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Abstract 
Memristors are nanoscale devices that have recently been 

proposed for use as a synapse in brain-inspired computing 
systems. In this paper, we present a synapse architecture that 
utilizes two memristors to implement a non-volatile synaptic 
weight that can be configured as both positive and negative. 
The weight of the proposed synapse has an inherent 
exponential-like dependence on the change in the 
memristance of the devices, a property that we have 
capitalized to implement spike-timing-dependent plasticity 
(STDP) for on-chip learning in spiking neural networks. We 
discretize the neuron’s spike in time and voltage and show 
that learning rate can be controlled by the clock frequency 
used. We show that by modulating the duty cycle of the clock, 
we can alleviate the detrimental effects of switching rate 
mismatch in the devices. We also simulated a 3 × 3 crossbar 
structure and presented the weight updates observed therein, 
hence demonstrating the feasibility of a crossbar with our 
synapse. We evaluated the energy consumption per spike of 
our approach and compared it with those in literature. 
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1. Introduction 
Biological neural networks possess high parallel 

processing power owing to the massive interconnectivity of 
their neurons [1] that is in stark contrast with the sequential 
information processing in traditional von Neumann 
machines. Neuromorphic systems are a computing paradigm 
that draw inspiration from biological nervous systems. They 
consist of an ensemble of very large scale integration (VLSI) 
circuits that mimic the dynamics of information processing in 
biological neural networks.  

Silicon neurons are analog and/or digital circuits that 
emulate the behavior of biological neurons. A review of these 
implementations can be found in [2]. Synapses are circuits 
that provide the “weighted” interlink between neurons and 
have been implemented using resistors, capacitors and 
floating gates. However, as outlined in [3], these 
implementations fail to provide the desired characteristics of 
a non-volatile synaptic weight that can be programmed 
precisely and is amenable for on-chip learning. Recently, a 
nanoscale device known as the “memristor” has been shown 
to be suitable as a synapse in neuromorphic systems [4, 5]. 

Memristors are two terminal devices first theorized by 
Leon O. Chua in 1971 [6] as the missing fourth fundamental 
circuit element. In 2008, HP Labs demonstrated memristance 
property in a passive two terminal nanoscale device [7]. 

Memristors are nanoscale devices whose resistance can be 
tuned by controlling the voltage flux flowing into it, hence 
making them suitable for use as synapses, whose weight in 
this case is represented by the conductance of the memristor. 
Moreover, by adjusting the flux levels, their conductance can 
be modulated to implement spike-timing-dependent plasticity 
(STDP), a synaptic learning mechanism that has been shown 
to exist in biological systems [8]. Additionally, their non-
volatility and nanoscale feature size enables a crossbar 
implementation, thus providing a high density in addition to 
the (desirable) high connectivity between the neurons [9]. 
The next section summarizes some of the existing approaches 
to the use of memristor as a synapse and the techniques 
employed for their learning.     

2. Related Work 
In [4] the memristor was presented as a synapse 

connecting a pre- and a post-neuron. Using time division 
multiplexing, pulses were generated in the neurons to perform 
long term potentiation (LTP) and long term depression 
(LTD). However, this implementation needs an overhead 
circuit for width modulated pulses’ generation and a 
communication between the pre- and post-neurons to keep 
track of each other’s firing events. Authors in [5] have 
exponentially modulated the width of the pulse applied to the 
memristor for STDP. This technique also has the same issues 
as outlined above. In [10] and [11], authors have implemented 
STDP with a multi-voltage level waveform and a capacitive 
discharge based waveform, respectively. All of these 
techniques can only realize an excitatory (positive weight) 
synapse and have not implemented an inhibitory synapse 
(negative weight). 

In [9], the authors have achieved STDP for a memristor-
based synapse by meticulously shaping the neuron’s spike 
waveform. However, excitatory and inhibitory synapses here 
are differentiated by the firing spike shape, which is a neuron 
artifact, something that is not inherent in the synapse itself. A 
similar idea was proposed in [12], wherein configuration bits 
in the neuron determine the sign (positive/negative) of the 
incoming current and thereby, the sign of the synaptic weight.  

