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Abstract—Multiplication with a large number of digits is
heavily used when processing data encrypted by a fully ho-
momorphic encryption, which is a bottleneck in computation
time. An algorithm utilizing fast number theoretic transform
(FNTT) is known as a high-speed multiplication algorithm
and the further speeding up is expected by implementing the
FNTT process on an FPGA. A high-level synthesis tool enables
efficient hardware implementation even for FNTT with a large
number of points. In this paper, we propose a methodology for
optimizing the loop structure included in a software description
of FNTT so that the performance of the synthesized FNTT
processor can be maximized. The loop structure optimization is
considered in terms of loop flattening and trip count reduction.
We implement a 65,536-point FNTT processor with the loop
structure optimization on an FPGA, and demonstrate that it
can be executed 6.9 times faster than the execution on a CPU.

Index Terms—fully homomorphic encryption (FHE), number
theoretic transform (NTT), high-level synthesis (HLS), loop
optimization, FPGA

I. INTRODUCTION

To promote the use of big data, it is required to provide
processing and analysis services of cloud data. Secure com-
putation is important for realizing such services because we
need to consider the protection of private information. Fully
homomorphic encryption (FHE) techniques [1]–[3] are now
attracting attention since arbitrary processings of encrypted
data can be performed without decrypting them by using an
FHE technique and hence high-security cloud services can be
realized. However, the data encrypted by an FHE is very huge
in general, which makes it difficult to put into practical use.
In particular, multiplication with a large number of digits is
heavily used when processing the encrypted data, which is a
bottleneck in computation time.

A multiplication algorithm utilizing the fast number theo-
retic transform (FNTT) [4] is one of the methods which enable
us to perform multiplication with a large number of digits
at high speed. Some research groups have studied hardware
design of FNTT [5], [6] since the further speeding up can be
achieved by implementing the FNTT process on an FPGA.

From now on, it is expected that acceleration of a wide
variety of applications using FHE techniques will be strongly
required. Since FPGA implementation based on a conven-
tional RTL design flow is problematic in terms of design
efficiency, hardware design utilizing a high level synthesis
(HLS) tool becomes important. By utilizing an HLS tool,

various hardware processors can be automatically synthesized
from a software description. As a hardware accelerator design
for FHEs utilizing an HLS tool, we attempt, in this paper, to
synthesize the processors of FNTT with a large number of
points efficiently and automatically.

The contributions of this paper are as follows:
1) We propose a methodology for optimizing the loop

structure included in a software code of FNTT so that
the performance of the synthesized FNTT processor
can be maximized. The loop structure optimization is
considered in terms of loop flattening and trip count
reduction.

2) We implement a 65,536-point FNTT processor with
the loop structure optimization on a Xilinx FPGA, and
demonstrate that it can be executed 6.9 times faster than
the execution on a CPU.

The rest of this paper is organized as follows: In Section II,
we introduce algorithms of multiplication and FNTT, which
are used for multiplication with a large number of digits; In
Section III, we propose a methodology for optimizing the loop
structure targeting HLS of FNTT; Section IV demonstrates the
experimental results and gives conclusions.

II. MULTIPLICATION WITH A LARGE NUMBER OF DIGITS

AND AN FNTT ALGORITHM

A large decimal 𝑁 -digit integer 𝐴 can be expressed as a
polynomial with radix of 10 as follows:1

𝐴 = 𝑎0 × 100 + 𝑎1 × 101 + ⋅ ⋅ ⋅+ 𝑎𝑁−1 × 10𝑁−1 (1)

We convert the integer 𝐴 into time-domain signals
{𝑥(0), 𝑥(1), . . . , 𝑥(2𝑁 − 1)} focusing on the coefficient se-
ries of Eq. (1). The relationship between Eq. (1) and 𝑥(𝑡)
(0 ≤ 𝑡 ≤ 2𝑁 − 1, 𝑡 ∈ ℤ) is as follows:2

𝑥(𝑡) =

{
𝑎𝑡 (0 ≤ 𝑡 < 𝑁)

0 (𝑁 ≤ 𝑡 < 2𝑁)
(2)

In this section, we consider a method for multiplication of
two integers 𝐴 = 𝑥(𝑡) and 𝐵 = 𝑦(𝑡). Note that 𝐴 and 𝐵

1We can use an arbitrary natural number as the radix for expressing the
integer 𝐴. For simplicity, the radix is limited to 10 in this paper.

