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Abstract 
This paper presents an algorithm for finding array structures 
in a layout design. The algorithm can find all the regular 
layout structures from a flattened layout design without 
knowing its building blocks beforehand. A potential 
application of this work is to reduce layout DRC and 
lithography check time. Experimental results show that our 
algorithm is efficient and robust. 
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1. Introduction 
 A regular layout structure in a VLSI design comprises 

the same kind of geometrical objects disposed regularly in x 
and y directions. The structure is often found in a design with 
memory blocks and customized data paths or in a Structured 
ASIC [1]. We call such a layout structure array and the 
problem of finding such a layout structure array recognition 
problem. Arrays can be used to speed up design rule check 
(DRC) [2-6] and lithography check [7] for design 
manufacturability by verifying only a subset of cells in an 
array [5]. For example, given a 36-cell array in Figure 1(a) for 
DRC check, we normally perform DRC for all the cells in it. 
However, checking c22~c36 is not needed because these cells 
each have the same surrounding as that of c21 [5]. Clearly, 
we are not interested in an array whose dimensions are not 
larger than 3-by-3.  

There are abundant works about DRC; however, to the 
best of our knowledge, no algorithm for array recognition 
problem has been found in the open literature. Some 
commercial tools do provide array recognition capability. For 
example, Cadence’s Dracula [5] provides a command 
ARRAY-ENABLED to find only simple array automatically, 
but no details about how this is done are revealed. Cadence’s 
Assura Physical Verification provides some commands to 
recognize memory arrays such as DRAM, ROM, SRAM 
arrays. Details about how this is done is not found in the 
literature. Because it is known a priori which memory device 
will be disposed regularly to form an array, memory array 
recognition is simpler than the problem addressed in our work. 
The work in [8] is somewhat related to ours, but it only finds 
out all the repetitive instances. No algorithm is presented 
there to unearth any array structures. In this paper we propose 
a systematic approach to array recognition problem. Our 
work addresses complex array structure recognition as shown 
in Figure 1(b). Test cases solicited from a major EDA vendor 
are used to evaluate our approach. Experimental data show 
that our algorithm is time efficient and very robust, i.e., able 
to find all the arrays and almost always the largest ones.  

The rest of this paper is organized as follows. Section 2 
presents a problem definition. Section 3 describes our array 

 

Figure 1: Simple array and mosaic array. 

recognition algorithm. Section 4 presents some experimental 
results. Section 5 draws a conclusion. 

2. Preliminaries 
The layout objects referred in this work can be in any 

shape, on a single layer, or on multiple layers. If a layout 
object cannot be decomposed, it is called primitive. 
Otherwise, it is called composite. The objects inside a 
composite one can be in different layers and may overlap. 
However, the primitive objects of the same type employed to 
form an array should be on the same layer. Without loss of 
generality, we assume a layout design consists of non-
overlapped cell instances drawn from a set of rectangular 
primitive cell templates on the same layer. Each cell (instance) 
is stamped on its template name. 

A mosaic array consists of mosaic cells, each of which 
contains more than one primitive cell as shown in Figure 1(b). 
An array’s shape can be rectangular or rectilinear. 
Definition 1: A simple array (ex. Figure 1(a)) consists of only 
primitive cells. A mosaic cell template is a cell template that 
consists of more than one primitive cell drawn from Ω  which 
is formed by non-decomposable objects in a layout design. A 
mosaic array (ex. Figure 1(b)) consists of mosaic cells based 
on a certain mosaic cell template. 

The shape of a mosaic cell template is the smallest bounding 
box that contains all of its primitive cells. Let K(S) denote the 
cell templates of array S. 

Definition 2: A rectangular array S of dimensions ( )D S =  

( ) ( )x yD S D S×  has ( )xD S columns and ( ) yD S rows of the same 

kind of cells. The cells in a column (row) have the same x(y) 
coordinate. The region R(S) is the smallest bounding box that 
contains all the cells in S. The distance between any two 
adjacent columns (rows), called the leap of S in x (y) direction 
and denoted by ( )xS  ( ( ) yS ), must be the same. Herein, 

( )S  denotes the two leaps of array S. x and y  denote the 

two leaps, respectively, if S itself is not of interest.  
Definition 3: A rabbeted array S is an array whose region 
R(S) may not be rectangular but rectilinear. Its dimensions are 
set equal to the dimensions of the largest rectangular array 
embedded in S. We will treat a rectangular array as a 
degenerated rabbeted array. 
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Figure 2: Various kinds of arrays. 
 

