
Power and Performance Aware Memory-Controller Voting Mechanism

Milena Vratonjic, Harmander Singh*, Gautam Kumar**, Roumi Mohamed**, Ashish Bajaj**, Ken Gainey
Qualcomm Atheros, Inc.; *Qualcomm Technologies Inc.; **Qualcomm India Private Limited

E-mail: milenav@qti.qualcomm.com

Abstract
Modern System-on-Chips (SoCs) integrate a graphics unit

(GPU) with many application processor cores (CPUs),
communication cores (modem, WiFi) and device interfaces
(USB, HDMI) on a single die. The primary memory system is
fast becoming a major performance bottleneck as more and
more of these units share this critical resource. An Integrated-
Memory-Controller (IMC) is responsible for buffering and
servicing memory requests from different CPU cores, GPU and
other processing blocks that require DDR memory access.
Previous work [2] was focused on appropriately prioritizing
memory requests and increasing IMC/DDR memory frequency
to improve system performance – which came at the expense of
higher power consumption. Recent work has addressed this
problem by using a demand based approach. This is
accomplished by making the IMC aware of the application
characteristics and then scaling its frequency based on the
memory access demand [1]. This leads to lower IMC and DDR
frequencies and thus lower power. The work presented here
shows that instead of lowering the frequency, greater total
system power savings can be achieved by increasing IMC
frequency at the beginning of a use-case that has moderate GPU
utilization. The primary motivation behind this approach is that
it allows GPU, with its inherent ability to execute a larger
number of parallel threads, to access memory faster and
therefore complete its processing portion of the execution
pipeline faster. This, in turn, allows relaxation of the timing
requirements imposed on the CPU pipeline portion and
consecutive cycles, thus saving on total system power. An
algorithm for this technique, along with the silicon results on an
SoC implemented in an industrial 28nm process, will be
presented in this paper.

Keywords
Memory, DDR, IMC, Low-Power

1. Introduction

An Integrated-Memory-Controller (IMC) is responsible for

scheduling the memory access from different units, such as a
GPU or many CPUs, and also sets the frequency of the DDR to
meet performance requirements. Most modern microprocessors
(e.g. Intel’s Core i7 [3][4], Sandy Bridge [5]) have an integrated
memory controller in order to reduce memory latency. An IMC
increases a system’s performance and reduces the cost by
eliminating the need for an external memory controller.
However, it also poses a constraint to using only a certain type
of memory. For that reason, some CPUs have a dedicated

external memory controller (e.g. Centaur memory controller
chip in IBM’s POWER8 microprocessor [6]). The Centaur chip
[6] is using DDR3 memory, but a future version can use DDR4
without the need for POWER8 to be replaced itself.

The goal of the work presented in this paper is to find the
optimum IMC frequency such that the total power of the system
is minimized without any performance or reliability degradation.
Such an optimal IMC frequency would be selected dynamically
and adjusted for each use-case. Using the proposed method, the
measured results show both power and performance are
improved. The proposed method is implemented in an industrial
28nm SoC. Silicon measurements show up to a 15% reduction
in power for web-browsing and gaming use-cases.

 The base method that is currently implemented is called a
demand based approach [1]. It finds the minimum IMC
frequency that satisfies the system performance requirement.
Performance counters in the L2 cache controller are used to
collect statistics in such a way that can be used to appropriately
scale the memory bus and DDR frequency. The effective
bandwidth is then used to compute a new higher/lower IMC
frequency and, consequently, bus and DDR frequencies to
accommodate the increase/reduction in memory activity. These
system counters are configured to continue monitoring the
bandwidth. A similar scenario is used for the CPU’s cache and
main DDR. If performance requirements are not met, the
algorithm increases the GPU’s and CPU’s operating frequencies
and adjusts for a higher IMC frequency. This mechanism is part
of the GPU’s and CPU’s Dynamic Clock and Voltage Scaling
(DCVS) algorithm and is called demand based approach. With
such demand based approach, we start a run with lower IMC
frequencies until there is a demand for higher either due to
increased memory access or in case performance is not met.

 Our solution proposes that instead of starting with the
minimum IMC frequency which satisfies performance
requirements, the memory controller should start a use-case run

Figure 1: IMC frequency occupancy during a run:
demand based algorihtm vs. our solution

978-1-5386-1214-9/18/$31.00 ©2018 IEEE 127 19th Int'l Symposium on Quality Electronic Design

with a higher IMC frequency – especially for use-cases which
have moderate to high GPU utilization. This will result in the
GPU occupying a higher IMC frequency spectrum, as opposed
to a low IMC frequency range, illustrated in Figure 1. The CPU
will, contrary to the GPU, exhibit reduced occupancy of higher
IMC frequencies and will operate at lower CPU frequencies
(shown later), resulting in total system power reduction and also
improved system performance.

