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Abstract—Research towards brain-inspired computing based 
on beyond CMOS devices has gained momentum in recent 
years. The motivation beyond this vigorous research prevails 
in exploitation of the resemblance between the computing 
principles and the device characteristics. To this end, the 
devices are used to perform otherwise time-consuming and 
power hungry tasks required for brain-inspired computing. 
Due to their miniaturized dimensions, zero leakage and 
nonvolatility, spintronic devices are among the most 
promising class of beyond CMOS devices. In this paper, we 
propose a novel spintronic structure based on 
antiferrromagnetically coupled domain walls. The device 
structure enables dedicated terminology for synaptic and 
neuron connections. This characteristic enables more 
efficient design of neuromorphic systems by allowing larger 
design space for designers. Furthermore, thanks to the 
coupling between the domain walls, the device can 
potentially operate at higher speeds while maintaining the 
energy consumption of the device; this higher speed 
contributes to improved performance of the neuromorphic 
system. In order to evaluate our proposed device structure, 
we developed a cross-layer simulation framework. Our 
simulation framework analyzes the neuromorphic system at 
the device, circuit and algorithm levels. Our simulation 
results show an order of magnitude improvement in the 
energy consumption compared to CMOS and analog 
neurons and up to 2X performance improvement as well as 
8% improvement in the energy over state-of-the-art 
neuromorphic platforms using spintronic devices.  

Keywords— Spintronics, memristor, domain wall, 
neuromorphic computing, static coupling, Spin-hall effect, 
Dyzaloshinshkii-Moryia, Perpendicular domain walls, neural 
network, pattern recognition,  IoT. 

I. INTRODUCTION 

 The emergence of various computing devices and wearables 
connected to the internet (IoT) has motivated researchers to seek 
newer computing platforms that would extract meaningful 
information from the ever increasing data more efficiently and 
with reduced energy consumption.  To this end, neuromorphic 
computing is among the most promising computing paradigms. 
The efficiency of neuromorphic computing platforms has 
motivated researchers towards the study of these platforms and 
investigation of implementing these types of systems in 
hardware. However, the implementation of neuromorphic 
computing in hardware on supercomputers based on typical 
Von-Neumann architectures has proven to be extremely 
inefficient [1-3]. Therefore, researchers have considered usage 
of non Von-Neumann architectures for neuromorphic 
computing. To this end, the advancements in the development of 
nanoscale devices with unique capabilities that resembles that of 
neural networks has broadened the horizon to increase the 
efficiency of such systems. Furthermore, various beyond CMOS 
nanoscale technologies [4-12] have been used to implement 
these architectures. 
 The vast majority of these devices are two terminal devices. 
They are typically operated in two different phases: a 
program/train phase where the conductance of the device is 
defined and a run/evaluate phase where the programmed 
conductance is exploited to evaluate the system. Therefore, there 
is a need to adjust the driving circuitry based on the 
requirements of the devices in each phase. This drawback 
potentially increases the design complexity and requires 
increased resources for operation. 
 Furthermore, these devices have been utilized to perform 
either synapse or neuron operation and fail to integrate both 
functionality using the same device. This variegated usage of 
devices potentially increases the complexity of the fabrication of 
such systems. On the contrary, there are primitive proposals of 
devices that integrate the aforementioned functionalities [12]; 
however, the device does not provide dedicated terminology for 
each of the functions making the design of such systems 
challenging. 
 Despite the design challenges, spintronic neuromorphic 
systems have proven to be among the most efficient 
neuromorphic systems proposed so far [10-12]. Furthermore, 
spintronic memristors based on spin-hall effect have proved to 
be one of the most promising classes of such devices [13-15].  
Recently, it has been shown that domain walls in synthetic 
antiferromagnetically coupled nanowires that are fabricated in 
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the proximity of a heavy metal can be moved by passing a 
charge current through the nanowire(s) and the heavy metal [16].  
 In this paper, we propose a new four terminal device 
structure using spin-orbit and exchange coupled domain walls 
that is suitable for neuromorphic computing. Our device 
structure has dedicated and isolated terminals for different 
operations required for neuromorphic computing. This dedicated 
terminology expands the design space of these platforms and 
enables efficient operation of these platforms. Furthermore, the 
isolation between the programming and the evaluation ports 
provides significantly reduced complexity for the designers. 
Besides, we explain how the device can be used to realize both 
synaptic and neural functionalities and operate at a very low 
voltage. Furthermore, we developed a simulation framework to 
evaluate the effectiveness of our proposed device structure. Our 
simulation framework consists of a device simulation module, 
circuit analysis module and an algorithm interpretation module. 
Using our framework, we implemented a small-scale neural 
network for pattern recognition. Our results show up to 2X 
improvement in the performance as well as 8% reduction in the 
energy consumption compared to state of the art spintronic 
implementations.  
 The rest of the paper is organized as follows: in Section II, 
we propose the new device structure and our proposed cognitive 
computing system. In Section III we will explain our simulation 
framework and the methodology used to evaluate our proposed 
system. In Section IV, we will explain the simulation results and 
finally Section V concludes the paper. 