2Since the product of two 𝑁 -digit integers has a maximum of 2𝑁 digits, an
𝑁 -digit integer is represented by a set of time-domain signals whose number
of elements is 2𝑁 .
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are both 𝑁 -digit integers and each of them is expressed as a
set of time-domain signals whose number of elements is 𝑀
(= 2𝑁 ). We first introduce, in Section II-A, a multiplication
method based on the convolution operation which is the
simplest method to multiply two integers. Then, a multiplica-
tion algorithm utilizing the number theoretic transform (NTT)
is introduced in Section II-B. An FNTT algorithm, whose
computational complexity is lower than the NTT, is finally
introduced in Section II-C [4].

A. A Multiplication Method based on the Convolution Oper-
ation

The convolution for the time-domain signals 𝑥(𝑡) and 𝑦(𝑡)
is defined by the following equation:

(𝑥 ∗ 𝑦)(𝑡) =

𝑡∑
𝑢=0

𝑥(𝑢)𝑦(𝑡− 𝑢) (3)

The convolution value (𝑥 ∗ 𝑦)(𝑡) (𝑡 = 0, 1, . . . ,𝑀 − 1) shows
the sum of the partial products generated at the 𝑡-th digit in
the multiplication 𝐴×𝐵. Therefore, the multiplication result
is finally obtained by the carry processing for the convolu-
tion value. For high-speed multiplication, it is important to
speed up the process of obtaining convolution values since
its computational complexity is much higher than that of
the carry processing. The multiplication method based on
the convolution operation has a computational complexity of
𝑂(𝑀2).

B. A Multiplication Algorithm utilizing the NTT

As a high-speed multiplication method for integers with a
large number of digits, an algorithm utilizing the fast Fourier
transform (FFT) [7] is widely known. The FFT can be realized
by modifying the computational process of the discrete Fourier
transform (DFT). In the multiplication algorithm, the following
relationship (called the convolution theorem), which holds
between the convolution operation in Eq. (3) and the Fourier
transform 𝐹 , is used:

𝐹 [(𝑥 ∗ 𝑦)(𝑡)] = 𝐹 [𝑥(𝑡)]× 𝐹 [𝑦(𝑡)] (4)

Since an inverse transform 𝐹−1 of 𝐹 exists, the convolution
value (𝑥 ∗ 𝑦)(𝑡) can be obtained as follows:

(𝑥 ∗ 𝑦)(𝑡) = 𝐹−1 [𝐹 [𝑥(𝑡)]× 𝐹 [𝑦(𝑡)]] (5)

Although it is possible to obtain convolution values at high
speed by utilizing the FFT algorithm, floating point arithmetic
operations are required in the algorithm, which makes it
unsuitable for hardware implementation.

In this paper, we focus on the number theoretic transform
(NTT) which can obtain convolution values in the same
framework as the Fourier transform. In the number theoretic
transform, time-domain signals are transformed on a finite
field, whereas in the Fourier transform, on a complex number
field. That is, the NTT can be implemented only with integer
arithmetic operations, and is suitable for hardware implemen-
tation.

NTT

Element-wise product

INTT

Carry processing

Expressions on mod P 

An integer ( )txA = ( )tyB =
( ) ( ) ( ){ }1,...,1,0 −Mxxx ( ) ( ) ( ){ }1,...,1,0 −Myyy

( ) ( ) ( ){ }1,...,1,0 −MXXX ( ) ( ) ( ){ }1,...,1,0 −MYYY

( ) ( ) ( ) ( ) ( ) ( ){ }11,...,11,00 −− MYMXYXYX

( )( ) ( )( ) ( )( ){ }1*,...,1*,0* −Myxyxyx

An integer

BA ×The result of

Fig. 1. A multiplication algorithm utilizing the NTT.