 

Figure 3: Problem of forming a rectangular mosaic array: C 
≠ A∪B. 

Definition 4: An anchor cell ( )Sϕ  is the left-bottom most cell 
in array S.  
Definition 5: A noise cell is a cell not belonging to any array. 
Definition 6: A scratched array ( )( )( ), ( ), ( ),K S S S R SS ϕ=   is an 

array where noise cells or cells belonging to other arrays may 
be present in R(S). 
Definition 7: A qualified array ( )( ), ( ), ( ), ( ), ( )K Q Q Q R Q E QQ ϕ=   

is an array where no cells belonging to other arrays are 
contained in R(Q) and the region E(Q) containing noise cells 
inside Q has been identified. 

Here, two scratched arrays may overlap each other, but any 
two qualified arrays should not. The above definitions are 
also applied to simple arrays and mosaic arrays. We will use 
“array” to indicate a scratched, qualified, or rabbeted array if 
its meaning is clear from the discourse. Figure 2 shows 
different types of arrays where t1, t2, and t3 are primitive cell 
templates. Each mosaic cell in the qualified mosaic array has 
one t1 and three t3’s. 

Array recognition problem: 
Given a layout design containing rectangular objects, each of 
which is stamped on its template name, find all the qualified 
arrays iQ  in the design such that ܦ(ܳ)௫ ≥ 3 and ܦ(ܳ)௬ ≥3 for all i. 

The challenge of this problem is due to not knowing 
mosaic cell templates a priori. It is further complicated by 
having to handle non-rectangular arrays. One way to deal 
with non-rectangular arrays is first to find rectangular arrays, 
then use them independently to form some mosaic arrays, and 
finally combine the mosaic arrays into a rectangular one. 
However, this approach does not work, as shown in Figure 3 

where arrays A and B are not adjacent and do not have the 
same mosaic cell template so that they cannot be combined. 

3. Array recognition algorithm 
Our algorithm has three phases. The first phase identifies 

all scratched rectangular arrays (SRTAs) and combines 
adjacent SRTAs into scratched rabbeted arrays (SRBAs). The 
second phase finds the scratched mosaic arrays (SMAs) by 
intersecting SRBAs found in the first phase. The third phase 
qualifies an SMA by identifying noise cells. Figure 4 shows 
an example of our approach. We first find the SRTAs 

1 2 3' 3",  ,   and S S S S . We form SRBA 3B by uniting 3' 3"and S S  

(Figure 4(b)). In the second phase, we find the region 

1 3( ) ( )R B R B∩  (Figure 4(c)). We tentatively assume that the 

intersected region will form SMA B4. We use the intersected 
region to find out the anchor cell 4( )Bϕ (Figure 4(d)). 

Adjusting the region boundaries based on 4( )Bϕ , we create 

SMA B4 (Figure 4(e)). We then remove the cells now 
belonging to B4. Finally, we qualify these scratched arrays to 
obtain 1 2 3,  ,  Q Q Q  and 4Q (Figure 4(f)). 

Our algorithm relies on storing cells on R-B trees [9], 
creating an R-B tree tT  for all the cells referring to the same 
primitive cell template t as shown in Figure 5. In the 
following, we will elaborate on the three phases of the 
algorithm. 

 

Figure 4: An example of array recognition. 



 

Figure 5: An R-B tree for cells using the same template. 

//Input: An R-B tree tT for the cells using template t. 

//Output: Scratched rectangular arrays and noise cells 
void SRTA_recognition( tT ) { 

(1) while( tT is not empty){ 

(2)    Find a tentative anchor cell ( )Sϕ  from tT ; 

      // S is the array yet to be formed with respect to (w.r.t.) ( )Sϕ ; 

(3)    Find the leap ( )xS  w.r.t. ( )Sϕ in tT ; 

(4)    Find the leap ( )yS  w.r.t. ( )Sϕ in tT ; 

(5) ( )D S = Dimension_Determination( tT , ( )S , ( )Sϕ ); 

(6) if( ( ) 3xD S ≥ or ( ) 3yD S ≥ ){    
(7) Set ( )Sϕ to be the anchor cell of S;  
(8) Use ( )Sϕ , ( )S , and ( )D S to determine ( )R S ; 
(9) Create an R-B tree for S based on ( ( ), ( ), ( ), ( ))K S S S R Sϕ  ; 

(10) Remove the cells of S from tT ;}   

(11) else Remove ( )Sϕ from the tree and treat it as a noise cell; 
}  // end of while 
} 

Figure 6: Scratched rectangular array recognition. 

