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Abstract 
Analog layout design automation has been evolving 

constantly and several attempts have been made to find a 
solution for analog synthesis. Due to the complexity of 
analog design problem it is difficult to find a single 
approach which can be readily accepted by the industry. The 
optimization based full analog synthesis tools are quick but 
does not capture layout engineers’ expertise and therefore 
produce sub optimal layout. The semi-automated layout 
tools help layout engineers considerably however the layout 
creation cycle time is still at unacceptable level for        
time-consuming analog designs. 

This paper presents a simplified methodology for 
generating complex analog modules layout using template 
driven parameterized cells to reduce layout creation cycle 
time significantly while meeting the layout designers need. 
The paper discusses step by step approach of developing a 
placement and routing template to capture layout engineers’ 
expertise for complex analog modules and demonstrates its 
effectiveness by implementing a triple cascode amplifier 
super-pCell which is being used in pipeline Analog to 
Digital Converts. The implemented methodology is very 
flexible and fully controllable so that designers can easily 
create a layout with additional design requirements and 
constraints quickly. The proposed approach is successfully 
adopted by layout engineers and as a result, the required 
layout resources for a design are reduced significantly 
whereas layout engineers’ efficiency is improved 
significantly.  
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1. Introduction 
Modern day integrated circuits provide system on chip 

(SoC) functionality, which requires the co-development of 
both analog and digital blocks and the integration of these 
blocks to create a system. The plethora of CAD tools 
available to designers of digital blocks for these SoC’s 
allows the designer to push a digital design in to the layout 
phase at a much faster rate than analog blocks. The push for 
higher levels of integration on chip places pressure on 
analog designers to reduce the development time of their 
analog circuits. Possibly the most tedious and time-
consuming aspect of analog circuit design is the layout 
phase. Traditionally, each polygon had to be drawn by hand 
in order to realize layout. Now, complete devices or even 
complete blocks can be drawn automatically [1].  

  Analog layout creation can be divided in following five 
phases.   

1. Circuit partitioning and constraint generation, 
consisting of  a) identifying analog blocks (e.g. core, 
bias, critical non critical, noise sensitive/high 
current/power blocks etc.) and b) generating 
constraints for device generation, placement and 
routing 

2. Device identification and device generation, and 
includes a) generating discrete components 
MOSFETs, resistors, inductors and capacitors taking 
into account aspect ratio, symmetry, matching and 
process variations,  b) generating stack MOSFETs, 
composite MOSFETS (current mirrors etc.) and c) 
generating guard rings/substrate contacts etc. 

3. Placement subject to the placement constraints       
identified in step 1 such as X mirrors/Y mirrors/near 
to edge/minimum parasitic/thermal constraints etc. 

4. Routing subject to the routing constraints identified 
in step 1 such as symmetry/matching/minimum 
parasitic/electro migration/crosstalk aware etc. 

5. Verification and optimization consisting of Design 
Rule Check (DRC), Layout Vs Schematic (LVS) 
and optimization for area and performance. 
 

There are multiple iterations involved before the layout 
is finalized. First circuit designers create design schematic 
and wait for layout engineers to provide design layout. Next 
circuit designers extract parasitics from layout using 
extraction tools and simulate the design to validate if the 
layout still meets the design specification.  In most cases 
circuit designers update the device sizes to meet all the 
design specification which triggers another round of design 
layout. After several iterations, the layout is finalized. The 
frequent changes in device sizes affect the placement and 
routing adversely. Meeting the area and performance 
constraints simultaneously becomes very difficult. For 
advanced technologies, the technology constraints (Design 
for Manufacturability) make layout creation even more 
challenging.   

Several approaches have been proposed [1] over the last 
decade to automate the analog layouts. One can refer to 
generator based [1-4], template based [5-6] and optimization 
based [7-10] approaches. Optimization can handle the 
constraints explicitly [10-13] while generators implement 
export knowledge implicitly. There are hybrid approaches as 
well [14-18].  One of the challenges for adoption of these 
approaches is steep learning curve required by layout 
engineers to effectively use these analog layout automation 
tools. 

