in Proceedings of the 54th
Annual Design Automation Conference 2017, p. 6, ACM, 2017.

[13] M. Imani et al., “Efficient neural network acceleration on gpgpu using
content addressable memory,” in DATE, pp. 1026–1031, IEEE, 2017.

16M 32M 64M 128M 256M 512M 1G
10

−1

10
0

10
1

10
2

Data Size

S
p

e
e
d

u
p

 (
G

P
U

=
1
)

(a) Sobel

16M 32M 64M 128M 256M 512M 1G
10

−1

10
0

10
1

10
2

Data Size

S
p

e
e
d

u
p

 (
G

P
U

=
1
)

(b) Robert

16M 32M 64M 128M 256M 512M 1G
10

0

10
1

10
2

Data Size

S
p

e
e
d

u
p

 (
G

P
U

=
1
)

(c) FFT

16M 32M 64M 128M 256M 512M 1G
10

−1

10
0

10
1

10
2

Data Size

S
p

e
e

d
u

p
 (

G
P

U
=

1
)

(d) DwHaar1D

16M 32M 64M 128M 256M 512M 1G
10

0

10
1

10
2

10
3

Data Size

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

Im

p
ro

v
e

m
e

n
t

(G
P

U
=

1
)

(e) Sobel

16M 32M 64M 128M 256M 512M 1G
10

0

10
1

10
2

10
3

Data Size

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

Im

p
ro

v
e

m
e

n
t

(G
P

U
=

1
)

(f) Robert

16M 32M 64M 128M 256M 512M 1G
10

0

10
1

10
2

10
3

Data Size

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

Im

p
ro

v
e

m
e

n
t

(G
P

U
=

1
)

(g) FFT

16M 32M 64M 128M 256M 512M 1G
10

0

10
1

10
2

10
3

Data Size

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

Im

p
ro

v
e

m
e

n
t

(G
P

U
=

1
)

(h) DwHaar1D

Fig. 6. Speedup and Energy Efficiency of Proposed LUPIS and APIM [12] over Different Applications.

Fig. 7. The Overhead of Area (a) and Latency (b)

[14] M. Imani et al., “Exploring hyperdimensional associative memory,” in
HPCA, IEEE, 2017.

[15] M. Imani et al., “Acam: Approximate computing based on adaptive
associative memory with online learning.,” in ISLPED, pp. 162–167,
2016.

[16] M. Imani et al., “Processing acceleration with resistive memory-based
computation,” in MEMSYS, pp. 208–210, ACM, 2016.

[17] M. Imani et al., “Masc: Ultra-low energy multiple-access single-charge
tcam for approximate computing,” in DATE, pp. 373–378, IEEE, 2016.

[18] M. Imani et al., “Multi-stage tunable approximate search in resistive
associative memory,” TMSCS, 2017.

[19] M. Imani et al., “Approximate computing using multiple-access single-
charge associative memory,” TETC, 2016.

[20] M. Imani, Y. Kim, and T. Rosing, “Mpim: Multi-purpose in-memory
processing using configurable resistive memory,” in Design Automation
Conference (ASP-DAC), 2017 22nd Asia and South Pacific, pp. 757–763,
IEEE, 2017.

[21] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerg-
ing non-volatile memories,” in Design Automation Conference (DAC),
2016 53nd ACM/EDAC/IEEE, pp. 1–6, IEEE, 2016.

[22] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
in Proceedings of the 43rd International Symposium on Computer
Architecture, pp. 14–26, IEEE Press, 2016.

[23] M. Imani et al., “Cfpu: Configurable floating point multiplier for energy-
efficient computing,” in IEEE/ACM DAC, p. 76, ACM, 2017.

[24] J. Sim et al., “Enabling efficient system design using vertical nanowire
transistor current mode logic,”

[25] E. Lehtonen and M. Laiho, “Stateful implication logic with memristors,”
in Proceedings of the 2009 IEEE/ACM International Symposium on
Nanoscale Architectures, pp. 33–36, IEEE Computer Society, 2009.

[26] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based material implication (imply) logic: Design

principles and methodologies,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054–2066, 2014.

[27] M. Imani, A. Rahimi, and T. S. Rosing, “Resistive configurable asso-
ciative memory for approximate computing,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2016, pp. 1327–1332,
IEEE, 2016.

[28] V. Seshadri and O. Mutlu, “The processing using memory paradigm:
In-dram bulk copy, initialization, bitwise and and or,” arXiv preprint
arXiv:1610.09603, 2016.

[29] Y. Wang, Y. Han, L. Zhang, H. Li, and X. Li, “Propram: exploiting
the transparent logic resources in non-volatile memory for near data
computing,” in Proceedings of the 52nd Annual Design Automation
Conference, p. 47, ACM, 2015.

[30] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions:
A low-overhead, locality-aware processing-in-memory architecture,” in
Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual Interna-
tional Symposium on, pp. 336–348, IEEE, 2015.

[31] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “Magicmemristor-aided logic,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,
pp. 895–899, 2014.

[32] M.-F. Chang, S.-J. Shen, C.-C. Liu, C.-W. Wu, Y.-F. Lin, Y.-C. King,
C.-J. Lin, H.-J. Liao, Y.-D. Chih, and H. Yamauchi, “An offset-tolerant
fast-random-read current-sampling-based sense amplifier for small-cell-
current nonvolatile memory,” IEEE Journal of Solid-State Circuits,
vol. 48, no. 3, pp. 864–877, 2013.

[33] X. Dong, C. Xu, N. Jouppi, and Y. Xie, “Nvsim: A circuit-level perfor-
mance, energy, and area model for emerging non-volatile memory,” in
Emerging Memory Technologies, pp. 15–50, Springer, 2014.

[34] X. Tong, J. Luo, H. Wu, Q. Liang, H. Zhong, H. Zhu, and C. Zhao,
“Two-terminal vertical memory cell for cross-point static random access
memory applications,” Journal of Vacuum Science & Technology B, Nan-
otechnology and Microelectronics: Materials, Processing, Measurement,
and Phenomena, vol. 32, no. 2, p. 021205, 2014.

[35] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “Vteam:
A general model for voltage-controlled memristors,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 62, no. 8, pp. 786–790,
2015.

[36] “Caltech 101.” http://www.vision.caltech.edu/ImageDatasets/
Caltech101/.

[37] A. Siemon, S. Menzel, R. Waser, and E. Linn, “A complementary
resistive switch-based crossbar array adder,” IEEE journal on emerging
and selected topics in circuits and systems, vol. 5, no. 1, pp. 64–74,
2015.