3.1. Scratched simple array recognition 
The first phase, scratched simple array recognition process, 

has two steps. The first step finds out scratched rectangular 
arrays (SRTAs). The second step combines adjacent SRTAs 
into scratched rabbeted arrays (SRBAs).  

3.1.1. Scratched rectangular array recognition 
We process each R-B tree Tt to find out SRTAs formed 

by cells referring to cell template t. Let S be an SRTA yet to 
be found. We start with selecting a tentative anchor cell ( )Sϕ , 
then find the leaps ( )S , and finally determine the dimensions 
D(S). If S has dimensions greater than 3-by-3, we create an 
R-B-tree for it. The cells included in S are then deleted from 
Tt. Otherwise, ( )Sϕ is removed from Tt and treated as a noise 
cell. The above process is repeated until Tt is empty. Figure 6 
shows such an algorithm which is elaborated below. 

 Determining tentative anchor cell 
The SRTAs embedded in an R-B tree can be in various 

forms, depending on how a tentative anchor cell is selected 
during a recognition process. A tentative anchor cell is 
tentatively served as the anchor cell of a yet-to-be recognized 
array. Figure 7 shows two different ways of forming SRTAs 
using c1 and c2 as tentative anchor cells. Although we obtain 
two different sets of rectangular arrays, we will get the same 
rabbeted array after rectangular arrays are combined. Here, 
we adopt the left-bottom most selection rule. 

 

 

Figure 7: Tentative anchor cells. 

 

Figure 8: Determining leaps. 

 Determining leaps 
We use jumps to determine the leaps x and y of an array. 

A jump in x direction between two cells with the same y 
coordinate is the difference between their x coordinates. 
Starting from the tentative anchor cell, we can find jumps 

0 1 2, , ,dx dx dx … , and kdx as shown in Figure 8(a) where k is the 

smallest value that makes 0= kdx dx . We then define 
1
0

k
ix idx−
==  , which is 0 1 2+ +dx dx dx for the example in Figure 

8(a). y can be determined similarly. Based on the leaps, the 

cells in columns 1, 4, and 7 of the example will form an SRTA 
with respect to the tentative anchor cell. Figure 8(b) shows 
the leaps for another array contained in the same layout. 
Given the tentative anchor cell with coordinates (0,0) in 
Figure 5, we have 10x =  and 30y = . 

 Determining dimensions of scratched rectangular array 
The algorithm in Figure 9 determines the dimensions D(S) 

of an SRTA S. Let ( , )a ax y be the coordinates of ( )Sϕ . We 

start with the tree node from which ( )Sϕ can be reached (line 
2) and search the linked-list pointed by the tree node to 
determine whether the cells in the linked-list can form a 
column of S (lines 7~10). If a column can be found (i.e., 

_ 0ytemp D ≠ , line 11), we increase ( )xD S by one and then 

move to the next adjacent tree node based on an in-order-
traversal (the outer while loop). A column is found if we have 
a sequence of nodes with coordinates ,  1,2,..., ,iy i k=  so that 

0( )y ii S y y× = −  and 0 ay y= hold where k is the smallest 

value that makes 0( ) y kk S y y× ≠ − and ay is the y coordinate 

of the tentative anchor cell. 

Given the R-B tree in Figure 5 as the input to Dimension_ 
Determination(*), a 6-by-3 SRTA as shown in Figure 10(a) 
will be obtained. Figure 10(b) shows the R-B tree after the 
nodes that form the array are removed. 

3.1.2. Forming scratched rabbeted arrays (SRBA) 
After SRTAs have been identified, we combine any two 

adjacent SRTAs S1 and S2 into an SRBA if 1 2( ) ( )K S K S= , 

1 2( ) ( )S S=  , 1 2 1( ( ( )) ( ( ))) mod ( ) 0L S L S Sϕ ϕ− = where 

1( ( ))L Sϕ    and 2( ( ))L Sϕ  denotes the coordinates of 1( )Sϕ and 

2( )Sϕ , respectively. Array ܤଷ = ܵଷᇲ ∪ ܵଷᇲᇲ  in Figure 4(b) 

shows such an example. 