 This work proposes a simple, fast, intuitive, easy to use, 
highly controllable and flexible methodology for analog 
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layout creation which significantly reduces overall analog 
design cycle time. The approach is inspired by template-
based methods which provide high level layout as well as 
detailed routing constraints. This paper presents a template 
driven parametrized cell methodology for generating 
complex analog module layout. The presented methodology 
is engineering change order friendly and flexible so that 
designers can create layout with additional design 
requirements and constraints on the fly. Section 2 explains 
the methodology to develop placement and routing template 
for writing mega pCell. Results are presented in section 3. 
Section 4 draws the conclusion. 

2. Template Driven Parameterized Cell 
Methodology 

To demonstrate the 
methodology, an analog 
module from an Analog to 
Digital Converter (ADC), 
a triple cascode amplifier 
is identified.  An amplifier 
is a basic analog block, 
which is used several 
times in an ADC design 
and can be shared among 
several ADCs with slight 
modification. Automating 
the layout creation of 
amplifier block 
substantially reduces the 
amount of time and effort 
spent in creating these 
layouts for all the ADCs. 
The amplifier layout is 
generated as super 
parameterized cell and 
any changes if required 
can happen in fraction of 
a minute.  The parameterized cell (pCell) is implemented in 
Cadence’s SKILL language [19-20] however other 
languages such as Python and frameworks can also be used.   

The complete framework for using super pcell consists 
of following components: 

• Graphical user interface for controlling pCell 
parameters 

• Identifying the schematic based on given template. 
• Importing data from schematic for generating pCell. 
• Calculating default values for pCell parameters. 
• Generating pCell for three different layout aspect 

ratios. 
• Area and performance optimization. 
To summarize, first analog modules which can be 

parameterized are identified. Next a placement and template 
is created considering all constraints. Finally layout pCell is 
coded either manually or using GUI pcell creator. The triple 
cascade super pCell development is discussed in detail in 
following subsections. The approach of identifying 
placement template and routing algorithms are applicable to 
other analog modules as well and will be useful in creating 

similar or even bigger pCells for automating analog layout. 
Advanced layout constraints such as electromigration, IR 
drop, DFM can be taken care of in placement and routing 
template and therefore in the generated super pCell itself. 

2.1 Template creation for placement and routing 
based on design constraint 

From the schematic it can be seen that the Super pCell 
can be developed as two half mega pcells as it has two 
identical paths from AVDD to AVSS.  The half-cell is used 
to create full 
amplifier layout 
by placing the 
half-cell twice 
with R0 and MX 
orientations. The 
schematic 
selected for 
creating amplifier 
pcell is shown in 
the Figure 1. The 
AVDD and 
AVSS are net 
names. NTAIL, 
CMFB, INPUT, 
NCAS1, NCAS2, 
PCAS1, PCAS2 
and PBIAS are 
transistor names. 
All NMOS 
substrates are 
connected to 

AVSS and all PMOS substrates are connected to AVDD. 
Each transistor is placed by splitting it in multiple rows and 
columns. For creating the layout, length, width, finger and 

Figure 1: Triple cascode 
amplifier excluding 
biasing and common 
mode feedback schematic 

Figure 2: Layout floor plan 
illustrating transistor placement for 
half-cell for schematic of figure 1. 

Table 1: Brief description of transistor placement parameters  

 

 



transistor cell type is taken from schematic while number of 
rows and columns for every transistor and metal widths and 
offsets will be taken from super pcell GUI form. Number of 
fingers in each row/column split is taken as input from a 
separate form linked with pcell form. All default values used 
by the super pcell are user controllable through the super 
pcell GUI form. 

The placement and routing template is deduced from 
existing layout of the amplifier while meeting all design 
constraints. Figure 2 shows placement template. The routing 
template as deduced is discussed in the subsequent sections. 
The template is flexible and can expand or collapse as 
needed. The template can generate layout in three different 
aspect ratios. The layout designer’s intent as well expertize 
is also captured in the template.  