In the NTT, time-domain signals are converted to an ex-
pression 𝑋(𝑘) on mod 𝑃 by using Eq. (6):

𝑋(𝑘) =

𝑀−1∑
𝑡=0

𝑥(𝑡)𝛼𝑡𝑘 (mod 𝑃 ) (6)

Eq. (6) shows 𝑀 -point NTT and we calculate 𝑋(𝑘) for 𝑘 =
0, 1, . . . ,𝑀 − 1. Note that 𝛼 and 𝑃 are a natural number and
a prime number, respectively, and they satisfy the following
conditions (Eqs. (7)–(9)):3{

𝛼𝑛 ≡ 1 (𝑛 = 𝑀)

𝛼𝑛 ∕≡ 1 (0 ≤ 𝑛 ≤ 𝑀 − 1, 𝑛 ∈ ℤ)
(mod 𝑃 ) (7)

𝑃 ≥ 9× 9×𝑀 (8)

𝑃 − 1 = 𝑠×𝑀 (𝑠 ∈ ℕ) (9)

Eq. (7) is a necessary condition for satisfying the convolution
theorem (Eq. (4)). The right side of Eq. (8) shows the maxi-
mum convolution value 𝑐𝑜𝑛𝑣𝑚𝑎𝑥, and a convolution value may
not be uniquely specified if 𝑃 is less than 𝑐𝑜𝑛𝑣𝑚𝑎𝑥. We can
guarantee by Eq. (9) the existence of 𝛼 that satisfies Eq. (7).

As with the Fourier transform, there is an inverse transform
for the NTT. The following equation shows 𝑀 -point inverse
NTT (INTT):

𝑥(𝑡) =
1

𝑀

𝑀−1∑
𝑘=0

𝑋(𝑘)𝛼−𝑘𝑡 (mod 𝑃 ) (10)

Fig. 1 shows a multiplication algorithm utilizing the NTT.
In the algorithm, Eqs. (6), (10), (5) are used. This algorithm
has a computational complexity of 𝑂(𝑀2).

3In the experiments of this paper, we use the smallest prime number 𝑃 that
satisfies Eqs. (7)–(9) for a point number 𝑀 .



C. An FNTT Algorithm

In the multiplication algorithm utilizing the NTT shown in
Section II-B, the computational complexity cannot be reduced
compared with the method based on the convolution operation.
Note that, in the NTT, the following property holds between
𝛼 and 𝑃 when the point number 𝑀 is an even:

𝛼
𝑀
2 ≡ −1 (mod 𝑃 ) (11)

By utilizing this property, 𝑀 -point NTT can be transformed
when 𝑀 is an even. For 𝑘 = 0, 1, . . . ,𝑀 − 1, we can obtain
Eq. (12) from Eq. (6):

𝑋(𝑘) =

{
𝑋(2𝑙)

𝑋(2𝑙 + 1)

(
0 ≤ 𝑙 ≤ 𝑀

2
− 1

)

=

⎧⎨
⎩

𝑀−1∑
𝑡=0

𝑥(𝑡)𝛼𝑡(2𝑙)

𝑀−1∑
𝑡=0

𝑥(𝑡)𝛼𝑡(2𝑙+1)

=

⎧⎨
⎩

𝑀
2 −1∑
𝑡=0

{
𝑥(𝑡)𝛼𝑡(2𝑙) + 𝑥

(
𝑡+

𝑀

2

)
𝛼(𝑡+

𝑀
2 )(2𝑙)

}
𝑀
2 −1∑
𝑡=0

{
𝑥(𝑡)𝛼𝑡(2𝑙+1) + 𝑥

(
𝑡+

𝑀

2

)
𝛼(𝑡+

𝑀
2 )(2𝑙+1)

