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Abstract 
Modern System-on-Chips (SoCs) integrate a graphics unit 

(GPU) with many application processor cores (CPUs), 
communication cores (modem, WiFi) and device interfaces 
(USB, HDMI) on a single die.  The primary memory system is 
fast becoming a major performance bottleneck as more and 
more of these units share this critical resource.  An Integrated-
Memory-Controller (IMC) is responsible for buffering and 
servicing memory requests from different CPU cores, GPU and 
other processing blocks that require DDR memory access. 
Previous work [2] was focused on appropriately prioritizing 
memory requests and increasing IMC/DDR memory frequency 
to improve system performance – which came at the expense of 
higher power consumption. Recent work has addressed this 
problem by using a demand based approach. This is 
accomplished by making the IMC aware of the application 
characteristics and then scaling its frequency based on the 
memory access demand [1]. This leads to lower IMC and DDR 
frequencies and thus lower power. The work presented here 
shows that instead of lowering the frequency, greater total 
system power savings can be achieved by increasing IMC 
frequency at the beginning of a use-case that has moderate GPU 
utilization. The primary motivation behind this approach is that 
it allows GPU, with its inherent ability to execute a larger 
number of parallel threads, to access memory faster and 
therefore complete its processing portion of the execution 
pipeline faster. This, in turn, allows relaxation of the timing 
requirements imposed on the CPU pipeline portion and 
consecutive cycles, thus saving on total system power. An 
algorithm for this technique, along with the silicon results on an 
SoC implemented in an industrial 28nm process, will be 
presented in this paper.    
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1. Introduction 

 
An Integrated-Memory-Controller (IMC) is responsible for 

scheduling the memory access from different units, such as a 
GPU or many CPUs, and also sets the frequency of the DDR to 
meet performance requirements. Most modern microprocessors 
(e.g. Intel’s Core i7 [3][4], Sandy Bridge [5]) have an integrated 
memory controller in order to reduce memory latency. An IMC 
increases a system’s performance and reduces the cost by 
eliminating the need for an external memory controller.  
However, it also poses a constraint to using only a certain type 
of memory. For that reason, some CPUs have a dedicated 

external memory controller (e.g. Centaur memory controller 
chip in IBM’s POWER8 microprocessor [6]). The Centaur chip 
[6] is using DDR3 memory, but a future version can use DDR4 
without the need for POWER8 to be replaced itself.  

The goal of the work presented in this paper is to find the 
optimum IMC frequency such that the total power of the system 
is minimized without any performance or reliability degradation. 
Such an optimal IMC frequency would be selected dynamically 
and adjusted for each use-case. Using the proposed method, the 
measured results show both power and performance are 
improved. The proposed method is implemented in an industrial 
28nm SoC.  Silicon measurements show up to a 15% reduction 
in power for web-browsing and gaming use-cases.  

 The base method that is currently implemented is called a 
demand based approach [1]. It finds the minimum IMC 
frequency that satisfies the system performance requirement. 
Performance counters in the L2 cache controller are used to 
collect statistics in such a way that can be used to appropriately 
scale the memory bus and DDR frequency. The effective 
bandwidth is then used to compute a new higher/lower IMC 
frequency and, consequently, bus and DDR frequencies to 
accommodate the increase/reduction in memory activity. These 
system counters are configured to continue monitoring the 
bandwidth. A similar scenario is used for the CPU’s cache and 
main DDR. If performance requirements are not met, the 
algorithm increases the GPU’s and CPU’s operating frequencies 
and adjusts for a higher IMC frequency. This mechanism is part 
of the GPU’s and CPU’s Dynamic Clock and Voltage Scaling 
(DCVS) algorithm and is called demand based approach. With 
such demand based approach, we start a run with lower IMC 
frequencies until there is a demand for higher either due to 
increased memory access or in case performance is not met. 

 Our solution proposes that instead of starting with the 
minimum IMC frequency which satisfies performance 
requirements, the memory controller should start a use-case run 

Figure 1: IMC frequency occupancy during a run: 
demand based algorihtm vs. our solution 
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with a higher IMC frequency – especially for use-cases which 
have moderate to high GPU utilization. This will result in the 
GPU occupying a higher IMC frequency spectrum, as opposed 
to a low IMC frequency range, illustrated in Figure 1. The CPU 
will, contrary to the GPU, exhibit reduced occupancy of higher 
IMC frequencies and will operate at lower CPU frequencies 
(shown later), resulting in total system power reduction and also 
improved system performance. 

