

A Simplified Methodology for Complex Analog Module Layout Generation

Pradeep Kumar Chawda
Texas Instruments Inc., 3833 Kifer Rd, Santa Clara, CA

E-mail: pkc@ti.com

Abstract
Analog layout design automation has been evolving

constantly and several attempts have been made to find a
solution for analog synthesis. Due to the complexity of
analog design problem it is difficult to find a single
approach which can be readily accepted by the industry. The
optimization based full analog synthesis tools are quick but
does not capture layout engineers’ expertise and therefore
produce sub optimal layout. The semi-automated layout
tools help layout engineers considerably however the layout
creation cycle time is still at unacceptable level for
time-consuming analog designs.

This paper presents a simplified methodology for
generating complex analog modules layout using template
driven parameterized cells to reduce layout creation cycle
time significantly while meeting the layout designers need.
The paper discusses step by step approach of developing a
placement and routing template to capture layout engineers’
expertise for complex analog modules and demonstrates its
effectiveness by implementing a triple cascode amplifier
super-pCell which is being used in pipeline Analog to
Digital Converts. The implemented methodology is very
flexible and fully controllable so that designers can easily
create a layout with additional design requirements and
constraints quickly. The proposed approach is successfully
adopted by layout engineers and as a result, the required
layout resources for a design are reduced significantly
whereas layout engineers’ efficiency is improved
significantly.

Keywords
Analog layout automation, Super pCell, Template driven

layout, Analog Synthesis

1. Introduction
Modern day integrated circuits provide system on chip

(SoC) functionality, which requires the co-development of
both analog and digital blocks and the integration of these
blocks to create a system. The plethora of CAD tools
available to designers of digital blocks for these SoC’s
allows the designer to push a digital design in to the layout
phase at a much faster rate than analog blocks. The push for
higher levels of integration on chip places pressure on
analog designers to reduce the development time of their
analog circuits. Possibly the most tedious and time-
consuming aspect of analog circuit design is the layout
phase. Traditionally, each polygon had to be drawn by hand
in order to realize layout. Now, complete devices or even
complete blocks can be drawn automatically [1].

 Analog layout creation can be divided in following five
phases.

1. Circuit partitioning and constraint generation,
consisting of a) identifying analog blocks (e.g. core,
bias, critical non critical, noise sensitive/high
current/power blocks etc.) and b) generating
constraints for device generation, placement and
routing

2. Device identification and device generation, and
includes a) generating discrete components
MOSFETs, resistors, inductors and capacitors taking
into account aspect ratio, symmetry, matching and
process variations, b) generating stack MOSFETs,
composite MOSFETS (current mirrors etc.) and c)
generating guard rings/substrate contacts etc.

3. Placement subject to the placement constraints
identified in step 1 such as X mirrors/Y mirrors/near
to edge/minimum parasitic/thermal constraints etc.

4. Routing subject to the routing constraints identified
in step 1 such as symmetry/matching/minimum
parasitic/electro migration/crosstalk aware etc.

5. Verification and optimization consisting of Design
Rule Check (DRC), Layout Vs Schematic (LVS)
and optimization for area and performance.

There are multiple iterations involved before the layout
is finalized. First circuit designers create design schematic
and wait for layout engineers to provide design layout. Next
circuit designers extract parasitics from layout using
extraction tools and simulate the design to validate if the
layout still meets the design specification. In most cases
circuit designers update the device sizes to meet all the
design specification which triggers another round of design
layout. After several iterations, the layout is finalized. The
frequent changes in device sizes affect the placement and
routing adversely. Meeting the area and performance
constraints simultaneously becomes very difficult. For
advanced technologies, the technology constraints (Design
for Manufacturability) make layout creation even more
challenging.

Several approaches have been proposed [1] over the last
decade to automate the analog layouts. One can refer to
generator based [1-4], template based [5-6] and optimization
based [7-10] approaches. Optimization can handle the
constraints explicitly [10-13] while generators implement
export knowledge implicitly. There are hybrid approaches as
well [14-18]. One of the challenges for adoption of these
approaches is steep learning curve required by layout
engineers to effectively use these analog layout automation
tools.