}

=

⎧⎨
⎩

𝑀
2 −1∑
𝑡=0

{
𝑥(𝑡)𝛼𝑡(2𝑙) + 𝑥

(
𝑡+

𝑀

2

)
𝛼𝑡(2𝑙)𝛼𝑙𝑀

}
𝑀
2 −1∑
𝑡=0

{
𝑥(𝑡)𝛼𝑡(2𝑙+1) + 𝑥

(
𝑡+

𝑀

2

)
𝛼𝑡(2𝑙+1)𝛼𝑙𝑀𝛼

𝑀
2

}

=

⎧⎨
⎩

𝑀
2 −1∑
𝑡=0

{
𝑥(𝑡) + 𝑥

(
𝑡+

𝑀

2

)}
𝛼𝑡(2𝑙)

𝑀
2 −1∑
𝑡=0

{
𝑥(𝑡)− 𝑥

(
𝑡+

𝑀

2

)}
𝛼𝑡(2𝑙+1)

=

⎧⎨
⎩

𝑀
2 −1∑
𝑡=0

{
𝑥(𝑡) + 𝑥

(
𝑡+

𝑀

2

)}
(𝛼2)𝑡𝑙

𝑀
2 −1∑
𝑡=0

{
𝑥(𝑡)− 𝑥

(
𝑡+

𝑀

2

)}
𝛼𝑡(𝛼2)𝑡𝑙

(12)

As a result, the point number can be reduced to 𝑀/2. Eq. (12)
shows an expression on mod 𝑃 , but for simplicity, it is not
shown in this equation. In the case of 8-point NTT, for
example, the point number can be reduced to 4 as shown in
Fig. 2. As in Fig. 2, each input of 𝑀/2-point NTT is calculated
by the underline part in Eq. (12).

When 𝑀 is a power of 2, by recursively applying the
transformation of Eq. (12), 𝑀 -point NTT can be transformed
to 2-point NTT. By solving the NTT in this way, an FNTT
algorithm can be derived. Fig. 3 shows the FNTT algorithm
with 8 points. 𝑀 -point FNTT is calculated by dividing it
into log2 𝑀 parts (called stages) as shown in Fig. 3. In the
first stage, we execute 𝑀/2 butterfly operations in one group,
where each of them consists of an addition, a subtraction and
a multiplication, and the number of butterfly operations halves
as the stage progresses while the number of groups is doubled.
By using the FNTT algorithm, the computational complexity
of the multiplication in Fig. 1 can be reduced to 𝑂(𝑀 log𝑀).
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Fig. 3. An 8-point FNTT algorithm.

III. A LOOP STRUCTURE OPTIMIZATION METHODOLOGY

TARGETING HLS OF FNTT

We discuss, in this section, the way to synthesize a processor
of FNTT so that the performance can be maximized. As
mentioned before, we attempt to automatically synthesize the
FNTT processor by using an HLS tool, and it is assumed to
be implemented on an FPGA.

𝑀 -point FNTT, where 𝑀 = 2𝑚 (𝑚 ∈ ℕ), can be written in
C as shown in Fig. 4. Since the number of stages is 𝑚, we first
allocate an array having (𝑚+ 1)×𝑀 elements and initialize
the first 𝑀 elements with input data (INIT). The main body
of this code is a triple for loop with three iterators 𝑠, 𝑔 and
𝑛 which denotes a stage, a group and a butterfly operation,
respectively. For every iteration of the innermost loop, one
butterfly operation is executed (BF). In BF, 𝑑𝑎𝑡𝑎[𝑠][𝑖𝑑𝑥1] and
𝑑𝑎𝑡𝑎[𝑠][𝑖𝑑𝑥2] are read from the array, and the operation results
are stored in 𝑑𝑎𝑡𝑎[𝑠+ 1][𝑖𝑑𝑥1] and 𝑑𝑎𝑡𝑎[𝑠+ 1][𝑖𝑑𝑥2].