II. NEURAL NETWORK IMPLEMENTATION 

 There are different neural network structures and computing 
models. One of the most widely used type of neural networks are 
the Artificial Neural Networks (ANN). Thanks to their relative 
simplified computations, they are widely used in various 
applications. Therefore, we have focused on implementing this 
type of neural network. Fig. 1 illustrates a sample ANN. Without 
loss of generality, let us consider a feedforward ANN where the 
data flows from the inputs to outputs. To this end, the inputs are 
connected to neurons through synapses. Each synapse contains a 
weight; representing the importance of the input to a certain 
neuron. The sum of the weighted inputs are then summed up in 
every neuron and a transfer function translates the summed input 
to the output of the neuron. The output of the neuron in turn is 
the input to the neuron in the next stage through a synapse. 
 In order to use a feedforward ANN, there is a need to train 
the network; that is, to define the value of the weights associated 
with each synapse. There are various algorithms for this purpose 
that have their own pros and cons. Without loss of generality; 

and considering the training details, from structural point of 
view, neuromorphic platforms use beyond CMOS devices to 
implement synapses [17,18], neurons [9], or both functionalities 
[12]. The basics of such utilizations originates from the fact that 
the majority of these devices have an adjustable resistance. The 
resistance is adjusted during the training process and is fixed 
once the training is complete. Therefore, these devices are 
utilized in two different  
modes: The first mode, where the training takes place, it is 
desired to change the resistance of the device. On the other hand, 
in the evaluation mode, it is generally desired to avoid any 
change in the value of the resistance. Researchers have made 
attempts to facilitate the design of neuromorphic systems by 
proposing a third terminal (see for example [12,19]); however, 
the program and evaluation phases still share a path to the 
ground. This shared path imposes restrictions on the driving 
circuits during the evaluation phase to avoid undesired 
modification in the resistance of the device. In the next 
subsection, we propose a four terminal device that has decoupled 
and isolated paths for programming and evaluation phases. 

A. Proposed 4-terminal neuromorphic device 

The four terminal device structure is based on spin-orbit and 
exchange coupled Domain Walls (DWs). Fig. 2 (a) shows the 
structure of this device and Fig. 2(b) shows the symbol we will 
be using throughout the rest of the paper to illustrate the device 
more easily. The device consists of a heavy metal layer adjacent 
to two magnetic layers: a lower magnetic layer (LM) and an 
upper magnetic layer (UM) separated by an antiferromagnetic 
insulating spacer. The LM and the UM have perpendicular 
magnetic anisotropy and are anti-ferromagnetically coupled to 
each other. Let us call the structure explained so far as the 
Synthetic Antiferromagnetic Structure (SAF). Furthermore, an 
oxide layer is fabricated adjacent to the UM and finally a pinned 
layer is positioned on top of the oxide layer.  