//Input: tT , ( )S , ( )Sϕ  

//Output: ( )D S  

void Dimension_Determination ( tT , ( )S , ( )Sϕ ) { 

// ( ax , ay ): the coordinates of the tentative anchor cell; 

(1)  0( )xD S = ; ( )yD S = ∞ ; 
(2)  X_node  = ( )Sϕ ;  

(3)  X_temp = ax ; 1_ ytemp D = ; // y-dimension of an array 

(4)  while( X_node  NULL≠  && _ 0ytemp D ≠ ){ 

(5) Y_node = node pointed by X_node with y coord. equal to ay ; 

(6) Y_temp= ay ; _ ytemp D = 0; 

(7) while( Y_node  NULL≠ ){ // till not repeated in every ( ) yS . 

(8) _ _ 1y ytemp D temp D= + ; 
(9) Y_temp = Y_temp + ( ) yS ; 
(10) Y_node  = the node with its y coord. equal to Y_temp ; } 
(11)  if ( _ 0ytemp D ≠ ){ 
(12)   if ( ( ) _y yD S temp D> ) ( ) _yD S temp Dy= ; 
(13)   X_temp = X_temp+ ( )xS ; 
(14)   X_node = the tree node with its x coord. equal to X_temp ; 
(15)   ( ) ( ) 1x xD S D S= + ; } 

} 
(16) return( ( )D S ); 

} 

Figure 9: Determining array dimensions. 

 

Figure 10: R-B trees generated after forming an array. 

3.2. Scratched mosaic array (SMA) recognition 
The second phase is to form a scratched mosaic array 

(SMA). This phase takes scratched rabbeted arrays (SRBAs) 
as input and perform geometric intersections among the 
SRBAs to find out SMAs. Performing such a geometric 
intersection is simple, but forming a mosaic cell template and 
determining the boundaries of the SMA are not trivial. A 
mosaic cell template may not be simply formed by combining 
the cell template of one SRBA with the cell template of the 
other SRBA. For example, the mosaic cell template of array 
Q4 in Figure 4(f) is formed by one cell template from array B1 
plus three cell templates from B3. The formation of a mosaic 
cell template also influences the size of a mosaic array as the 
two different Q4’s shown in Figure 11. Here we seek to find 
as a larger mosaic array as possible. 

Figure 12 presents our algorithm for finding out SMAs. 
For each SRBA Bi, we start with putting the indices of all 
other SRBAs Bj into a linked list LS if R(Bi)∩R(Bj)≠∅ for all 
j > i. The recursive calls to Forming_SMAs(*) (Figure 13) is 
performed for each index stored in LS to find out all possible 
SMAs. Basically, each call to Forming_SMAs(*) will return 
an SMA. All SMAs will be stored and then checked after 
finishing the for loop in Figure 12. 

Figure 13 shows our algorithm for forming an SMA from 
any two SRBAs Bi and Bj. Clearly, most of the mosaic cells  

 
Figure 11: Forming a larger or smaller mosaic array. 

 
//Input: SRBAs ,  1,2,...,iB i p=  

//Output: Modified SRBAs ,  1, 2,...,jB j q= and SMAs ,  1,2,...,kM k r=  

void Finding_all_SMAs ( ) { 
(1) for( 1;  ;  i i p i= < + + ){ 

(2) Put the index j i>  for each Bj into LS if i jR( ) R( )!B B φ∩ = ;  

//LS is a linked list for storing indices of scratched rabbeted arrays. 
(3) ptr = head of LS;  
(4) while(ptr != NULL ){ 
(5) Forming_SMAs ( ,  ,  ,  i ptr valueB B LS ptr−> ); 

(6) ptr ptr next= → ; }  // ptr value→ is an array index 
}   // Bi will be modified during the recognition process 

(7) Delete any iB or kM  and treat the cells in iB or kM as noise cells if 
its dimensions are smaller than 3-by-3; 

} 

Figure 12: Finding scratched mosaic arrays. 

will lie in R(M), but some mosaic cells may lie on the 
boundaries of R(M). This requires some Bi’s and Bj’s cells, 
lying outside R(M) but just next to R(M), to be included in the 
mosaic cells. Therefore, in line 3 we perform 
Find_reference_cells(*) to find two reference cells in Bi and 
Bj respectively. These two reference cells will be employed 
to determine whether Bi’sand Bj’s rows(columns) lying 
outside R(M) should be included in an SMA. The reference 
cells are determined based on whether the two cells, one from 
Bi and the other from Bj,, closest to the left-bottom most corner

( ),l lL x y of R(M) align in x or y directions. The details of this 

procedure is presented in Figure 14. Figures 16(e) and 16(f) 
show an example of how to determine the two reference cells 
when the two cells closest to ( ),l lL x y  align in x direction.  