 This work proposes a simple, fast, intuitive, easy to use,
highly controllable and flexible methodology for analog

978-1-5386-1214-9/18/$31.00 ©2018 IEEE 82 19th Int'l Symposium on Quality Electronic Design

layout creation which significantly reduces overall analog
design cycle time. The approach is inspired by template-
based methods which provide high level layout as well as
detailed routing constraints. This paper presents a template
driven parametrized cell methodology for generating
complex analog module layout. The presented methodology
is engineering change order friendly and flexible so that
designers can create layout with additional design
requirements and constraints on the fly. Section 2 explains
the methodology to develop placement and routing template
for writing mega pCell. Results are presented in section 3.
Section 4 draws the conclusion.

2. Template Driven Parameterized Cell
Methodology

To demonstrate the
methodology, an analog
module from an Analog to
Digital Converter (ADC),
a triple cascode amplifier
is identified. An amplifier
is a basic analog block,
which is used several
times in an ADC design
and can be shared among
several ADCs with slight
modification. Automating
the layout creation of
amplifier block
substantially reduces the
amount of time and effort
spent in creating these
layouts for all the ADCs.
The amplifier layout is
generated as super
parameterized cell and
any changes if required
can happen in fraction of
a minute. The parameterized cell (pCell) is implemented in
Cadence’s SKILL language [19-20] however other
languages such as Python and frameworks can also be used.

The complete framework for using super pcell consists
of following components:

• Graphical user interface for controlling pCell
parameters

• Identifying the schematic based on given template.
• Importing data from schematic for generating pCell.
• Calculating default values for pCell parameters.
• Generating pCell for three different layout aspect

ratios.
• Area and performance optimization.
To summarize, first analog modules which can be

parameterized are identified. Next a placement and template
is created considering all constraints. Finally layout pCell is
coded either manually or using GUI pcell creator. The triple
cascade super pCell development is discussed in detail in
following subsections. The approach of identifying
placement template and routing algorithms are applicable to
other analog modules as well and will be useful in creating

similar or even bigger pCells for automating analog layout.
Advanced layout constraints such as electromigration, IR
drop, DFM can be taken care of in placement and routing
template and therefore in the generated super pCell itself.

2.1 Template creation for placement and routing
based on design constraint

From the schematic it can be seen that the Super pCell
can be developed as two half mega pcells as it has two
identical paths from AVDD to AVSS. The half-cell is used
to create full
amplifier layout
by placing the
half-cell twice
with R0 and MX
orientations. The
schematic
selected for
creating amplifier
pcell is shown in
the Figure 1. The
AVDD and
AVSS are net
names. NTAIL,
CMFB, INPUT,
NCAS1, NCAS2,
PCAS1, PCAS2
and PBIAS are
transistor names.
All NMOS
substrates are
connected to

AVSS and all PMOS substrates are connected to AVDD.
Each transistor is placed by splitting it in multiple rows and
columns. For creating the layout, length, width, finger and

Figure 1: Triple cascode
amplifier excluding
biasing and common
mode feedback schematic

Figure 2: Layout floor plan
illustrating transistor placement for
half-cell for schematic of figure 1.

Table 1: Brief description of transistor placement parameters

transistor cell type is taken from schematic while number of
rows and columns for every transistor and metal widths and
offsets will be taken from super pcell GUI form. Number of
fingers in each row/column split is taken as input from a
separate form linked with pcell form. All default values used
by the super pcell are user controllable through the super
pcell GUI form.

The placement and routing template is deduced from
existing layout of the amplifier while meeting all design
constraints. Figure 2 shows placement template. The routing
template as deduced is discussed in the subsequent sections.
The template is flexible and can expand or collapse as
needed. The template can generate layout in three different
aspect ratios. The layout designer’s intent as well expertize
is also captured in the template.