The device has two programming pins (P+,P-) and two 
evaluate terminals (E+,E-). If a current is passed through the 
programming pins, (P+,P-), it passes through the HM and the 
LM, the reason being, its flow is blocked by the insulating layer 
from reaching the UM. On the other hand, thanks to the giant 
spin Hall effect, the current passing through the HM gets spin 
polarized and asserts a torque on the DWs contributing to their 
movement. The polarity of the current defines the direction of 
the movement; e.g. if VP+>VP- (VP->VP+) the DWs move to the 
left (right). Once the position of the DWs are defined through 
this method, the device maintains its state regardless of its 
connection to the power supply. 
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Moreover, observe in Fig. 2 that the fixed layer, the oxide 
and the UM form a Magnetic Tunnel Junction (MTJ) [20]. The 
conductance of the MTJ is defined by the position of the DWs. 
This conductance is sensed by passing a small current between 
the evaluate ports (E+,E-). The conductance between these two 
terminals spans between the minimum conductance; 
corresponding to the DWs located at the far right hand side (Gap) 
and the maximum conductance corresponding to the DWs 
located at the far left hand side (Gp).   

B. Synapse Implementation 

 Synapses connect each neuron to the following neuron 
through a weighting function. The weight of the neuron is 
defined through training of the neural network. Memristive 
devices have been used to implement the synaptic functionality, 
see for example [17,18]. To this end, the resistance of the 
memristive device is programmed based on the desired weight. 
Once the resistance of the memristive device is defined, it is 
used to evaluate the results of the neural network.  It is 
noteworthy to mention that the vast majority of such memristive 
devices possess two terminals. Meaning that their programming 
and readout terminals are shared. To the best of our knowledge, 
this proposal is the first device that has fully decoupled 
programming and evaluation paths. Fig. 3 (a) illustrates the 
usage of the device to realize a synaptic function. For a fixed 
applied voltage between terminals E+ and E-, the current that 
passes through the device depends on the resistance of the 
device between these two nodes as illustrated in Fig. 3 (b). To 
this end, the device has three resistances in parallel, the first 
resistance, is the resistance that forms between the fixed layer 
and the portion of the nanowire on the left side of the DWs; the 
second resistance is the resistance formed between the fixed 
layer and finally the third resistance is the resistance formed 
between the fixed layer and the portion of the nanowire on the 
right side of the DWs. This resistance can be written as: 
	 ,	 

, , 1                  (1) 

where Gp,mtj is the conductance of the MTJ when the DWs are 
located at the far left side of the nanowire and Gap,mtj is the 
conductance of the MTJ when the DWs are located at the far 
right side of the nanowire. Also, L is the length of the oxide and 
x is the location of the DWs. Observe in Eq. 1 that the 
conductance of the structure is roughly linearly dependent on the 

position of the DWs. Therefore, for a fixed voltage of Vsyn, the 
current Isyn=GsynVsyn is modulated by the conductance Gsyn which 
is in turn dependent on the DWs position. On the other hand, the 
location of the DWs can be adjusted through terminals P+ and P- 
during the training. 

C. Neuron functionality 

 Now let us explain the functionality of the device for neuron 
implementation. In an ANN, each neuron is connected to a set of 
synapses coming from its input neurons. The value of the input 
neurons are weighted through the synapses before reaching the 
neuron input. These weighted values are summed up and passed 
through a transfer function as illustrated in Fig.1. Our method of 
implementing a neuron as well as its connection to the axon is 
illustrated in Fig. 4. The voltages V1 through Vn are the input 
voltages. These voltages are applied to the synaptic devices S1 
through Sn. Under such circumstances, currents I1 through In are 
calculated by: 

∗ , ∑                           (2) 
where Vsense is the voltage of the sensing circuit and Isense is the 
current passing through the sensing circuit. On the other hand, if 
we consider that the sensing device has a very small resistance 
compared to the synaptic devices; it would result in Vsense << Vi. 
Therefore, if we consider	 ≅ 0, it can be concluded that: 
 ≅ ∗ , ∝ ∑ ∗                             (3) 
 Therefore, the Isense is proportional to the sum of the weighted 
input voltages. In our implementation, we use the neuromorphic 
device as the sensing circuit. Specifically, the neurons are 
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connected through their (P+,P-) terminals as illustrated in Fig. 4. 
To this end, once the current passes through these terminals, it 
gets spin polarized and inserts a torque on the DWs which 
causes their movement. Eventually, the position of the DWs is 
sensed through the axon circuitry. It is noteworthy to mention 
that the programming path is a fully metallic path. Therefore, the 
resistance of this path is relatively small. On the other hand, as 
we will explain in Section III, the resistance of the evaluate path 
depends on the dimensions of the MTJ. These dimensions will 
be adjusted to ensure that Vsense would be substantially smaller 
than the input voltages. 