Once the two reference cells are found, we call the 
function Seed_of_ϕ(*) twice (lines 4-5 in Figure 13). The first 
time is to find out from Bi a subarray Ai with its x and y 
dimensions not larger than ( ) / ( )x i xM B  and ( ) / ( )y i yM B  , 

respectively. The second time is to find out a subarray Aj from 
Bj. Figure 15 shows the details of this procedure. 

Once the two subarrays Ai and Aj are found, we use them 
to create ( )Mϕ (line 6 in Figure 13). Since the two subarrays 
are found independently, the smallest bounding box 
containing ( )Mϕ , denoted by ( ( ))BB Mϕ , may be larger than 
the region defined by the leaps ( )xM  and ( ) yM . In this 

situation, we update either Pi or Pj to make Pi and Pj closer to 
each other to make ( ( ))BB Mϕ  smaller. Lines 7-14 in Figure 
13 carry out the above task. If the anchor cell ( )Mϕ , also the 
mosaic cell template of M, cannot be established, remove the 
cells in the region R(M) from Bi and Bj and treat them as noise 
cells (lines 15-17 in Figure 13). Conversely, we will create 
SMA M based on ( )Mϕ and remove the cells included in M 



from Bi and Bj. We then pick an SRBA from LS and call 
Forming_SMAs(*) recursively to form a more complicate 
SMA using M and the SRBA picked from LS. The details are 
described in lines 18-25 in Figure 13. 

Figure 16 shows an example of forming an SMA. We 
must point out that although we have drawn the traversing 
course of P1 in Figure 16(f), this traversal is not actually 
performed for this example because the condition in line 7 of 
Figure 13 is false. The traversing course drawn there is 
intended to show how pointer P1 should be moved if the 
condition in line 7 were true. 

The time complexity of our array recognition algorithm is 
2(2 )pO n , where n is the maximum number of cells in an 

SRBA and p is the maximum number of SRBAs that 
interweave each other. In practice, p is quite small. 

3.3. Qualifying scratched arrays 
The third phase is to exclude noise cells from a scratched 

(mosaic) array to create a qualified array  
( )( ), ( ), ( ), ( ), ( )K Q Q Q R Q E QQ ϕ=  . The identification process is 

easy because we need only check whether a non-array cell is 
located in the region R(Q) and use this information to create 
a noise cell region E(Q).  

  

3.4. Limitations and extensions 
Our algorithm has some limitations. First is about the 

choice of anchor cells. Although different choices normally 
end up with the same result, in some rare situations, the result 
may be different and thus finding maximum-sized qualified 
arrays is not guaranteed. Figure 17 shows such an example 
where anchor cells are determined using left-bottom most 
selection rule. Due to such a choice of anchor cells, simple 
array A, at its largest size, also consists of cells within the 
dotted region shown in Figure 17(a). As a result, we end up 
with simple array B also shown in Figure 17(a) and thus 
obtain a non-maximum-sized qualified array shown on the 
right of Figure 17 (b). Conversely, if we adopt the right-
bottom most selection rule, the cells in the column where the 
dotted region resides will belong to simple array B and thus 
we will end up with two maximum-sized qualified arrays (not 
shown there). Second limitation is about the ordering problem 
of intersecting several SRBAs during forming an SMA. 
Different orderings may generate different solutions. The 
above two problems can be solved by running our algorithm 
with different anchor cell selection rules and different 
orderings, respectively.  

Currently, our algorithm only recognizes arrays whose 
mosaic cells are rectangular and non-overlapped. However, 
as shown in Figure 18, a solution can only be found if mosaic 
cells are allowed to have a non-rectangular shape (Figure 
18(a)) or be overlapped each other (Figure 18(b)). Although 
these two issues look differently, they are intrinsically the 
same. Our algorithm can be easily extended to deal with these 
two issues by simply allowing to have overlapped mosaic 
cells. For the current implementation, we only deal with non-
overlapped layout objects, but extension of our algorithm to 
handle overlapped layout objects is straightforward. 
 

//Input: SRBAs iB  and jB , linked-list LS , pointer to LS ptr . 