In a practical HLS tool, a function to add directives for
optimization can be used, which enables us to obtain different
hardware processors from a software code. For example, loop
pipelining, loop expansion and array partitioning are typical
directives for optimization. When given a software code,
one of the most important steps in HLS is appropriately



i n t d a t a [m+ 1 ] [M] ; INIT ( d a t a [ 0 ] ) ;
f o r ( s =0 ; s < m; s ++ ){

group = 1 << s ; / / # o f groups
op = M >> ( s + 1 ) ; / / # o f ops . i n a group
p o i n t = op << 1 ;
f o r ( g =0; g < group ; g++ ){

f o r ( n =0; n < op ; n++ ){
i dx1 = p o i n t * g + n ;
idx2 = idx1 + op ;
BF ( s , idx1 , i dx2 ) ;

}
}

}

Fig. 4. A software code of 𝑀 -point FNTT, where 𝑀 = 2𝑚 (𝑚 ∈ ℕ).

adding these directives to the code so that a high-performance
hardware processor can be synthesized. On the other hand,
it may be possible to achieve a performance improvement
by rewriting the original code [8], [9]. Therefore, in order
to maximize the performance of the synthesized processor, it
is required to appropriately rewrite the original code and then
appropriately add directives for optimization.

In this section, we propose a methodology for optimizing
the loop structure included in the software code shown in
Fig. 4 so that the performance of the synthesized FNTT pro-
cessor can be maximized. The loop structure optimization is
considered in terms of loop flattening and trip count reduction.

A. Loop Flattening

Given a software code including loop structure, the perfor-
mance of the synthesized processor can be improved by adding
pipeline directives to the loops. When synthesizing a multiple
loop with a pipeline directive, the structure of the loop greatly
affects the synthesized result. It may not be possible to achieve
a sufficient performance improvement when pipelining a loop
having some outer loops since extra clock cycles are required
for entering a loop and exiting from a loop. One of the methods
to solve this problem is the loop flattening.

The loop flattening is a method to transform a multiple loop
with deeply-nested structure into a fewer nested loop [8]. For
example, for a double loop whose trip counts of the inner and
the outer loops are 𝑖 and 𝑗, respectively, it may be possible to
transform it into a single loop whose trip count is 𝑖×𝑗, which
enables us to reduce the overhead related to entering a loop
and exiting from a loop.

For the description of Fig. 4, by applying the loop flattening
to the inner double loop, we obtain the description shown in
Fig. 5. Although, in the description of Fig. 4, the number of
groups 𝑔𝑟𝑜𝑢𝑝 and the number of butterfly operations 𝑜𝑝 vary
depending on the stage 𝑠, we can apply the loop flattening by
focusing on the fact that the product of 𝑔𝑟𝑜𝑢𝑝 and 𝑜𝑝 is always
𝑀/2. Furthermore, we obtain the description shown in Fig. 6
by applying the loop flattening to the double loop included in
Fig. 5. Note that the values of 𝑠, 𝑔 and 𝑛 are common among
the descriptions of Figs. 4–6.

i n t d a t a [m+ 1 ] [M] ; INIT ( d a t a [ 0 ] ) ;
f o r ( s =0 ; s < m; s ++ ){

s h i f t i d x = m − 1 − s ;
op = M >> ( s + 1 ) ;
p o i n t = op << 1 ;
f o r ( k =0; k < M/ 2 ; k++ ){

g = k >> s h i f t i d x ; / / group
n = k − ( g << s h i f t i d x ) ; / / op .
i dx1 = p o i n t * g + n ;
idx2 = idx1 + op ;
BF ( s , idx1 , i dx2 ) ;

}
}

Fig. 5. Loop flattening of inner double loop.

i n t d a t a [m+ 1 ] [M] ; INIT ( d a t a [ 0 ] ) ;
f o r ( r =0 ; r < m * M/ 2 ; r ++ ){

s = r >> (m − 1 ) ; / / s t a g e
k = r − ( s << (m − 1 ) ) ;
s h i f t i d x = m − 1 − s ;
op = M >> ( s + 1 ) ;
p o i n t = op << 1 ;

g = k >> s h i f t i d x ; / / group
n = k − ( g << s h i f t i d x ) ; / / op .
i dx1 = p o i n t * g + n ;
idx2 = idx1 + op ;
BF ( s , idx1 , i dx2 ) ;

}

Fig. 6. Loop flattening of triple loop.