Authors in [3, 13] have presented a memristor based 
bridge shaped synapse capable of implementing both positive 
and negative synaptic weights. However, the focus here was 
not on STDP. In addition, it required a differential amplifier 
to convert the weighted voltage at the synapse into a current, 
for summation at the neuron. A dual crossbar configuration 
was presented in [14] to implement positive and negative 
weights. However, this scheme uses a dedicated summing 
amplifier at each column of the crossbar and no neuron 
spiking based STDP was shown therein.  
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Authors in [15] have presented a twin-memristor synapse 
and have presented on-chip learning techniques for it. 
However, this method has the drawback of having a feedback 
from the post-neuron to the pre-neuron and a dedicated 
CMOS circuit was used for learning phase, thus overriding 
the density advantage associated with using memristors. 

Overcoming the issues persisting in the existing synapses 
in literature, we propose a bi-memristor synapse structure in 
conjunction with a discretized neuron spike to achieve STDP 
for on-chip learning in spiking neural networks. The key 
contributions of this paper are as follows: 
1) The proposed bi-memristor configuration can realize both 
positive and negative weights by virtue of the relative 
conductance of the memristors. 
2) The proposed synapse’s effective conductance has an 
intrinsic exponential-like dependence on the memristance 
change of each device, thus making it suitable for STDP.  
3) We show that by using neuron spikes that are discretized 
in voltage and time, the STDP behavior can be carefully 
controlled. The clock frequency used here directly affects the 
steepness of STDP based learning. 
4) We show that by changing the clock’s duty cycle, we can 
remedy the effects of switching rate mismatch in the devices.  

3. Memristor Model 
The memristor model used in this work is an empirical 

model developed in [16] and fitted against experimental data 
extracted from HfOx devices manufactured in-house at 
SUNY Polytechnic Institute [17]. This model captures the 
three main characteristics experimentally observed in 
transition metal oxide memristors, which are: (1) the 
existence of a threshold below which the change in the 
resistance is negligible. (2) A nonlinear dependence between 
the applied voltage and the change in the resistance. (3) 
Plateauing of the resistance as it approaches either high 
resistance state (HRS) or low resistance state (LRS). 
Equations (1) and (2) describe the model: 

= − ( ) − ( ) ,					 ( ) >( ) − ( ) ,					 ( ) <0,																																																					 														 ℎ
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Where C is a fitting coefficient,  and  are the 
positive and negative thresholds, respectively, and  and 

 are control parameters that govern the nonlinearity of 
the model. ( )  and ( )  are window 
functions that capture the resistance plateauing near the 
boundaries and can be described as follows: 
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Where  and  are two fitting parameters. Fig. 1 depicts 
the I-V sweeps for both the experimental data and the model 
used. 

 
Figure 1: I-V plots for the model used here versus 
experimental data. 

4. The Bi-Memristor Synapse 
The proposed bi-memristor synapse consists of two 

memristors connected between a pre-neuron and a post- 
neuron as shown in Fig. 2(a). When the pre-neuron fires, 
switches S1 and S2 close, thus biasing the nodes 1 and 2 with 
the neuron’s firing spikes, but with opposite polarity. During 
the accumulation phase in the post-neuron, switches S3 and 
S4 are open, while S5 and S6 are closed, providing the 
connection between the neurons as shown in Fig. 2(b). During 
this phase, the net current flowing into the neuron is  = − = − 	  (3) 

Hence, the weight of the synapse, which is proportional to 
its effective conductivity, is given by = − = 1 − 1

 
(4) 

 
Figure 2: (a) The proposed bi-memristor synapse providing 
the connection between the pre- and post-neuron (b) The 
synaptic connection while the post-neuron is accumulating 
(c) The synaptic connection when the post-neuron fires. 