2.2 Placement of transistors and substrates based
on design rule guidelines

1. The transistors are identified based on fixed
schematic name and placed in the pcell with
name_MAIN and row no and column no. (e.g.
NTAIL_MAIN1_1).

2. Transistors are placed in following sequence,
NTAIL, LOWER CMFB, INPUT, UPPER CMFB,
and NCAS1. Next. NCAS1 INPUT and NTAIL are
center aligned. CMFB and INPUT are placed
common center. Then PCAS2 and NCAS2 are
placed and center aligned.

3. For placing a transistor the X and Y offsets are
added to the actual co-ordinates. (e.g. For NTAIL
the actual co-ordinate is global origin(0,0), but
NTAIL is placed at (0+X_os, 0+Y_os).

4. For other transistors the offsets are relative to the
adjacent transistor(s). Apart from length, width, no
fingers, no of rows, no of columns, rotation, rout
poly and rout substrate, the interdigitated string and
routM2finger width is also specified in some of the
transistors (which are taken from template).

5. While placing the several splits of transistors,
spacing between transistor rows and columns are
split offset X and split offset Y.

6. For substrate
placement, the
number and
relative
locations are
taken from
template and
specified in the
Table 1. There is
a ROD object
[19], which
creates separate
substrates. DRC
is run to check
the sufficiency
of the substrate
placements as
well as contacts.
Figure 3 shows

the detailed substrate placement using DRC
guidelines.

7. Gates are placed as specified in the template and
noted in the Table 1.

2.3. Routing of intra transistors source and drain
Gate, source and drain connections are decided by the

routing template. The routing is done using MET2 for intra
source-drain connections; MET3 and MET4 for inter-source
drain connection; MET5 for NTAIL source to AVSS
connection. For gate and substrate connections MET1 is
used. For connecting various transistors source-drain, the
metal width spacing and number of metal strips is given in
Table 2 and are calculated as follows:

For connecting Source/Drain of a transistor using MET2, ܪܶܦܫܹ_2ܶܧܯ ൌ ݓܴݐ݁ܯሺ݊/	ܪܶܦܫܹ_ܱܵܯ ∗ 1.5ሻ	ܶܧܵܨܨܱ_2ܶܧܯ ൌ 0.5 ∗ ܧܩܦܧ_ܶܧܵܨܨܱ	ܪܶܦܫܹ_2ܶܧܯ ൌ 0.25 ∗ ܪܶܦܫܹ_2ܶܧܯ	

Case 1: Number of MET2 S/D, noMetRow =2, the routing
is shown in Figure 4(a) where MOS_WIDTH large enough. ܪܶܦܫܹ_2ܶܧܯ ൌ ሺ2/ܪܶܦܫܹ_ܱܵܯ	 ∗ 1.5ሻ	ൌ 	3.0/ܪܶܦܫܹ_ܱܵܯ	
 (a) (b) (c)
Figure 4: Metal MET2 routing for connecting source and
drains together in a transistor; green is transistor, blue is
metal 2. Figure 3: Layout floor plan

showing substrate placement

Table 2: Brief description of transistor routing parameters

Case 2: Number of MET2 S/D, noMetRow =2, the routing
is shown in Figure 4(b) where MOS_WIDTH is small. If
width of transistor is very small (in case of CMFB, NCAS2
and PCAS2 split) then the spacing from edge can be made
zero and S/D can be routed as shown in Figure 4(b). If
MET2 width is minimum and spacing required between
metals is not sufficient as per DRC then this approach is
implemented.

Case 3: No of MET2 S/D, noMetRow =3, the routing is
shown in Figure 4(c). ܪܶܦܫܹ_2ܶܧܯ ൌ ሺ3/ܪܶܦܫܹ_ܱܵܯ ∗ 1.5ሻ	ൌ 	4.5/ܪܶܦܫܹ_ܱܵܯ	
Length of MET2 is equal to the difference of Y co-ordinates
of first and last source/drain bounding box of pcell
transistor.