Experiments and Discussions: In order to verify the ef-
fectiveness of loop flattening for HLS of FNTT, we have
synthesized the descriptions of Figs. 4–6 using an HLS tool,
Vivado-HLS 2015.2 [10]. The FPGA board has been assumed
to be Xilinx Virtex-7 (xc7vx690tffg1926-2). For 𝑀 = 16 and
𝑀 = 1, 024, we have tried to synthesize these descriptions
with the following six approaches:

(1) For the description of Fig. 4, perform the HLS
without adding directives.

(2) For the description of Fig. 4, add a pipeline directive
to the innermost loop and then perform the HLS.

(3) For the description of Fig. 4, add a pipeline directive
to the innermost loop, expand the outermost loop,
and then perform the HLS.

(4) For the description of Fig. 5, add a pipeline directive
to the inner loop and then perform the HLS.

(5) For the description of Fig. 5, add a pipeline directive
to the inner loop, expand the outer loop, and then
perform the HLS.

(6) For the description of Fig. 6, add a pipeline directive
to the loop and then perform the HLS.

The results are shown in tables I and II. The 2nd and 3rd
columns of this table show the clock period and the number of
clock cycles necessary for executing the FNTT process, and
their product shows the performance. The 4th to 7th columns
show the number of hardware resources.



TABLE I
EVALUATIONS OF LOOP FLATTENING (𝑀 = 16).

Clock [ns] #Steps BRAM DSP48 FF LUT
(1) 10.0 2,858 0 3 1,114 1,256
(2) 20.0 2,777 0 2 4,586 4,880
(3) 10.0 324 4 4 8,554 8,536
(4) 20.0 2,740 3 2 4,492 4,861
(5) 10.0 196 4 4 8,541 8,520
(6) 20.0 2,726 3 2 4,490 4,860

TABLE II
EVALUATIONS OF LOOP FLATTENING (𝑀 = 1, 024).

Clock [ns] #Steps BRAM DSP48 FF LUT
(1) 10.0 485,398 23 3 1,269 2,079
(2) 20.0 471,061 23 2 5,963 6,945
(3) 10.0 29,701 23 10 34,268 34,758
(4) 20.0 468,012 23 2 5,923 7,039
(5) 10.0 7,597 23 10 34,192 34,699
(6) 20.0 467,974 23 2 5,920 7,039

Compared to the approach (1), the performance is deterio-
rated in the approaches (2), (4) and (6), whereas is improved
in (3) and (5). The former group has constructed a pipeline
structure across all stages. The latter group, on the other hand,
has constructed a separate pipeline structure for each stage.
In the FNTT process, since a read and a write operations
to the same array occur in adjacent stages, constructing a
pipeline structure across multiple stages increases its initiation
interval (II) due to memory access competition. In other words,
it is important to construct a separate pipeline structure for
each stage in synthesizing an FNTT processor, and hence the
description shown in Fig. 6 is not valid.

Compared to the approach (3), a higher performance FNTT
processor can be synthesized by (5), especially in the case of
1, 024-point FNTT. In stages close to the output, the number of
groups is more than the number of butterfly operations, which
means that, in the description of Fig. 4, the inner double loop
has a large trip count for the outer loop and a small trip count
for the inner loop. In such stages, loop pipelining causes large
overhead related to entering a loop and exiting from a loop.
The results in table II show that the overhead can be reduced
efficiently by applying the loop flattening to the inner double
loop in Fig. 4. From the above discussions, we find that the
software code shown in Fig. 5 has an optimal loop structure
and (5) is the most appropreate approach at this point.