When the membrane voltage ( ) in the post-neuron 
exceeds its threshold, the neuron fires, thereby entering a 
phase known as its refractory period, wherein any incoming 
current does not affect	 . During this phase, switches S5 
and S6 open, while S3 and S4 close, thus disconnecting the 
two memristors at the post-neuron’s end. The post-neuron 
provides feedback spikes during this phase as shown in Fig. 
2(c). The relative timing of the occurrence of these spiking 
events determines the net voltage applied across the 
memristors, as depicted in Fig. 3. The closer they occur in 



time, the higher the voltage difference across the memristors 
and hence a larger memristance change ∆ .  

 
Figure 3: (a) The pre-neuron spiking before the post-neuron, 
leading to LTP (b) The pre-neuron spiking after the post-
neuron, leading to LTD. 

It may be noted from Fig. 2(c) that the potential difference 
across the devices is of opposite polarity during an LTP/LTD 
event while the devices themselves are physically aligned 
with the same polarity.  This implies that the change in 
memristance will be in opposite directions for them. Hence, 
for the case of an LTP event, the new effective conductance, 

 is given by: = 1− ∆ − 1+ ∆ 		= 11 − ∆ −	 11 + ∆ 	
= 1 − 1 + ∆ 1 + 1 + ∆ 1 − 1 …	= +	∆ + +	∆ − … 

Hence, the change in the conductance after an LTP event 
is given by −  as:  = 	∆ + +	∆ − …	 (5) 

Similarly, for an LTD event, the change in conductance is 
given by: = − ∆ + − ∆ − . .  (6) 

Therefore, the weight change function for the bi-
memristor synapse resembles the series expansion of the 
exponential function, wherein the variable is ∆ . As 
described in Section 3, the change in the memristance ∆  for 
our model is a polynomial function of the voltage applied 
across the device, which can be represented in a simplified 
format as ∆ = , where k is a constant determined by the 
memristor’s model parameters. Hence, (5) can be written as: = + + +⋯ (7) 

 
Equation (7) implies that ∆  has an exponential-like 

dependence on  . Hence, by varying  linearly with the time 
difference ∆  (= − ) between the spiking events of 
the neurons, ∆  can be made to be exponentially dependent 
on ∆ , which is the requirement of exponential STDP [9]. The 

following section describes the neuron circuit that we have 
designed for use with this synapse.  

5. Spiking Neuron Circuit 
Fig. 4 shows the block diagram of the neuron circuit we 

have designed for use with our bi-memristor synapse. It 
operates in two modes, namely, accumulation and refractory 
(firing) period. During the accumulation mode, switches S3 
and S4 are open while S5 and S6 are closed. This provides a 
current summing node at the input to the integrator Op Amp, 
wherein currents from both the memristors are summed and 
charge is accrued on the node  giving it a potential . 

 is compared with a threshold (reference) voltage  
using a comparator. When  surpasses , the 
comparator output triggers the spike generator circuit, apart 
from closing S3 and S4 and opening S5 and S6. This leads to 
the disconnection of both the memristors, thus allowing the 
propagation of feedback spikes of opposite polarity to the 
memristors in the synapse preceding the neuron.  

 
Figure 4: The leaky integrate and fire neuron along with the 
spike generator circuit. 

 

 
Figure 5: Spike generator circuit that produces the 
discretized-voltage spike. 

The spike generator circuit is shown in Fig. 5. It consists 
of five flip-flops that are controlled by a global clock. The 
first flip-flop captures the spike trigger from the output of the 
comparator. The latched pulse then propagates through the 
rest of the flip-flops at each rising clock edge. The output of 
each flip-flop is used to close switches that provide a certain 
voltage level as the feedback to the memristors in the 
preceding synapse and as the neuron’s spike to the succeeding 
synapse. The action of each flip-flop output on the switches 
and the voltage bias provided on the spike is given below in 
Table 1. Note that these biases are linearly graded, and can be 
generated by voltage division from the supply rails. 
Table 1: The effect of the flip-flop outputs on the switches 
activated and the corresponding outputs provided on each 
output/feedback node of the neuron. 