For connecting S/D of multi-row-column transistor, a MET2
will be routed from top to the base of the transistor and
VIA1 are placed alternatively to connect S/D. For placing
via, the common area of two metals is taken and filled with
maximum number of via array. There will be a Relative
Object Database (ROD object), which will do this.

2.4. Routing of inter transistor source and drain
MET3 and MET4 are used for inter-source drain

connection. MET5 is used for NTAIL source to AVSS
connection. For gate and substrate connections MET1 is
used. For connecting inter-transistor Source/Drain using
MET3, MET3 width, MET3 Spacing and No of MET3 S/D
strips are calculated as follows:

1. MET3_WIDTH=MAX_MET3_WIDTH
2. LENGTH_MET2=Difference (y co-ordinates of first and last

source/drain of transistor)
3. MET2_CENTER=Average (Lower and Upper Y co-ordinates of

MET2 rectangle.)
4. NO_OF_S=round (LENGTH_MET2/(3.5*MET3_WIDTH))
5. /*Find a MET3_WIDTH, which gives Odd number of source MET3

strips.*/
6. while(evenp (NO_OF_S)

MET3_WIDTH=MET3_WIDTH-0.1
NO_OF_S=floor(LENGTH_MET2/(3.5*MET3_WIDTH))

7.)

8. /*Check if it is less then 3? If yes use 3 and calculate the

MET3_WIDTH else WARN. */

9. if(NO_OF_S<3 then

 NO_OF_S=3
 MET3_WIDTH=fixDeci(pcCellView LENGTH_MET2/10.5);

 if(MET3_WIDTH<3.0 then
warn("PCELL ERROR!!! MET3 WIDTH IS VERY SMALL
FOR INPUT CONNECTION..")

10.);if MET3_WIDTH
11.);if NO_OF_S
12. NO_OF_D=NO_OF_S-1
13. SD_OFFSET_NEW= MET3_WIDTH *3.5
14. CCOY_S = INPUT_MET_CENT-((NO_OF_S-1)/2.0)

*SD_OFFSET_NEW
15. CCOY_D = CCOY_OK+(SD_OFFSET+MET3_WIDTH)/2.0

The spacing between the MET3 is 0.75 * MET3_WIDTH.
For LENGTH_MET2=110 and MAX_MET3_WIDTH=10

NO_OF_S=3, MET3_WIDTH =10, MET3_OFFSET=7.5.
The example routing is as shown in Figure 5-7.

 For connecting inter-transistor source/drain using MET4,
MET4 width is taken from user as input. MET4 Spacing and
No of MET4 S/D strips are calculated as follows.

• For PBIAS-source
connection, the MET4
is used for connecting
its source terminal to
VDD. The spacing
from Y-axis is zero.
Only one MET4
rectangle is to be
drawn.

• For PBIAS-PCAS1
source-drain
connection, the
number of MET4
connections is equal
to minimum of
number of columns in
PBIAS and PCAS1.

• For PCAS1-PCAS2
source-drain
connection, the
number of MET4
connections will be
equal to half the
number of columns in
PCAS2.

• For NCAS2-NCAS1
source-drain
connection, the
number of MET4
connections will be
equal to the number of
S/D columns in
NCAS1.

• For NCAS2-NCAS1
metal connections,
MET2 is extended
through MET4 and
connected to NCAS2.

• For via placement the
spacing from edges in
x and y directions is
fixed (e.g. 0.6um and 1.0um respectively for all
type of vias) as shown in Figure 7.

• For connecting NTAIL Source to VSS using MET
5, the MET5 width is taken from user as an input
for connecting its source to VSS. The spacing from
Y-axis is zero. Only one MET5 rectangle is drawn.

Figure 5: Routing using
MET3 of two splits of a
transistor.

Figure 6: Inter transistor
routing using MET3

Figure 7: Via spacing
from the edge of the
overlapping metals, MET2
and MET3.