//Output: modified SRBAs iB and jB  and SMAs ,  1,2,...,kM k r=  

void Forming_SMAs ( ,  ,  ,  i jB B LS ptr ){ 

// Let M be the SMA yet to be recognized. 

(1) if( ( ( ) ( ) ( ))i jR M R B R B= ∩ = ∅ ) return;  

(2) ( )M =Least_common_multiple( ( ), ( )i jB B  ); 

(3) Find_reference_cells( , , ( ), ,i j i jB B R M P P ); 

(4) Seed_of_ϕ( iB , ( )M , iA , iP , ( ) / ( )x i xM B  , ( ) / ( )y i yM B  ); 

(5) Seed_of_ϕ( jB , ( )M , jA , jP , ( ) / ( )x j xM B  , ( ) / ( )y j yM B  ); 

(6) ( ) i jM A Aϕ = ∪ ;  

      // create a tentative anchor cell (also a mosaic cell template) of M. 
(7) while( ( ( )) ( )BB M Mϕ >  ){ 

// ( ( ))BB Mϕ : the smallest bounding box of ( )Mϕ  

(8)    if( iA ==NULL || jA ==NULL)  break; 

(9)      if ( i jP P> ){    

(10)      Move Pj to point to the cell above the current one; 
           // move to the next column if the top is hit. 

(11)    Seed_of_ϕ( jB , ( )M , jA , jP , ( ) / ( )x j xM B  ,

( ) / ( )y j yM B  );  

           } // Return Aj 
(12)      else { Move Pi to point to the cell above the current one; 
                // move to the next column if the top is hit. 
(13)          Seed_of_ϕ( iB , ( )M , iA , iP , ( ) / ( )x i xM B  , 

( ) / ( )y i yM B  ); }  // Return Ai 

(14)    ( ) i jM A Aϕ = ∪ ; 

}   // end of while  
(15) if( iA ==NULL || jA ==NULL){ 

(16) Remove cells in R(M) from iB ( jB ) and treat them as noise cells. 

(17) return; } 
(18) else{ Create M in terms of ( )Mϕ ; 

(19)     Remove all the cells being included in M from iB and jB ; 

(20)     ( ) ( )  ( )i iR B R B R M= − ; ( ) ( )  ( )j jR B R B R M= − ; 

(21)     ptr ptr next= → ; // Move to the next element in LS 

(22)     while( ptr  != NULL ){ // Forming a more complicate SMA. 

(23)     Forming_SMAs ( ,  ,  ,  ptr valueB M LS ptr→ ); 

(24)    ptr ptr next= → ; } 
(25)     return;  // Some SMAs Mk will be returned if they exist.  

}  // end of else 
} 

Figure 13: Forming scratched mosaic arrays using two 
SRBAs. 

4. Experimental results 
The experiments are run on a PC with 2.4 GHz Intel Core 

2 Duo E6600 and 2GB main memory. Some results are shown 
in Table 1. Test cases tc1, tc2, tc3, aa, and tlf are obtained 
from a major EDA vendor. t1f-d1, t1f-d2, and t1f-d3 are 
obtained from deleting an arbitrary number of cells from t1f, 
respectively. The rest of them are manually made to test the 
robustness of our method. tlf and aa are memory blocks. 
These test cases contain only flat layout objects described in 
CIF. The (mosaic) cell templates are not provided. The 
number of cells in tlf is about 9 times that of ibma, but it takes 
much less time for processing tlf. The reason for this is that 
tlf contains only a few large mosaic arrays whereas ibma 
contains a large number of small mosaic arrays. t1f-d1, t1f-d2, 
and t1f-d3 takes more time than t1f because they are more  
 



 
Figure 14: Finding reference cells. 

//Input: ,  ( ),  ,  ,  ,  k k k x yB M A P D D .  

//Output: ,  k kA P  

void Seed_of_ϕ ( ,  ( ),  ,  ,  ,  k k k x yB M A P D D ){ 

(1) Starting from kP and traversing the R-B tree of kB , just like what 

has been done for finding a SRTA, to find out a x x yD D

subarray kA from kB with ( ) ( )kBB A M≤  . 