2.1. Current Implementation

Figure 2 shows the current implementation based on a

demand based approach for a web-browser use-case example.
The GPU rendering timeline is initially starting at 11.5ms. This
slow start then forces the CPU’s DCVS algorithm to increase
both its operating and IMC frequencies so that it can compensate
and complete the run without performance degradation.

2.2. Proposed IMC Solution

 In our proposed solution, the IMC frequency starts at a
higher level immediately at the beginning of a run. This allows
for the GPU unit to complete its processing portion of the load
faster. In turn, the timing requirements for the CPU portion and
the consecutive execution of the processing pipeline are relaxed.
This results in reduced total system power, considering the steep
sensitivity of CPU’s power at tighter delay targets and power
overhead on the whole system imposed by operating at higher

Figure 3: Proposed solution with IMC starting at
 almost twice higher than default frequency.

supply voltages required to support higher GPU and IMC
frequencies later in the run to make-up for the slow start.

 The default IMC frequency for a use-case is determined by
finding the minimum frequency that satisfies its performance
requirements. However, starting with a higher initial IMC
frequency for the GPU (which for the web-browser use-case
example used for illustration purposes in Figure 3 is almost
twice as high as the default), its active time reduces from 11.5ms
to 8.6ms. The GPU completes its processing portion of the task
faster and the demand on the CPU to complete its portion is now
relaxed. As can be seen from Figure 2 and Figure 3, the BIG core
of the CPU cluster, which has high contribution in the total
system power, is less active in the proposed approach as
compared to the demand based implementation. The SMALL
CPU core, which is more energy efficient as compared to the
BIG core, is instead utilized more often. The system is not
forced to operate in a higher voltage mode. Figure 3 shows the
voltages for digital logic (VDD), GPU, as well as BIG core to
be lower (as compared to Figure 2) with the proposed solution
in place. Performance is not degraded, yet total power is
reduced.

 Figure 4 shows how the optimal IMC frequency is
determined for the web-browser use-case that is analyzed in
Figure 2 and Figure 3. Shown are silicon measurement results
with proposed solution implemented on a 28nm SoC. The initial
IMC frequency in the use-case is chosen out of the entire
frequency range available in the system. Utilizing the minimum
frequency (which is about half of the value of the default
frequency) the use-case will still complete the operation without

Figure 2: Demand based implementaiton with IMC
 starting at default frequency.

a loss of performance. The penalty is in the high power
overhead, as the CPU’s DCVS algorithm will have to request
higher IMC frequency and higher CPU operating frequencies,
similar to previously illustrated behavior in Figure 2, to
compensate for the slow GPU start. Thus, total power is much
higher than if the GPU/IMC were to start with higher operating
frequencies. Further increases of the DDR frequency beyond the
optimum point does not translate to more power benefits. There
is no further reduction in the GPU timeline that the CPU system
can utilize to reduce the demand on its timing. The system
overhead needed to support such high IMC operational
frequencies diminishes any power savings.

It is important to note that Figure 4 only illustrates the initial
starting IMC frequency that affects how the GPU dominated
use-case will be executed throughout the run. It does not imply
that the IMC will be constant throughout the run, but rather
illustrates the initial value set by the GPU unit. During the use-
case run, the IMC frequency will change as the CPU will
demand for the IMC frequency values that are much higher than
default, following with higher demands from GPU as well in the
consecutive cycles as the system tries to compensate for slow
start and imposing power overhead in return.

3. Algorithm for selecting optimal IMC frequency

 As the IMC frequency is increased, the GPU active time is
reduced. This behavior is illustrated in Figure 5. The GPU’s
active time reduces monotonically until a point is reached where
the average activity flattens out. At this point, further reduction
in the GPU active time is insignificant even as IMC frequency
is further increased. This is because the GPU activity actually
reaches its capacity and further increasing the frequency does
not significantly improve the GPU active timeline. The optimal
power and performance point coincides with a threshold in the
GPU active time reduction at which IMC frequency reaches its
optimum value. This threshold, active threshold, is used in the
algorithm described in Figure 6 as an indicator that the optimal
power and performance point has been achieved.