2.4. Gate Routing
 MET1 is running
horizontally between
transistors to connect gates
of PCAS2, NCAS2, NCAS1,
INPUT CMFB and NTAIL
and to other half of pcell as
well as to the outside
connections as shown in
Figure 8. INPUT gate
connection can be one or two
based on the user selection.
The minimum MET1 width
is used for routing. User can
specify the width.

2.5. Substrate Routing
 MET1 is running for
substrate connections of
fixed width (1um)
horizontally and (of 2um)
vertically. The minimum
MET1 width is used for
routing. User can specify
these widths.

3. Results and
Discussion

The proposed approach is
implemented as Super pcell
in Cadence’s SKILL
language. All the required
pCell routines are loaded in
ICFB at startup. In order to
generate the Super pCell a
designer needs to create a
schematic as shown in
Figure 9. The generated
Super pCell is shown in

Figure 10. As discussed
earlier the mega pCell is
created for half-cell and
two half-cells are placed
with R0 and MX
orientation to create super
pCell. The generated
pCell is DRC and LVS
clean. Figure 11 shows
the generated super pCell
in three different aspect
ratios. As can be seen
from the layout the
NCAS1, INPUT and
CMFB splits have been
altered to achieve
different aspect ratios.
Figure 12 shows the
component description
parameters of the pcell.
There are basic
parameters such as
number of row and
column offsets, metal
width etc. and advanced
parameters which are
defined by advanced
variables in the variable
information field. The
generated pCell is fully
controllable. Designers
can quickly change these
parameters and see the
altered layout instantly
and complete the
optimization in couple of
minutes which otherwise
would have taken days.
Finally pCell can be
flattened to further fine
tune the layout if
required. This gives
layout engineer full
flexibility of hand drawn
layout. The generated

Figure 8: Inter and intra
transistor gate routing using
MET1

Figure 9: Schematic of
triple cascade amplifier

Figure 10: Triple cascade amplifier layout generated
using Super pCell.

(a)

Figure 11: Generated Super pCell for three different aspect
ratios: a) placement of transistor b) placement and routing.

Figure 12: Super pCell CDF
parameters

pCell has been extensively used by layout engineers and
very well adopted by the design community due to ease of
use and full flexibility. This approach has been used for
smaller analog blocks such as current mirror and differential
pairs, as well as IO Ring and bigger blocks such as complete
LDO and found to be very effective in reducing the analog
design cycle time. In this work the pCell has been hand
coded. However there are automated pCell creation tool and
automated frameworks available which can speed up the
pCell creation time significantly [20].

4. Conclusion
In this paper a simplified methodology for complex analog
module layout generation using template driven
parameterized cell for analog layout automation is
presented. With the proposed methodology the layout
creation time is reduced from a week to few secs. The
generated layout is LVS and DRC clean which increases
efficiency of layout engineers. Optimization of the final
amplifier layout can be done very easily within few minutes
with generated pCell. The approach can be extended to other
reusable analog modules. The creation of templates is
knowledge intensive task and the set of generated layout is
limited by available templates. Therefore the approach is
limited to reusable analog modules within a design and/or
across multiple designs. Automated pCell generation tools
and framework can significantly reduce the pCell creation
time.

5. References
[1] Prautsch, Benjamin, et al. "MESH: Explicit and

flexible generation of analog arrays." Synthesis,
Modeling, Analysis and Simulation Methods and
Applications to Circuit Design (SMACD), 2017 14th
International Conference on. IEEE, 2017.

[2] J. Crossley et al. "BAG: A Designer-Oriented
Integrated Framework for the Development of AMS
Circuit Generators" 2013 IEEE/ACM Int. Conf. on
Computer-Aided Design (ICCAD) pp. 74-81 2013.

[3] A. Graupner R. Jancke R. Wittmann "Generator Based
Approach for Analog Circuit and Layout Design and
Optimization" Design Automation & Test in Europe
Conf. & Exhibition (DATE) pp. 1-6 2011.