2.2 Placement of transistors and substrates based 
on design rule guidelines 

1. The transistors are identified based on fixed 
schematic name and placed in the pcell with 
name_MAIN and row no and column no. (e.g.  
NTAIL_MAIN1_1).  

2. Transistors are placed in following sequence, 
NTAIL, LOWER CMFB, INPUT, UPPER CMFB, 
and NCAS1. Next. NCAS1 INPUT and NTAIL are 
center aligned. CMFB and INPUT are placed 
common center.  Then PCAS2 and NCAS2 are 
placed and center aligned.  

3. For placing a transistor the X and Y offsets are 
added to the actual co-ordinates. (e.g. For NTAIL 
the actual co-ordinate is global origin(0,0), but 
NTAIL is placed at (0+X_os, 0+Y_os).  

4. For other transistors the offsets are relative to the 
adjacent transistor(s). Apart from length, width, no 
fingers, no of rows, no of columns, rotation, rout 
poly and rout substrate, the interdigitated string and 
routM2finger width is also specified in some of the 
transistors (which are taken from template).  

5. While placing the several splits of transistors, 
spacing between transistor rows and columns are 
split offset X and split offset Y.  

6. For substrate 
placement, the 
number and 
relative 
locations are 
taken from 
template and 
specified in the 
Table 1. There is 
a ROD object 
[19], which 
creates separate 
substrates. DRC 
is run to check 
the sufficiency 
of the substrate 
placements as 
well as contacts. 
Figure 3 shows 

the detailed substrate placement using DRC 
guidelines. 

7. Gates are placed as specified in the template and 
noted in the Table 1. 

2.3. Routing of intra transistors source and drain 
Gate, source and drain connections are decided by the 

routing template. The routing is done using MET2 for intra 
source-drain connections; MET3 and MET4 for inter-source 
drain connection; MET5 for NTAIL source to AVSS 
connection. For gate and substrate connections MET1 is 
used. For connecting various transistors source-drain, the 
metal width spacing and number of metal strips is given in 
Table 2 and are calculated as follows:  

For connecting Source/Drain of a transistor using MET2,  ܪܶܦܫܹ_2ܶܧܯ ൌ ݓܴݐ݁ܯሺ݊/	ܪܶܦܫܹ_ܱܵܯ ∗ 1.5ሻ	ܶܧܵܨܨܱ_2ܶܧܯ ൌ 0.5 ∗ ܧܩܦܧ_ܶܧܵܨܨܱ	ܪܶܦܫܹ_2ܶܧܯ ൌ 0.25 ∗  ܪܶܦܫܹ_2ܶܧܯ	
 
Case 1: Number of MET2 S/D,  noMetRow =2, the routing 
is shown in Figure 4(a) where MOS_WIDTH large enough. ܪܶܦܫܹ_2ܶܧܯ ൌ ሺ2/ܪܶܦܫܹ_ܱܵܯ	 ∗ 1.5ሻ	ൌ 	3.0/ܪܶܦܫܹ_ܱܵܯ	
         (a)             (b)                  (c) 
Figure 4:  Metal MET2 routing for connecting source and 
drains together in a transistor; green is transistor, blue is 
metal 2. Figure 3: Layout floor plan 

showing substrate placement  

Table 2: Brief description of transistor routing parameters 

 



Case 2: Number of MET2 S/D,  noMetRow =2, the routing 
is shown in Figure 4(b) where MOS_WIDTH is small. If 
width of transistor is very small (in case of CMFB, NCAS2 
and PCAS2 split) then the spacing from edge can be made 
zero and S/D can be routed as shown in Figure 4(b). If 
MET2 width is minimum and spacing required between 
metals is not sufficient as per DRC then this approach is 
implemented. 
 