Flip-Flop Output Switch Action        Output Voltage 
Q1 SN1, SN6 Vb1, -Vb1 
Q2 SN2, SN7 Vb2, -Vb2 
Q3 SN3, SN8 Vb3, -Vb3 
Q4 SN4, SN9 Vb4, -Vb4 
Q5 SN5, SN10 Vb5, -Vb5 



6. Learning Behavior of the Proposed Synapse 
To characterize the learning behavior of the proposed bi-

memristor synapse, we have performed simulations in 
Cadence’s Virtuoso environment using Spectre as the 
simulator. The CMOS circuits in the neuron were built using 
IBM’s 65nm process design kit and the memristor model was 
written in Verilog-A with the key parameters set as:	 == 3, = 5 Ω, = 50 Ω, = = 1 , = 750 , = 	−750  [17]. 

In order to simulate the synapse, the setup shown in Fig. 
6 has been used. Here, the synapse S2 is setup with a high 
positive weight such that when the neuron N2 is artificially 
triggered, the accumulation is enough for the neuron N3 to 
fire, thus fixing its temporal occurrence. Then, the timing of 
the spike of neuron N1 is adjusted to obtain various cases of 
learning for S1. Fig. 7 shows the STDP behavior of the 
synapse. It is seen that this graph bears a close resemblance 
to the STDP in biological systems proposed in [8].  

 
Figure 6: The synapse-neuron setup for characterizing the 
proposed synapse through simulations. 

 
Figure 7: Simulated STDP behavior of the proposed synapse. 

The simulations shown in Fig. 7 were performed for a 
synapse weight of 0, which implies	 = . From (5) and 
(6), it can be noted that the magnitude of weight change is a 
function of the current weight (the coefficients depend on  
and ) of the synapse implying that our synapse implements 
multiplicative STDP [9]. For our synapse, as the weight 
becomes more positive,  decreases whereas  increases. 
From (5), it can be predicted that ∆  increases with weight 
(W) for LTP with a given ∆ . Also, (6) predicts that the 
magnitude of  ∆  increases with weight (W) for LTD as well. 
This behavior has been simulated and plotted in Fig. 8. 

A direct consequence of the clocked nature of our 
neuron’s spike is the control that can be achieved over the 
weight updates for STDP. As the clock’s time period 
increases, the pre- and post-neuron’s spikes overlap for a 
longer period, resulting in a larger ∆ . From (5) and (6), it is 
observed that as ∆  increases, higher order terms in the series 
expansion become significant, resulting in a steeper STDP 
curve as illustrated in the simulation results shown in Fig. 9. 
Conversely, it can also be seen that as the clock frequency 
increases, the STDP behavior becomes linear. This can also 

be deduced from (5) and (6). As ∆  becomes smaller, higher 
order terms’ significance reduces, and the expression can be 
approximated as Δ = + 	Δ = 	Δ . This 
behavior is evident from the simulations shown in Fig. 9.   

 

 
Figure 8: STDP dependence on the current weight of the 
synapse. 

 
Figure 9: STDP dependence on the clock frequency for the 
proposed synapse. 

7. Memristor Switching Rate Mismatch 
The proposed bi-memristor synapse utilizes the switching 

of the memristors in the direction of increase as well as 
decrease. Both of these effects contribute to the change in the 
synapse’s weight. However, due to the fundamentally distinct 
nature of resistive switching in either direction in memristors, 
their switching rates can vary up to two orders of magnitude 
[17, 18, 19]. This results in the drastic change in conductance 
of one of the memristors, as it reaches its extreme resistance 
without attaining any intermediate values. Thus, the synaptic 
weight change in this case will not be a strong function of Δ  
since one of the memristor switches drastically irrespective of 
the flux applied across it, hence dominating the contribution 
for weight change. This is evident from the simulations we 
performed on our synapse (Fig. 10) with the switching time 
parameters set as = 10 , = 1 . It can be 
observed that the STDP behavior in this case is crippled. 