D. Axon circuitry 

 An axon in an ANN is used to connect every neuron to its 
outputs. This connection may implement a transfer function that 
relates the output value of the neuron to the weighted sum of its 
inputs. The axon circuitry consists of a PMOS transistor as well 
as another neuromorphic device. The position of the DWs in the 
axon device can be adjusted to tune Vax which serves as the input 
to the PMOS transistor. Furthermore, the PMOS transistor is 
used to connect the output of the neuron to the next stage and 
acts as a buffer between the two stages. Specifically, as the 
position of the DWs in the neuron device changes, the gate 
voltage of the PMOS transistor changes. This change results in a 
change in the Vds of the device. The drain of the PMOS is then 
connected to the input of the next stage. Therefore, the Vds acts 
like the input voltage to the intermediate stage. It is noteworthy 
to mention that although the intermediate stage has loading 
effect on the PMOS. There are two main strategies that we have 
implemented to address such an effect. The first strategy, is to 
use an axon device to further calibrate the input to the axon 
transistor. The second strategy is to insert a dummy device is at 
the end of each row along with other synapses.  

E. Evaluation procedure 

So far, we have explained the neuromorphic implementation 
from the structural point of view. In this subsection, we will 
elaborate on the procedure at which the neuromorphic 
implementation should be operated to ensure correct evaluation. 
The first step for every neuromorphic implementation is the 
training of the neural network. There are various methods for 
implementing the training of neural network including online or 
offline. Although our implementation can be used for online 
training; for the sake of simplicity, we consider that the training 
has occurred offline and before going to the evaluation step. The 
evaluation scenario consists of 2 steps: the “execution”, and 
“reset”. Fig 5 illustrates the three different steps required for 
evaluation.  
 The first step is the execution step. For now, let us consider 
that the DWs are located at the far left side of the device. The 
execution step starts when input voltages are applied to pins V1 
through Vn, the voltage is modulated by the conductance of the 
branches G1-Gn. All of these currents add up and pass through 
the P+,P- pins of the device. This current pass causes the 
movement of the DWs; displacing them from their original 
location. The execution step is concluded by disconnecting the 
inputs. This causes the DWs to stop and retain their position. 
Note that the execution step for the ith hidden layer is activated 
by pulling up the . Also, the input layer is activated by pulling 
up . We shall mention that the execution step for each layer 
acts as a read-out for the previous layer.  

Specifically, in the “read-out”, the  signal is activated and a 
current is passed across terminals (E+,E-) of the neuron of the 
ith layer to sense the resistance of the device and to connect it to 
the next stage through the axon circuitry.  
 Once all of the execution pulses are pulled up once, the 
neuron devices are reset by passing a negative current through 
the neuron device to restore the position of the DWs to the 
original position at the far left side of the nanowires. To this end, 
the reset transistor is activated by pulling up the reset signal as 
illustrated in Fig. 5 (c).  

III. SIMULATION FRAMEWORK 

 In order to evaluate the proposed neuromorphic 
implementation, we developed a simulation framework. Fig. 6 
illustrates our simulation framework. Our simulation framework 
consists of three main modules. The first module is the device 
analysis module. The device analysis module is responsible for 
simulation of the device behavior with respect to the 
current/voltage applied to it. The second module is the circuit 
analysis module. This module is responsible for analysis of the 
neuromorphic system at the circuit level. This include 
interfacing the neuromorphic device with the CMOS transistors 
and the power supply. Finally, the third module is the 
algorithmic and interpretation module. This module is 
responsible for interpreting the data embedded in the circuit and 
to embed it into the neural network algorithm for evaluation 
purposes. We will explain each module in detail in the following 
subsections. 

A. Device analysis module 

 The device analysis module consists of two main 
submodules. The first submodule is responsible for analyzing the 
dynamics of the DWs. Specifically, this module consists of a 
magnetization dynamics solver based on Landau-Lifshitz-Gilbert 
(LLG) formalism. The second submodule consists of an 
electronic transport simulation analysis and implementation 
based on Nonequilibrium Green’s Function (NEGF). This 
submodule is utilized to calculate the conductance of the 
evaluate path based on the position of the DWs. 