Case 3: No of MET2 S/D, noMetRow =3, the routing is 
shown in Figure 4(c). ܪܶܦܫܹ_2ܶܧܯ ൌ ሺ3/ܪܶܦܫܹ_ܱܵܯ ∗ 1.5ሻ	ൌ 	4.5/ܪܶܦܫܹ_ܱܵܯ	
Length of MET2 is equal to the difference of Y co-ordinates 
of first and last source/drain bounding box of pcell 
transistor.  
 
For connecting S/D of multi-row-column transistor, a MET2 
will be routed from top to the base of the transistor and 
VIA1 are placed alternatively to connect S/D. For placing 
via, the common area of two metals is taken and filled with 
maximum number of via array. There will be a Relative 
Object Database (ROD object), which will do this. 

2.4. Routing of inter transistor source and drain  
MET3 and MET4 are used for inter-source drain 

connection. MET5 is used for NTAIL source to AVSS 
connection. For gate and substrate connections MET1 is 
used. For connecting inter-transistor Source/Drain using 
MET3, MET3 width, MET3 Spacing and No of MET3 S/D 
strips are calculated as follows: 

 
1. MET3_WIDTH=MAX_MET3_WIDTH 
2. LENGTH_MET2=Difference (y co-ordinates of first and last 

source/drain of transistor) 
3. MET2_CENTER=Average (Lower and Upper Y co-ordinates of 

MET2 rectangle.) 
4. NO_OF_S=round (LENGTH_MET2/(3.5*MET3_WIDTH)) 
5. /*Find a MET3_WIDTH, which gives Odd number of source MET3 

strips.*/ 
6. while( evenp (NO_OF_S) 

MET3_WIDTH=MET3_WIDTH-0.1       
NO_OF_S=floor(LENGTH_MET2/(3.5*MET3_WIDTH)) 

7. ) 
 
8. /*Check if it is less then 3? If yes use 3 and calculate the 

MET3_WIDTH else WARN. */ 
 
9. if(NO_OF_S<3 then 

    NO_OF_S=3 
                     MET3_WIDTH=fixDeci(pcCellView LENGTH_MET2/10.5); 

   if(MET3_WIDTH<3.0 then 
warn("PCELL ERROR!!!  MET3 WIDTH IS VERY SMALL 
FOR INPUT CONNECTION..") 

10.       );if MET3_WIDTH 
11. );if NO_OF_S 
12. NO_OF_D=NO_OF_S-1 
13. SD_OFFSET_NEW= MET3_WIDTH *3.5 
14. CCOY_S = INPUT_MET_CENT-((NO_OF_S-1)/2.0) 

*SD_OFFSET_NEW 
15. CCOY_D = CCOY_OK+(SD_OFFSET+MET3_WIDTH)/2.0 

The spacing between the MET3 is 0.75 * MET3_WIDTH. 
For LENGTH_MET2=110 and MAX_MET3_WIDTH=10  

NO_OF_S=3, MET3_WIDTH =10, MET3_OFFSET=7.5.  
The example routing is as shown in Figure 5-7. 

 For connecting inter-transistor source/drain using MET4, 
MET4 width is taken from user as input. MET4 Spacing and 
No of MET4 S/D strips are calculated as follows. 

• For PBIAS-source 
connection, the MET4 
is used for connecting 
its source terminal to 
VDD. The spacing 
from Y-axis is zero. 
Only one MET4 
rectangle is to be 
drawn. 

• For PBIAS-PCAS1 
source-drain 
connection, the 
number of MET4 
connections is equal 
to minimum of 
number of columns in 
PBIAS and PCAS1.  

• For PCAS1-PCAS2 
source-drain 
connection, the 
number of MET4 
connections will be 
equal to half the 
number of columns in 
PCAS2.  

• For NCAS2-NCAS1 
source-drain 
connection, the 
number of MET4 
connections will be 
equal to the number of 
S/D columns in 
NCAS1.  

• For NCAS2-NCAS1 
metal connections, 
MET2 is extended 
through MET4 and 
connected to NCAS2. 

• For via placement the 
spacing from edges in 
x and y directions is 
fixed (e.g. 0.6um and 1.0um respectively for all 
type of vias) as shown in Figure 7.  