2.1. Current Implementation 

 
Figure 2 shows the current implementation based on a 

demand based approach for a web-browser use-case example. 
The GPU rendering timeline is initially starting at 11.5ms. This 
slow start then forces the CPU’s DCVS algorithm to increase 
both its operating and IMC frequencies so that it can compensate 
and complete the run without performance degradation.  

2.2. Proposed IMC Solution 

 
 In our proposed solution, the IMC frequency starts at a 
higher level immediately at the beginning of a run.  This allows 
for the GPU unit to complete its processing portion of the load 
faster. In turn, the timing requirements for the CPU portion and 
the consecutive execution of the processing pipeline are relaxed. 
This results in reduced total system power, considering the steep 
sensitivity of CPU’s power at tighter delay targets and power 
overhead on the whole system imposed by operating at higher   

Figure 3: Proposed solution with IMC starting at 
                    almost twice higher than default frequency. 

supply voltages required to support higher GPU and IMC 
frequencies later in the run to make-up for the slow start. 

 The default IMC frequency for a use-case is determined by 
finding the minimum frequency that satisfies its performance 
requirements. However, starting with a higher initial IMC 
frequency for the GPU (which for the web-browser use-case 
example used for illustration purposes in Figure 3 is almost 
twice as high as the default), its active time reduces from 11.5ms 
to 8.6ms. The GPU completes its processing portion of the task 
faster and the demand on the CPU to complete its portion is now 
relaxed. As can be seen from Figure 2 and Figure 3, the BIG core 
of the CPU cluster, which has high contribution in the total 
system power, is less active in the proposed approach as 
compared to the demand based implementation. The SMALL 
CPU core, which is more energy efficient as compared to the 
BIG core, is instead utilized more often.  The system is not 
forced to operate in a higher voltage mode.  Figure 3 shows the 
voltages for digital logic (VDD), GPU, as well as BIG core to 
be lower (as compared to Figure 2) with the proposed solution 
in place. Performance is not degraded, yet total power is 
reduced.  

 Figure 4 shows how the optimal IMC frequency is 
determined for the web-browser use-case that is analyzed in 
Figure 2 and Figure 3. Shown are silicon measurement results 
with proposed solution implemented on a 28nm SoC. The initial 
IMC frequency in the use-case is chosen out of the entire 
frequency range available in the system. Utilizing the minimum 
frequency (which is about half of the value of the default 
frequency) the use-case will still complete the operation without 

Figure 2: Demand based implementaiton with IMC  
                starting at default frequency.  



a loss of performance. The penalty is in the high power 
overhead, as the CPU’s DCVS algorithm will have to request 
higher IMC frequency and higher CPU operating frequencies, 
similar to previously illustrated behavior in Figure 2, to 
compensate for the slow GPU start.  Thus, total power is much 
higher than if the GPU/IMC were to start with higher operating 
frequencies. Further increases of the DDR frequency beyond the 
optimum point does not translate to more power benefits. There 
is no further reduction in the GPU timeline that the CPU system 
can utilize to reduce the demand on its timing. The system 
overhead needed to support such high IMC operational 
frequencies diminishes any power savings.  

It is important to note that Figure 4 only illustrates the initial 
starting IMC frequency that affects how the GPU dominated 
use-case will be executed throughout the run. It does not imply 
that the IMC will be constant throughout the run, but rather 
illustrates the initial value set by the GPU unit. During the use-
case run, the IMC frequency will change as the CPU will 
demand for the IMC frequency values that are much higher than 
default, following with higher demands from GPU as well in the 
consecutive cycles as the system tries to compensate for slow 
start and imposing power overhead in return. 

 

 

3. Algorithm for selecting optimal IMC frequency 

 
 As the IMC frequency is increased, the GPU active time is 
reduced. This behavior is illustrated in Figure 5. The GPU’s 
active time reduces monotonically until a point is reached where 
the average activity flattens out.  At this point, further reduction 
in the GPU active time is insignificant even as IMC frequency 
is further increased.  This is because the GPU activity actually 
reaches its capacity and further increasing the frequency does 
not significantly improve the GPU active timeline. The optimal 
power and performance point coincides with a threshold in the 
GPU active time reduction at which IMC frequency reaches its 
optimum value. This threshold, active threshold, is used in the 
algorithm described in Figure 6 as an indicator that the optimal 
power and performance point has been achieved.  