1) The micromagnetic simulation submodule  

 In order to explain the micromagnetic simulation submodule, 
there is a need to understand the underlying physical mechanism 
that contributes to the movement of the DWs. Recently, it has 
been shown that DWs formed from two perpendicularly 
magnetized multilayers separated by an ultrathin 
antiferromagnetic layer can be moved by current very efficiently 
[16]. The movement is possible due to the interfacial chiral spin 
torques.  

The DWs have a chiral Neel structure due to a 
Dzyaloshinskii-Moriya exchange interaction (DMI) [21-23] 
derived from strong spin-orbit coupling and the proximity of the 
heavy metal layer. When there is no current passing through the 
DWs, that is through terminals P+ and P- in Fig. 2, the 
magnetization rotates from up to down anticlockwise in a plane 
parallel to the length of the nanowire such that the magnetization 
in the middle of the lower DW (ML) is aligned to the nanowire. 
If the exchange coupling between the two DWs is strong 
enough, the orientation of the magnetization at the middle of the 
upper layer (MU) is opposite that of the lower layer.  
 However, when current passes in the direction along the 
nanowire (through terminals P+ and P-), if there is no exchange 
coupling between the two layers, the spin current generated by 



the spin Hall effect, induces a torque on the DW in the lower 
layer that results in rotation of the magnetization of the DW 
towards the accumulated spin direction which is traverse to the 
length of the nanowire. This spin Hall torque together with the 
DMI field is the main contributor of the motion of the DW [16]. 
The magnitude of the spin Hall torque depends on the angle 
between ML (MU) and the spin accumulation direction. An 
increase in the current results in the rotation of ML or MU 
towards the spin accumulation direction resulting in a Bloch DW 
structure in which ML (MU) is oriented traverse to the nanowire 
and the spin Hall torque becomes zero. As a result, the DW 
velocity becomes saturated at a certain current.  
      On the other hand, if the coupling between the two layers is 
considered, the structure stabilizes the Neel DW structure. 
Therefore, the spin-orbit torque is much larger with the same 
current density resulting in a much higher DW velocities. In 
addition, this structure gives rise to a novel torque associated 
with the antiferromagnetic exchange-coupling field. This 
exchange coupling torque is roughly an order of magnitude 
larger than the DMI field and is the key contributor to the high 
velocity of the DW [16]. The enhanced velocity of the DWs 
causes larger displacement of the DWs at the same energy and 
performance of the DW without the antiferromagnetic layer 
causing more energy-efficient neuromorphic computing [16].  
 The dynamics of the spin-orbit and exchange coupled DWs 
can be expressed as three LLG equations that should be solved 
jointly as follows [16]: 

                          (4) 

∆
sin 2

sin sin
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                     (5) 
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where q is the position of the DW and  is its velocity. It is 
noteworthy to mention that due to the antiferromagnetic 
coupling between the DWs, they have the same position 
regardless of being in the UM or LM. Also, it is considered that 
the length of the DWs is equal to . Besides,  (i=L: lower 
layer, U: upper layer) are the DW angles for the corresponding 
DWs. Furthermore, 	is the derivative of the corresponding DW 
angle. Besides,  is the gyromagnetic ratio and Jex is the 
exchange coupling constant between the two DWs. Furthermore, 
i, i are the Gilbert damping constant and the non-adiabatic 
STT coefficients of the corresponding nanowires. Furthermore, 

 is the magnitude of in-plane anisotropy field ( 
2 / ) derived from the shape anisotropy of the DW that 
favors a Block DW configuration ( /2) over that of a 
Neel wall ( 0, ). is the DMI exchange field. The 
volume spin transfer torque from the current within the i-th 

magnetic layer is derived from , where is the 

Bohr magneton e is the electron charge and Pi is the spin 
polarization of the current and Ji is the current density of the i-th 
magnetic layer [16].  
  is the torque associated with the spin Hall. 

 where  is the current density in the heavy metal.  

Furthermore, the (for the upper layer) is smaller than 
since the spin Hall current is attenuated along the LM and 

the coupling spacer layer. 
 Our simulation framework was calibrated to the data 
represented in [16]. To this end, we used the same parameters 
explained in [16] to calibrate our model to the experimental 
results as shown in Fig. 7. Observe in Fig. 7 that our model 
matches the experimental data.  
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Fig. 6. Simulation framework used for neuromorphic system evaluation.  