• For connecting NTAIL Source to VSS using MET 
5, the MET5 width is taken from user as an input 
for connecting its source to VSS. The spacing from 
Y-axis is zero. Only one MET5 rectangle is drawn. 

 

 
Figure 5: Routing using 
MET3 of two splits of a 
transistor.

 
Figure 6: Inter transistor 
routing using MET3  

 
 
Figure 7: Via spacing 
from the edge of the 
overlapping metals, MET2 
and MET3.  



2.4. Gate Routing 
     MET1 is running 
horizontally between 
transistors to connect gates 
of PCAS2, NCAS2, NCAS1, 
INPUT CMFB and NTAIL 
and to other half of pcell as 
well as to the outside 
connections as shown in 
Figure 8. INPUT gate 
connection can be one or two 
based on the user selection. 
The minimum MET1 width 
is used for routing. User can 
specify the width.  

2.5. Substrate Routing  
      MET1 is running for 
substrate connections of 
fixed width (1um) 
horizontally and (of 2um) 
vertically. The minimum 
MET1 width is used for 
routing. User can specify 
these widths.  

3. Results and 
Discussion 

The proposed approach is 
implemented as Super pcell 
in Cadence’s SKILL 
language. All the required 
pCell routines are loaded in 
ICFB at startup. In order to 
generate the Super pCell a 
designer needs to create a 
schematic as shown in 
Figure 9. The generated 
Super pCell is shown in 

Figure 10. As discussed 
earlier the mega pCell is 
created for half-cell and 
two half-cells are placed 
with R0 and MX 
orientation to create super 
pCell. The generated 
pCell is DRC and LVS 
clean. Figure 11 shows 
the generated super pCell 
in three different aspect 
ratios. As can be seen 
from the layout the 
NCAS1, INPUT and 
CMFB splits have been 
altered to achieve 
different aspect ratios.   
Figure 12 shows the 
component description 
parameters of the pcell. 
There are basic 
parameters such as 
number of row and 
column offsets, metal 
width etc. and advanced 
parameters which are 
defined by advanced 
variables in the variable 
information field. The 
generated pCell is fully 
controllable. Designers 
can quickly change these 
parameters and see the 
altered layout instantly 
and complete the 
optimization in couple of 
minutes which otherwise 
would have taken days. 
Finally pCell can be 
flattened to further fine 
tune the layout if 
required. This gives 
layout engineer full 
flexibility of hand drawn 
layout. The generated 

 
Figure 8: Inter and intra 
transistor gate routing using 
MET1  

 
Figure 9: Schematic of 
triple cascade amplifier 

 
Figure 10: Triple cascade amplifier layout generated 
using Super pCell. 

 
(a) 

 
Figure 11: Generated Super pCell for three different aspect 
ratios: a) placement of transistor b) placement and routing. 

 
Figure 12: Super pCell CDF 
parameters  



pCell has been extensively used by layout engineers and 
very well adopted by the design community due to ease of 
use and full flexibility.  This approach has been used for 
smaller analog blocks such as current mirror and differential 
pairs, as well as IO Ring and bigger blocks such as complete 
LDO and found to be very effective in reducing the analog 
design cycle time. In this work the pCell has been hand 
coded. However there are automated pCell creation tool and 
automated frameworks available which can speed up the 
pCell creation time significantly [20]. 

4. Conclusion 
In this paper a simplified methodology for complex analog 
module layout generation using template driven 
parameterized cell for analog layout automation is 
presented. With the proposed methodology the layout 
creation time is reduced from a week to few secs. The 
generated layout is LVS and DRC clean which increases 
efficiency of layout engineers. Optimization of the final 
amplifier layout can be done very easily within few minutes 
with generated pCell. The approach can be extended to other 
reusable analog modules. The creation of templates is 
knowledge intensive task and the set of generated layout is 
limited by available templates. Therefore the approach is 
limited to reusable analog modules within a design and/or 
across multiple designs. Automated pCell generation tools 
and framework can significantly reduce the pCell creation 
time.  
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