In order to remedy the effect of switching rate mismatch, 
we propose to use a duty cycle modulated clock in the neuron. 
This duty cycle modulation is achieved by using the current 
starved programmable delay circuit from [20], wherein a 
reference voltage determines the duty cycle of the output 
clock signal. This duty cycle modulated clock is logically 
ANDed with the control signals from the flip-flops that 
control the switches SN1-10 in Fig. 5. Hence, by reducing the 



time for which the feedback signal is provided by the post-
neuron, we reduce the effective flux supplied to the 
memristors, which helps reduce the drastic change of 
memristance and hence brings the STDP behavior closer to 
the one observed with matched switching rates. 

 
Figure 10: STDP behavior of the proposed synapse with 
asymmetric switching rates in the memristors. It is seen that 
as the duty cycle of the clock reduces, the STDP curve is 
closer to the ideal case of symmetric switching rates. 

8. A 3 × 3 Crossbar Based on the Proposed Synapse 
In order to test and demonstrate the feasibility of our 

proposed synapse design for use in a crossbar based 
neuromorphic approach, we built a 3 × 3 crossbar with our 
synapse and neuron as shown in Fig. 11. Here, the neurons 
N1-N3 are the input neurons, while N4-N6 are the output 
neurons. We use the convention , 	to denote the synapse 
connecting the input neuron  with the output neuron . The 
initial weights of the synapse are shown in Table 2.   

 
Figure 11: A 3 × 3 crossbar configuration using the bi-
memristor synapse.  

 
Figure 12: Spiking events of the neurons in the crossbar 

The input neurons are provided an artificial trigger, such 
that they fire as shown in Fig. 12. Since the synapses in the 
first row are set to a high positive weight, their charge 
accumulation on the output neurons results in their firing as 

shown in Fig. 12. Since all the input and output neurons have 
fired, we have measured the weight updates for each synapse. 

It can be seen from Table 2 that synapses in the first row 
and the second row undergo potentiation while the ones in the 
third row are depressed. This is because N1 and N2 fire before 
the output neurons, while N3 fires after the output neurons 
fire. Also, since the fire of N2 is closer to that of output 
neurons, Δ  for the second row synapses is higher. These 
simulation results indicate that the proposed synapse and the 
neuron are amenable for a crossbar implementation with on-
chip learning, which is highly desirable for memristive 
neuromorphic systems [9]. 
Table 2: Effective conductance of the synapses in the 
crossbar, showing their conductance changes.   

Synapses Geff_initial(µS) ΔGeff Geff_final(µS) 

, , , , , 77.77 +0.31 78.08 , , , , , 0.0 +1.339 1.339 , , , , , 0.0 -1.366 -1.366 

9. Discussion and Conclusion 
In order to gauge the power scenario of our 

implementation, we have measured the current consumed by 
the neuron per synapse. The results are tabulated in Table 3. 
Table 3: Energy consumption of the proposed system 

Phase of the Neuron Energy per spike time (pJ)    
Idle (No input/output spike) 9.816 
Accumulation 10.928 
Spiking  12.76 

In the literature, some groups have reported their energy 
metrics. Authors in [21] have reported that each synapse 
consumed 36.7pJ for learning for a resistance range of 70Ω 
to 670Ω. In [22], the energy consumption was 11pJ to 0.1pJ 
for a resistance range of 1kΩ to 1MΩ. It can be seen from 
Table 3 that our energy values are comparable to that in 
literature. Also, it must be noted that these values were 
evaluated with a resistance rage of 5kΩ to 50kΩ and a spike 
time limited to 50ns. With higher resistance values and 
smaller clock periods (higher frequencies), the values are 
expected to decrease, since the power consumption in a given 
phase of the neuron remains the same.  

In conclusion, in this paper we have presented a synapse 
structure that can implement both an excitatory and an 
inhibitory action. We have shown mathematically, the 
exponential-like learning behavior of this structure and have 
verified this through simulations. Further, we have shown that 
by discretizing the neuron spike in time, we can control the 
learning behavior and remedy the effects of switching rate 
mismatch in memristors. We have also demonstrated learning 
in a 3 × 3 crossbar with our synapse. These results indicate 
that our synapse can be used to implement spiking neural 
networks with STDP based on-chip learning. 
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