Our algorithm is incorporated into the GPU’s default DCVS 
algorithm, described in Figure 6, which is based on the idle time 
duration between the GPU active windows. It monitors the idle 
time between the times when GPU is active by picking up the 
largest idle period (gap) among the last consecutive N gaps, in a 
manner of a sliding window. If such defined idle gap is 
consistently larger than the defined threshold (referred to as the 
idle threshold in Figure 6), the algorithm requests for lower GPU 
frequency and/or lower IMC frequency. At any point in time, if 
the algorithm discovers that the gap is less than the idle 
threshold, it increases the power level by increasing the GPU 
and/or the IMC frequency. Each power level corresponds to a 
predefined frequency of the GPU and the default IMC 
frequency. It is possible for the same GPU frequency that there 
exist several predefined default IMC frequencies. Each {GPU 
freq1, IMC default freq1}, {GPU freq1, IMC default freq2} pair 
correspond to a separate power level, in this case two. At a given 
power level, determined by the primary DCVS algorithm (top 
segment of the algorithm), the GPU is starting with a pre-set, i.e. 
default IMC frequency at the beginning of a use-case run. At the 
same time, the bottom segment of the algorithm is activated and 
the active time of the GPU is being monitored. If the active time 
of the GPU is bigger than the active threshold, the IMC 
frequency will be increased to facilitate further reduction in the 
GPU’s active time, as depicted in Figure 5. Once the GPU active 
time reaches the active threshold, the indication is raised that the 
optimal IMC frequency is reached. This optimal IMC frequency 
is then recorded and set as a new default starting point (i.e., IMC 
frequency) for the current GPU power level. It takes only a few 
active GPU cycles of iterations for the proposed GPU DCVS 
algorithm to be fully effective in the current run of the use-case 
that is being executed. In the second run of the same use-case, 
the GPU DCVS algorithm will now have the new optimal 
starting IMC frequency which was determined in the previous 
run. The GPU DCVS algorithm continuously monitors the 
system requirements, and the proposed modifications allow for 
a dynamic improvement that achieves optimal power and 
performance balance for each use-case.  

 

Figure 4: Optimal IMC frequency for Controlled Scroll in a 
Web-browser use-case (WQXGA screen panel) 

Figure 5: GPU activity vs. optimal IMC frequency



4. Results and summary 
 

In use-cases with moderate to high GPU utilization, the 
algorithm presented in this paper shows that the optimal starting 
GPU IMC frequency is higher than the currently chosen default 
value selected using demand based approach. Table I shows a 
dashboard of typical use-cases ran on modern-day mobile SoCs 
and the multiplier of the increase in IMC starting frequency from 
the default value to reach the optimal power and performance 
point.  

The proposed algorithm is implemented on an industrial 
28nm SoC, and the measurements show up to a 15% reduction 
in power for web-browsing and gaming use-cases. This is 
achieved by time aware control of the IMC frequency which is 
the optimization parameter used to achieve optimal power and 
performance tradeoff between GPU, CPU and other system 
components.  

In use-cases where the GPU is highly utilized, the initial 
IMC frequency is already very high. Further increase of IMC 
frequency does not help to reduce total system power because 
the reduction in active GPU time is negligible whereas the cost 
in terms of power for a system to support and run at such high 
IMC (DDR) frequencies is very high. This is the case, for 
example, in the “Egypt 60fps” use-case in Table I. For all other 
use-cases with moderate to high GPU utilization (13%-75%), 
the results in Table I show that the optimal IMC frequency is 1.3 
to 3.3 times bigger than the default.  

 

Table I:  Optimal IMC freq. for various use-cases 
commonly ran on modern mobile SoCs 
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Figure 6: GPU’s DCVS algorithm 

Use-case 

GPU DCVS Tuning 

FHD Panel WQXGA panel 

GPU 
utilization 

[%] 

Optimal 
IMC freq. 
[x Default] 

GPU 
utilization 

[%] 

Optimal 
IMC freq. 
[x Default] 

Powerlift 52 1.6 66 1.7 

Controlled 
Scroll in 
Contacts 

43 1.3 69 1.8 

Controlled 
Scroll in Web-

Browser 
28 1.3 50 1.8 

Scroll Fling in 
Contacts 

54 1.7 75 1 

Scroll Fling in 
Web-Browser 

26 2.4 46 3.3 

Angry Birds 
60fps 

60 2.7 74 1.8 

Live 
Wallpaper 

Bubble 
13 1.6 18 2.7 

Egypt 60fps 90 1.1 99 1 