 
Fig. 7. Comparison of the results obtained by         Fig. 8. NEGF calculation vs  
the simulation framework an the experimental       experimental conductance. 
data in [16]. 

TABLE 1. DIMENSIONS OF NEUROMORPHIC DEVICE 

PARAMETER VALUE 
Ferromagnet thickness 1nm 

Heavy metal layer thickness 1.5nm 
Domain wall width 4.3nm 

Lower nanowire cross-section 16nm×1nm 
Upper nanowire cross-section 16nm×1nm 

Fixed layer cross-section 16nm×1nm 
Nonmagnetic contact dimensions 16nm×16nm×1nm 

Insulating coupling layer thickness 0.8nm 
Oxide layer thickness 0.9 nm – 2 nm 



2)  The Electron transport module and evaluation path 
calculation 

 In order to evaluate the position of the DWs, a small current 
is passed through (E+,E-) pins of the device. Note that the read 
mechanism is similar to that of a magnetic tunnel junction (MTJ) 
with the free layer replaced by the exchange-coupled DWs. 
Therefore, the conductance of the structure can be modeled as 
three different conductances in parallel. The first conductance is 
the conductance formed by the fixed layer and the nanowire at 
the left side of the DWs, the second conductance is the 
conductance between the fixed layer and the DWs; the third 
conductance is the conductance between the fixed layer and the 
nanowire on the right side of the DWs. This assumption is a 
viable assumption and is similar to the methods used in [24-25].  
Our model is based on the NEGF formalism compact model 
[26,32,33]. The evaluate resistance of the neuromorphic device 
was considered to be [25]: 

	 ∝ 	 exp exp                              (8) 

where G is the conductance of the MTJ, A is the area of the fixed 
layer, Tox is the oxide layer thickness and α,β,γ,δ are fitting 
parameters. We have calibrated our model to the experimental 
results in [27]. Fig. 8 compares the NEGF simulation framework 
with the experimental results in [27]. 

It is noteworthy that, deterministic domain wall movement 
have been experimentally demonstrated in magnetic multilayer 
structures with a single nanowire [11,13,14,28].  

Regarding the evaluate operation, one viable concern that 
can be raised is the disturbance of the DWs. To this end, an 
undesired scenario is that the spin polarized current passing 
through the upper layer could potentially change the position of 
the DWs. However, if the neuromorphic device structure is 
considered, the depinning current of the upper DW is 
substantially higher than that of the lower DW. The reason 
being, the lower nanowire is adjacent to the heavy metal. Due to 
the giant spin Hall effect in the heavy metal, the spin 
polarization is higher in the lower nanowire. On the other hand, 
the upper nanowire is deprived from such a proximity resulting 
in higher DW depinning.    
 

B. Circuit simulation module 

The circuit simulation module is responsible for simulation 
of CMOS transistors and its interface with the neuromorphic 
devices. To this end, the circuit simulation module is used to 
interface between both the synapse devices as well as the 
neurons. Furthermore, it interfaces with the device simulation 
module, namely, the micromagnetic simulation module and the 
electron transport module. Also, it is used for analyzing the 
required timing for each of the steps, namely, the execution, 

read-out and the reset steps. Furthermore, it is used to calculate 
the energy consumption of the circuit and to interface with the 
algorithm interpretation analysis module.  

C. Algorithm interpretation module 

The algorithm interpretation module is responsible for 
simulating the system at the algorithm level. To this end, the 
inputs and outputs of the neural network are passed to this 
module. This module performs simulation of the neural network 
as well as optimization of the network. Furthermore, this module 
is responsible for training the network and the trained weights 
are passed to the circuit simulation module. On the other hand, 
the outputs data from the circuit simulation module are 
transferred back to the algorithmic interpretation module to 
evaluate the correctness of the results.   