Our algorithm is incorporated into the GPU’s default DCVS
algorithm, described in Figure 6, which is based on the idle time
duration between the GPU active windows. It monitors the idle
time between the times when GPU is active by picking up the
largest idle period (gap) among the last consecutive N gaps, in a
manner of a sliding window. If such defined idle gap is
consistently larger than the defined threshold (referred to as the
idle threshold in Figure 6), the algorithm requests for lower GPU
frequency and/or lower IMC frequency. At any point in time, if
the algorithm discovers that the gap is less than the idle
threshold, it increases the power level by increasing the GPU
and/or the IMC frequency. Each power level corresponds to a
predefined frequency of the GPU and the default IMC
frequency. It is possible for the same GPU frequency that there
exist several predefined default IMC frequencies. Each {GPU
freq1, IMC default freq1}, {GPU freq1, IMC default freq2} pair
correspond to a separate power level, in this case two. At a given
power level, determined by the primary DCVS algorithm (top
segment of the algorithm), the GPU is starting with a pre-set, i.e.
default IMC frequency at the beginning of a use-case run. At the
same time, the bottom segment of the algorithm is activated and
the active time of the GPU is being monitored. If the active time
of the GPU is bigger than the active threshold, the IMC
frequency will be increased to facilitate further reduction in the
GPU’s active time, as depicted in Figure 5. Once the GPU active
time reaches the active threshold, the indication is raised that the
optimal IMC frequency is reached. This optimal IMC frequency
is then recorded and set as a new default starting point (i.e., IMC
frequency) for the current GPU power level. It takes only a few
active GPU cycles of iterations for the proposed GPU DCVS
algorithm to be fully effective in the current run of the use-case
that is being executed. In the second run of the same use-case,
the GPU DCVS algorithm will now have the new optimal
starting IMC frequency which was determined in the previous
run. The GPU DCVS algorithm continuously monitors the
system requirements, and the proposed modifications allow for
a dynamic improvement that achieves optimal power and
performance balance for each use-case.

Figure 4: Optimal IMC frequency for Controlled Scroll in a
Web-browser use-case (WQXGA screen panel)

Figure 5: GPU activity vs. optimal IMC frequency

4. Results and summary

In use-cases with moderate to high GPU utilization, the
algorithm presented in this paper shows that the optimal starting
GPU IMC frequency is higher than the currently chosen default
value selected using demand based approach. Table I shows a
dashboard of typical use-cases ran on modern-day mobile SoCs
and the multiplier of the increase in IMC starting frequency from
the default value to reach the optimal power and performance
point.

The proposed algorithm is implemented on an industrial
28nm SoC, and the measurements show up to a 15% reduction
in power for web-browsing and gaming use-cases. This is
achieved by time aware control of the IMC frequency which is
the optimization parameter used to achieve optimal power and
performance tradeoff between GPU, CPU and other system
components.

In use-cases where the GPU is highly utilized, the initial
IMC frequency is already very high. Further increase of IMC
frequency does not help to reduce total system power because
the reduction in active GPU time is negligible whereas the cost
in terms of power for a system to support and run at such high
IMC (DDR) frequencies is very high. This is the case, for
example, in the “Egypt 60fps” use-case in Table I. For all other
use-cases with moderate to high GPU utilization (13%-75%),
the results in Table I show that the optimal IMC frequency is 1.3
to 3.3 times bigger than the default.

Table I: Optimal IMC freq. for various use-cases
commonly ran on modern mobile SoCs

5. Acknowledgement

The authors would like to acknowledge help from the GPU,
CPU, system and memory teams within QCA, QTI and
Qualcomm India Private Limited for their support and numerous
useful discussions.

6. References

[1] S. Kannan, “Dynamic scaling of memory and bus

frequencies”, USPTO US 14-176,268, April 16th 2015.
[2] J. Carter, et. al, “Impulse: Building a smarter memory

controller”, Fifth International Symposium on High-
Performance Computer Architecture, 1999, pp. 70-79.

[3] R. Singhal, “Inside Intel next generation Nehalem
architecture”, Hot Chips: A Symposium on High
Performance Chips, Vol. 20, 2008, Stanford, Palo Alto,
CA.

[4] S. Kottapalli, J. Baxter, “Nehalem-ex CPU architecture”,
Hot Chips: A Symposium on High Performance Chips,
Vol. 21, 2009.

[5] M. Yuffe, et. al, “A Fully integrated multi-CPU, GPU and
memory controller 32nm processor”, ISSCC, 2011.

[6] J. Stuecheli, “Next Generation POWER microprocessor”,
Hot Chips: A Symposium on High Performance Chips,
Vol. 25, 2013, Stanford, Palo Alto, CA.

[7] Min Kyu Jeong, et. al, “A QoS-aware memory controller
for dynamically balancing GPU and CPU bandwidth use in
an MPSoC”, DAC, San Francisco, Jun 2012.

[8] N. Agarwal, et al, “Selective GPU caches to eliminate
CPU-GPU HW cache coherence”, Int. Symposium on
High Performance Computing Architecture (HPCA), 2016.

Figure 6: GPU’s DCVS algorithm

Use-case

GPU DCVS Tuning

FHD Panel WQXGA panel

GPU
utilization

[%]

Optimal
IMC freq.
[x Default]

GPU
utilization

[%]

Optimal
IMC freq.
[x Default]

Powerlift 52 1.6 66 1.7

Controlled
Scroll in
Contacts

43 1.3 69 1.8

Controlled
Scroll in Web-

Browser
28 1.3 50 1.8

Scroll Fling in
Contacts

54 1.7 75 1

Scroll Fling in
Web-Browser

26 2.4 46 3.3

Angry Birds
60fps

60 2.7 74 1.8

Live
Wallpaper

Bubble
13 1.6 18 2.7

Egypt 60fps 90 1.1 99 1