B. Trip Count Reduction

In the approach (5) in Section III-B, the number of clock
cycles 𝐿𝑡(𝑠) necessary for executing a stage 𝑠 can be formu-
lated as the following equation:

𝐿𝑡(𝑠) = 𝐼𝐿(𝑠) + 𝐼𝐼(𝑠)× (𝑇𝐶(𝑠)− 1) + 𝐶 (13)

where 𝐼𝐿(𝑠), 𝐼𝐼(𝑠) and 𝑇𝐶(𝑠) show, in the stage 𝑠, the
number of clock cycles necessary for executing a single
iteration, the initiation interval and the trip count, respectively.
𝐶 shows a constant which includes clock cycles for entering
and exiting from the loop.

i n t d a t a [m+ 1 ] [M] ; INIT ( d a t a [ 0 ] ) ;
f o r ( s =0 ; s < m−1; s ++ ){

s h i f t i d x = m − 1 − s ;
op = M >> ( s + 1 ) ;
p o i n t = op << 1 ;
f o r ( k =0; k < M/ 2 ; k+=2 ){

g = k >> s h i f t i d x ; / / group
n = k − ( g << s h i f t i d x ) ; / / op .
i dx1 = p o i n t * g + n ;
idx2 = idx1 + op ;
idx3 = idx1 + 1 ;
idx4 = idx3 + op ;
BF ( s , idx1 , i dx2 ) ;
BF ( s , idx3 , i dx4 ) ;

}
}
. . . / / Code o f t h e s t a g e m i s o m i t t e d .

Fig. 7. Trip count reduction of inner loop.

TABLE III
EVALUATIONS OF TRIP COUNT REDUCTION (𝑀 = 16).

Clock [ns] #Steps BRAM DSP48 FF LUT
(5) 10.0 196 4 4 8,541 8,520
(7) 10.0 189 4 6 14,970 15,226
(8) 10.0 178 6 6 15,087 15,116

TABLE IV
EVALUATIONS OF TRIP COUNT REDUCTION (𝑀 = 1, 024).

Clock [ns] #Steps BRAM DSP48 FF LUT
(5) 10.0 7,597 23 10 34,192 34,699
(7) 10.0 7,594 23 19 64,542 65,753
(8) 10.0 5,291 43 19 64,206 65,125

In FNTT with a large number of points, the second term of
Eq. (13) becomes dominant. The approach (5) derives, in all
stages, 𝐼𝐼(𝑠) = 1 and 𝑇𝐶(𝑠) = 𝑀/2, and it may be possible
to further reduce 𝐿𝑡(𝑠) by reducing the trip count 𝑇𝐶(𝑠) in
each stage. In order to realize the trip count reduction, we
rewrite the description of Fig. 5 so that two butterfly operations
are executed for every iteration of the inner loop. Note that
we need to remove the description of the final stage (the stage
𝑚) from the loop structure because there is only one butterfly
operation in a group. By applying the trip count reduction to
the inner loop included in Fig. 5, we obtain the description
shown in Fig. 7. In Fig. 7, 𝐿𝑡(𝑠) is expected to be reduced
thanks to the reduction of 𝑇𝐶(𝑠).

Experiments and Discussions: In order to verify the effec-
tiveness of trip count reduction for HLS of FNTT, we have
synthesized the descriptions of Fig. 7 using an HLS tool,
Vivado-HLS 2015.2 [10]. The FPGA board has been assumed
to be Xilinx Virtex-7 (xc7vx690tffg1926-2). For 𝑀 = 16 and
𝑀 = 1, 024, we have tried to synthesize this description with
the following two approaches:

(7) For the description of Fig. 7, add a pipeline directive
to the inner loop, expand the outer loop, and then
perform the HLS.