IV. RESULTS AND DISCUSSION 

 In order to evaluate our proposed neuromorphic 
implementation, we implemented a small scale ANN for 
character recognition. Specifically, we utilized a commonly used 
database for character recognition, namely MNIST data base 
[29]. To this end, the input images were considered to be 28x28 
pixels. Therefore, there are a total of 784 inputs to the neural 
network. There is one hidden layer of neurons consisting of 15 
neurons as well as 10 output neurons representing digits 0 to 9. 
The neuron transfer function was considered to be piecewise 
linear. At small inputs, the output was considered to be constant 
until the input reaches a certain value. If the input is above that 
value, the output changes linearly with the input. Finally, once a 
certain input voltage is reached, the output saturates. 

 Now let us explain the simulation results obtained from our 
framework. In order to ensure the manufacturability of our 
proposed neuromorphic system, we considered implementation 
in 16 nm Technology node. To this end, we used a Predictive 
Technology Model (PTM) of the CMOS devices in this node 
[30]. Furthermore, the transistors were upsized to reduce the 
drain source voltage drop (Vds) of the transistors. The power 
supply for our implementation was considered to be 500 mV. 
Eventually, the neuromorphic devices were designed to 
accommodate for the required precision. We considered that the 

TABLE 3. COMPARISON BETWEEN NEURONS 

NEURON DESCRIPTION NEURON 
DELAY 

POWER DELAY 
PRODUCT 

Nanoscale silicon memristor [6] 500 ms 1.75 μJ  
Lateral Spin Valve neuron [9] 500 ps 400 fJ  

Spin Orbit neuron [10] 1 ns 15 fJ  
Domain Wall neuron [12] 2 ns 6.1 fJ  
Digital CMOS neuron [34] 10 ns 832 fJ  
Analog CMOS neuron [8] 10 ns 700 fJ  

This work 500 ps 5.73 fJ  

 
Fig. 9. Displacement of the domain           Fig. 10. The PDP vs. the delay to reach 
wall for a current pass of 20 µA.                a displacement of 160 nm. 
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TABLE 2. SIMULATION PARAMETERS FOR NEUROMORPHIC 
DEVICE 

PARAMETER VALUE 
Saturation Magnetization lower nanowire (ML)  7×10-5emu/cm2 
Saturation Magnetization upper nanowire (MU) 6.5×10-5emu/cm2 

Spin-Hall angle 0.1 
Perpendicular Magnetic Anisotropy 5 × 105 J/m3

Effective DMI constant 1.2 × 10-3 J/m2 
Resistivity of Pt 200Ω.nm 

Resistivity of the ferromagnet 150Ω.nm 
Exchange coupling field Jex -0.5 erg/cm2 

Gilbert damping factor 0.1 
Polarization 0.8 

Vdd/Vss 500mV/-200mV 



position of the DWs could be sensed with an accuracy of 5 nm. 
Just about the size of the DWs. Our simulation results show that 
an accuracy of 5 bits is sufficient for our application; therefore, 
the length of the devices were considered to be 160 nm. The 
dimensions of the neuromorphic devices used in our simulation 
is illustrated in Table 1. Note that the synaptic weights are tuned 
during training. Therefore, during normal operation, they are 
fixed to a certain value. Furthermore, we considered the critical 
current of the synapses as the required current to move the DWs 
for 5nm after 100 ps. The critical current of the devices were 
measured to be ~43 μA. It is noteworthy to mention that this 
current plays an important role in the performance of the system. 
Specifically, recall from Section III that each neuron is 
connected to several synaptic devices that are used to apply the 
correct weighting to the incoming currents. Therefore, the 
synaptic devices share a common path with the neuron devices. 
On the other hand, the position of the DWs should be constant 
during the execution for the synaptic devices as it is desired to 
change the position of the DWs in the neuron. This variegated 
requirement of the usage of the device is a limiting factor in 
common neuromorphic designs utilizing beyond-CMOS devices 
for both synaptic and neuron functionalities (see for example 
[10, 31]). A common practice is to limit the operating current to 
avoid disturbance of the synapses. This limitation crucially 
impacts the performance of the neuromorphic system. However, 
in our proposed implementation, due to the high critical current, 
the neuromorphic system can potentially operate at higher 
performance. As an example, Fig. 9 shows the displacement of 
the DWs for a programming current of 20 μA.  
 The neural network can be optimized for performance or 
energy. Specifically, each neuron has an inherent trade-off 
between time and energy. The domain wall speed increases with 
an increase in the current density. This behavior is observable in 
Fig. 7 as well. This implies that if higher performance is desired 
(e.g. higher velocity), the power and energy consumption 
increases. To this end, let us consider the power delay product of 
a neuron. Specifically, we consider the entire power consumed 
by the neuron as well as the synapses attached to it together with 
the axon transistor. Furthermore, let us consider that a neuron 
should be programmed to a certain location; e.g. 160 nm 
displacement after the first execution epoch. Fig. 10 plots the 
energy consumption of the neuron vs. time required to get there. 
Observe in Fig. 10 that the energy consumption decreases 
drastically with an increase in the delay. However, this decrease 
plateaus after ~500 ps. Therefore, we considered 500 ps as the 
required epoch for the execution time.    
 As explained earlier in Section III, our proposed 
implementation operates in 2 phases: the execution and the reset 
operations. In our implementation, we considered each execution 
and read-out epoch to be equal to 500 ps. Since our network has 
two layers, the total execution time for the network is equal to 1 
ns. Specifically, in the first 500 ps, the first layer is executed and 
in the second 500 ps, the first layer is read-out by the second 
layers axon and the output layer is executed simultaneously. 
Finally, the output layer is read-out. The final read-out also takes 
500 ps. Once the outputs are read out, the neurons should be 
reset back to the original value. Thus, the entire cycle takes 2 ns 
to complete. 
 Eventually, we would like to discuss the energy 
consumption of the network. The energy consumption has two 
main components: The execution component and the reset 
component. The execution component pertains to the time when 