[4] B. Prautsch et al. "IIP Framework: A Tool for Reuse-
Centric Analog Circuit Design" 13th Int. Conf on
Synthesis Modeling Analysis and Simulation Methods
and Applications to Circuit Design (SMACD) June
2016.

[5] T. Reich U. Eichler K.-H. Rooch R. Buhl "Design of a
12-bit Cyclic RSD ADC Sensor Interface IC Using the
Intelligent Analog IP Library" ANALOG 2013-
Entwicklung von Analogschaltungen mit CAE-
Methoden March 2013.

[6] R. Castro-López O. Guerra E. Roca F. V. Fernández
"An Integrated Layout-Synthesis Approach for Analog
ICs" IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems vol. 27 no. 7 pp. 1179-
1189 July 2008.

[7] A. Unutulmaz G. Dündar F. Fernández "LDS based
Tools to Ease Template Construction" Synthesis
Modeling Analysis and Simulation Methods and

Applications to Circuit Design (SMACD) 2012 Int.
Conf. pp. 61-64 2012.

[8] R. Martins et al. "AIDA: Automated Analog IC Design
Flow from Circuit Level to Layout" Proc. of the Int.
Conf. on Synthesis Modeling Analysis and Simulation
Methods and Applications to Circuit Design (SMA
CD) 2012.

[9] H. Graeb et al. "Analog Layout Synthesis - Recent
Advances in Topological Approaches" Proc. of the
Conf. on Design Automation and Test in Europe 2009.

[10] R. Martins N. Lourenco N. Horta "LAYGEN II—
Automatic Layout Generation of Analog Integrated
Circuits" IEEE Transactions on Computer-Aided
Design of In tegra ted Circuits and Systems pp. 1641-
1654 2013.

[11] H. Habal H. Graeb "Constraint-Based Layout-Driven
Sizing of Analog Circuits" IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems vol. 30 no. 8 pp. 1089-1102 2011.

[12] G. G. E. Gielen R. A. Rutenbar "Computer-Aided
Design of Analog and Mixed-Signal Integrated
Circuits" Proc. of the IEEE 88.12 pp. 1825-1854
December 2000.

[13] A. Krinke G. Jerke J. Lienig "Constraint Propagation
Methods for Robust IC Design" Proc. of ZuE 2015; 8.
GMM/ITG/GI-Symp. Reliability by Design pp. 1-8
2015.

[14] A. Nassaj J. Lienig G. Jerke "A New Methodology for
Constraint-Driven Layout Design of Analog Circuits"
Proc. 16th IEEE Int. Conf. on Electronics Circuits and
Systems pp. 996-999 2009.

[15] J. Scheible J. Lienig "Automation of Analog IC Layout
- Challenges and Solutions" Proc. of the 2015 Int.
Symp. on Physical Design pp. 33-40 2015.

[16] D. Marolt J. Scheible G. Jerke V. Marolt "SWARM: A
Self-Organization Approach for Layout Automation in
Analog IC Design" Int. Journal of Electronics and
Electrical Engineering (IJEEE) vol. 4 no. 5 pp. 374-
385 2016.

[17] B. Prautsch U. Eichler T. Reich J. Lienig "Explicit
Feature and Edge Insertion for Improved Analog
Layout Generators in Advanced Semiconductor
Technologies" Proc. of ANALOG 2016 pp. 22-27
September 2016.

[18] Lomeli-Illescas, Ismael, et al. "Synthesis tool for
automatic layout generation of analog structures."
ANDESCON, 2016 IEEE. IEEE, 2016.

[19] Cadence SKILL Users Guide
[20] Cadence pCell Users Guide
[21] https://www.cadence.com/content/cadence-

www/global/en_US/home/training/all-
courses/84422.html

[22] https://sus.ziti.uni-
heidelberg.de/Lehre/WS1718_VLSI/VLSI_Fischer_05
_Skill.pptx.pdf