(2) if ( kA is not found) { 

(3) kA =NULL;  

(4) kP =NULL; 
(5) } 
(6) else set kP  pointing to the anchor cell of kA ; 
        } 

Figure 15: Finding a subarray Ak from Bk. 

irregular. The last column in Table 1 gives the number of cell 
instances that are not included in any qualified array. A zero 
means that all cells are contained in the arrays. 
For small test cases, we visually inspect their layout designs 
and find that our algorithm finds all the qualified arrays in 
each of the test cases. Our algorithm also finds all the 
qualified arrays in ibme. Even though tlf is large, we can also 
visually verify that our algorithm find all the qualified arrays 
of largest dimensions. We believe that our algorithm also 
does a good job for ibma even though it is too complicate to 
be visually inspected. Figure 19 shows some qualified arrays 
for some test cases.  

 
Figure 16: An example of forming an SMA. 

A comparison to the previous works is not possible due to 
no related works found in the open literature. A comparison 
to Cadence Darcula with ARRAY-ENABLED is possible, 
but this cannot be done because the layout designs given by 
the EDA vendor consist of only empty cells, i.e., the layout 
objects inside the cells have been removed. ARRAY-
ENABLED command is not executed if cells contain no 
layout objects. Also note that Dracula recognizes only simple 
arrays. By the same reason, we are not able to run our tests 
using array recognition capability provided by Assura. 

5. Conclusions 
In this paper, we present an efficient approach to finding 

regular layout structures in a design. Our implementation 
finds all the qualified arrays if mosaic cells are rectangular 
and non-overlapped. It can be easily extended to find out 

//Input: SRBAs iB , jB , and R(M) 

//Output: Two reference cells iP and jP   

//Let ( , )l lL x y  be the left-bottom most corner of R(M) 

     void Find_reference_cells( iB , jB , R(M), ,i jP P ) { 

(1)   Find a cell ( , )i i iP x y  in iB  most closest to ( , )l lL x y ; 

(2)   Find a cell ( , )j j jP x y  in jB  most closest to ( , )l lL x y ; 

(3)   if( i jx x== ){ // aligning in y direction 

(4)     if(there is a cell of iB at position( ix , ( )i i yy B−  )) 

(5)     make iP point to this cell; 

(6)     if(there is a cell of jB at position( jx , ( )j j yy B−  )) 

(7)     make jP point to this cell;  

     } 
(8)  else if ( i jy y== ){ // aligning in x direction 

(9)      if(there is a cell of iB at position( ( )i i xx B−  , iy )) 

(10)     make iP point to this cell; 

(11)     if(there is a cell of jB at position( ( )j j xx B−  , jy )) 

(12)     make jP point to this cell;  

        } 
(13)  else{ // not aligning in x and y directions 
(14)    if(there is a cell of iB at position( ( )i i xx B−  , ( )i i yy B−  )) 

(15)    make iP point to this cell; 

(16)  if(there is a cell of jB at position( ( )j j xx B−  , ( )j j yy B−  )) 

(17)  make jP point to this cell; 

     } 
} 



arrays from a design where mosaic cells are overlapped or 

non-rectangular. 

 
Figure 17: Non-maximum qualified arrays due to choice of 
anchor cells. 

Table 1: Results and run time. 

Name # cells #PC # SRBAs # SMAs # QAs 
Run time 

(sec.) 
# non-array 

cells 
tlf 614144 3 7 7 8 66 128 
aa 2000 1 1 0 1 1 0 
tc1 170 2 3 1 2 1 20 
tc2 147 2 4 1 2 0 32 
tc3 121 2 3 2 2 0 1 

t1f-d1 550824 3 7 7 9 162 552 
t1f-d2 445874 3 7 6 10 102 7730 
t1f-d3 395854 3 6 6 11 85 548 

tc4 540 2 6 2 2 1 62 
tc6 135 1 4 1 2 0 20 
tc7 384 2 2 1 1 0 0 
A1 200 2 2 1 3 0 0 
A2 1700 2 2 1 2 0 0 
A3 800 3 3 2 3 0 30 
A4 450 2 2 1 1 0 30 
a2 64000 1 1 0 1 1 0 
f1 736 3 3 1 2 0 0 

fff1 1186 4 4 2 4 0 0 
fff 57 1 1 0 1 0 18 
flr 144 3 4 1 1 0 0 

ibme 68478 95 8 2 5 8 66196 
ibma 69000 1 775 713 713 492 6900 

sp 39400 2 3 2 4 5 0 
#PC: number of primitive cell templates, found out by the algorithm. 

 

 

Figure 18:  Extensions of the proposed algorithm. 

 
Figure 19: Qualified arrays found by our algorithm. 
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