the circuit is operating and the reset component pertains to the 
energy required to restore the DWs position for correct operation 
of the next evaluation cycle. We ran our simulations for pattern 
recognition and our results show an average neuron current of 
10.3 A through the time epochs explained earlier. Furthermore, 
the energy consumption of each neuron can be calculated as VIt 
as explained earlier. Our results show an average energy 
consumption of 5.73 fJ. On the other hand, the read-out of the 
final stage of the network is less than 0.001 fJ making it 
negligible. Finally, the reset energy for our implementation is 
equal to 3 fJ. The reason for this high energy consumption is that 
in the reset scenario, the reset transistor should be designed in 
such a way that the all of the DWs reach their original position 
regardless of their current location. Meaning that it should be 
high enough to move the DWs the entire 160 nm resulting in 
increased energy consumption. 
 Finally, we would like to compare our proposed 
neuromorphic system with the implementations available in 
literature. Table 3 shows the energy consumption of different 
neurons using different neuromorphic devices. Specifically, we 
have used the same VIt formula as explained earlier for this 
comparison. Observe in Table 3 that our proposed method has an 
order of magnitude less energy consumption compared to an 
analog and a digital neuron.  
 One viable concern regarding the proposed system is the 
impact of process variations. Note that neural networks are 
inherently error-resilient. Therefore, the process variations can 
be addressed at the time of training the network. On the other 
hand, we have considered adjusting every neuron’s strength by 
using the axon device. If process variations is not considered, 
one valid question for the essence of the axon device is that the 
neural network and the output can be adjusted by designing the 
neurons and the synapses of each layer through proper design. 
Therefore, the axon device could potentially be replaced by a 
simple MTJ or a fixed resistance. However, due to process 
variations and mismatch between the neurons, there is a need for 
a circuitry to adjust the output value with respect to the input. 
Therefore, the axon device enables tuning the output of the 
neuron for the next stage. 

V. CONCLUSION 

 In this paper, we proposed a new device structure suitable 
for neuromorphic computing based on spin-orbit and exchange 
coupled nanowires. Furthermore, we explained how our 4-
terminal device can be used to realize both synaptic and neuron 
functionality. Additionally, we developed a simulation 
framework based on the experimental results in literature and 
used it to evaluate a simple ANN for character recognition. Our 
results show that neuromorphic computing structures can be 
implemented very efficiently using our proposed device 
structure. Our simulation results show an order of magnitude 
improvement in the energy consumption compared to CMOS 
and analog neurons and up to 2X higher performance as well as 
8% improvement in the energy consumption over state-of-the-art 
neuromorphic platforms using spintronic devices. 
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