(8) For the description of Fig. 7, add a pipeline directive
to the inner loop and an array partition directive



TABLE V
EXPERIMENTAL RESULTS.

#Points 𝑀 BRAM DSP48 FF LUT Slack [ns] #Steps Latency [ms] Execution time on a CPU [ms]

1,024
11.5 10 16,402 21,167 4.295 7,597 0.076 (3.347x)

0.254
21.5 19 30,498 38,984 1.983 5,291 0.053 (4.806x)

2,048
19.0 11 20,421 25,236 2.171 15,852 0.159 (3.513x)

0.557
24.5 21 38,224 46,738 1.718 10,731 0.107 (5.190x)

4,096
35.5 12 23,802 30,517 2.877 33,337 0.333 (3.617x)

1.206
41.5 22 44,767 58,082 2.311 22,072 0.221 (5.463x)

8,192
82.0 13 28,178 35,965 2.429 70,273 0.703 (3.769x)

2.649
75.5 44 52,552 65,143 1.603 45,695 0.457 (5.797x)

16,384
182.5 26 31,961 40,899 1.933 148,173 1.482 (3.801x)

5.632
188.5 48 60,592 76,667 1.574 94,924 0.949 (5.933x)

32,768
403.0 28 36,792 46,977 1.352 312,093 3.121 (3.884x)

12.122
402.0 53 69,476 87,477 1.632 197,398 1.974 (6.141x)

65,536
887.0 30 42,175 55,103 0.062 656,241 6.562 (4.336x)

28.455
885.0 56 80,275 102,584 0.835 410,480 4.105 (6.932x)

to the array 𝑑𝑎𝑡𝑎 (so that the number of elements
becomes 𝑀/2), expand the outer loop, and then
perform the HLS.

The results are shown in tables III and IV. Compared to
the approach (5), the performance is hardly improved in (7),
whereas is improved in (8). In the description of Fig. 7, the
number of accesses to the array in each iteration is doubled as
compared with Fig. 5. This means that the approach (7), where
the array is not partitioned, increases the II of the inner loop
due to memory access competition. In the approach (8), the
access competition is resolved by array partitioning, and the
effect of the trip count reduction can be demonstrated. From
the above discussions, we find that the loop structure in the
software code of FNTT can be optimized as in Fig. 7 by the
trip count reduction, and the highest performance of the FNTT
processor can be achieved by the approach (8).

IV. EXPERIMENTAL RESULTS AND CONCLUSIONS

In this section, the effectiveness of our methodology is
verified through HLS of FNTT with a large number of points.
For 𝑀 = 2𝑚 (10 ≤ 𝑚 ≤ 16), we have synthesized 𝑀 -point
FNTT processors using an HLS tool, Vivado-HLS 2015.2 [10].
In the HLS step, we have adopted the approach (5) (presented
in Section III-A) and the approach (8) (presented in Section
III-B). In this experiment, we have assumed Xilinx Virtex-
7 (xc7vx690tffg1926-2) as the FPGA board. After the HLS
step, we have implemented the FNTT processors on the FPGA
using an implementation tool, Vivado 2015.2 [10]. In the
implementation step, the clock period constraint has assumed
to be 10 ns.

Table V shows the implementation results of the FNTT pro-
cessors. For each point number, the upper and lower rows show
the results of the approaches (5) and (8), respectively. The 2nd
to 5th columns show the number of hardware resources and the
6th column shows the slack. Latency shown in the 8th column
is calculated by multiplying the number of clock cycles (in the
7th column) by the clock period (10 ns). In this experiment, we
have also executed FNTT processes on a CPU (Intel Corei7-

5600U@2.6GHz) and have measured the execution times as
shown in the 9th column.

The improved rate of the performance compared to the CPU
is also shown in the 8th column of Table V. Experimental
results show that a 65, 536-point FNTT processor, optimized
by our methodology and implemented on an FPGA, can be
executed 6.9 times faster than the execution on a CPU.
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