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Abstract 
Scores of emerging and domain-specific applications need 

the ability to acquire and augment new knowledge from 
offline training-sets and online user interactions. This 
requires an underlying computing platform that can host 
machine learning (ML) kernels. This in turn entails one to 
have efficient implementations of the frequently-used ML 
kernels on state-of-the-art multicores and many-cores, to act 
as high-performance accelerators. Motivated by this 
observation, this paper focuses on one such ML kernel, 
namely, K Nearest Neighbor (KNN), and conducts a 
comprehensive comparison of its behavior on two alternate 
accelerator-based systems: NVIDIA GPU and Intel Xeon Phi 
(both KNC and KNL architectures).  More explicitly, we 
discuss and experimentally evaluate various optimizations 
that can be applied to both GPU and Xeon Phi, as well as 
optimizations that are specific to either GPU or Xeon Phi. 
Furthermore, we implement different versions of KNN on 
these candidate accelerators and collect experimental data 
using various inputs. Our experimental evaluations suggest 
that, by using both general purpose and accelerator specific 
optimizations, one can achieve average speedups ranging 
0.49x-3.48x (training) and 1.43x-9.41x (classification) on 
Xeon Phi series, compared to 0.05x-0.60x (training), 1.61x-
6.32x (classification) achieved by the GPU version, both over 
the standard host-only system. 
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1. Introduction 
As modern applications rely more than ever on machine 

learning (ML) kernels, this requires efficient implementations 
of the frequently-used ML kernels on emerging parallel 
computing platforms. While many implementations of 
popular ML kernels exist on GPUs [1] [2] [3] [4], there are 
not many studies that explore kernel implementations on 
alternate accelerators or compare different types of 
accelerators with each other. 

In this work, we optimize and experimentally evaluate one 
such ML kernel, namely, K Nearest Neighbor (KNN), on two 
different accelerator-based systems: NVIDIA GPU and Intel 
Xeon Phi. We focus on these two systems as they both offer 
high degrees of architectural parallelism but differ from one 
another in significant ways. While a GPU contains numerous 

small execution units that can operate in parallel, Xeon Phi 
has fewer, but more powerful, processing cores and provides 
more opportunities for exploiting data reuse. Both 
architectures also contain entirely different cache/memory 
hierarchies. KNN is very widely used in various application 
domains [5] [6] [7]. Our contributions are: 

We discuss a set of general code/data optimizations for 
KNN that can be used in both types of accelerators tested in 
this work. These optimizations target at exploiting intra-node 
parallelism and inter-node parallelism supported by these 
architectures. 

We present accelerator-specific optimizations for each 
type of accelerator. While our optimizations for GPUs mostly 
target shared memory, those for Xeon Phi include optimal 
implementations of various operations such as `gather'. 

We furnish a detailed performance evaluation of KNN on 
both the accelerators. We evaluate several application 
mapping strategies for Xeon Phi and explain the performance 
behaviors observed using runtime statistics. 

Our experiments indicate that Xeon Phi series can achieve 
0.49x-9.41x performance improvements, compared to 0.05x-
6.32x improvements by GPU implementation. We want to 
emphasize that our goal is not to determine which accelerator 
is better than the other; rather, we want to discuss which type 
of optimizations work well for which accelerator and why. 

2. Background 
2.1. K-Nearest Neighbor Algorithm 

The purpose of KNN is to find the K nearest neighbors 
from a given set of queries. To achieve this goal, it calculates 
the Euclidean distance ‖࢞ሬሬԦ െ  ሬሬԦ‖ between the queries and the࢟
inputs, and identifies the K closest input points for each 
query. It is important to emphasize that, there are several 
ways to find the K nearest neighbors. For example, a GEMM-
based KNN computes the distance between all input nodes 
and all query nodes by matrix multiplication and finds the K 
closest neighbors. GEMM-based KNN is an effective 
algorithm. However, in a typical scenario, KNN is usually 
performed on a fixed set of input points with different query 
points but GEMM-based KNN always needs to calculate the 
distance between all input points and query points even 
though the input points are fixed. In such cases, the k-d tree-
based KNN has an advantage compared to the GEMM-based 
KNN. More specifically, the k-d tree-based KNN creates a k-
d tree structure once and reuse it for data lookup. Basic 
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algorithm of k-d tree-based KNN training can be found in 
Algorithm 1. 

In this paper, we implemented/optimized k-d tree-based 
KNN. This algorithm has two parts, training and 
classification. In the training, it builds the k-d tree using 
ۼ ൈ ۲ input points (ۼ: number of inputs, ۲: dimension) and 
using the tree, the algorithm classifies the K nearest 
neighbors of ۼۿ ൈ ۲ query points (ۼۿ: number of queries). 
Detailed algorithm explanation can be found in [8]. 

2.2. GPU 
GPUs were originally developed for graphics and image 

processing. Since graphics and image processing algorithms 
are highly parallel, GPUs are typically tuned for massively 
parallel execution. However, nowadays, many parallel 
applications (not just the graphic ones) are mapped to GPUs. 
An NVIDIA GPU has lots of small computational units 
(CUDA cores) in one SM and multiple SMs that can be 
executed in parallel. A GPU architecture has many more 
processing elements, and can use them well in handling data-
level parallelism and meeting the high throughput demands of 
parallel tasks. 

2.3. Xeon-Phi 
Xeon Phi (also called MIC) is an accelerator for parallel 

programs developed by Intel. Currently, there are two Xeon 
Phi incarnations---Knights Corner (KNC) and Knights 
Landing (KNL)---where Knights Landing is the latest. Like 
GPUs, Xeon Phi is also designed for parallel computing; but, 
the architecture of Xeon Phi is different from that of a GPU. 

Xeon Phi has 50-72 cores, each supporting the execution of 
multiple threads with deep pipeline. Note that, while Xeon 
Phi cannot support as many threads as can be supported by a 
GPU, each of its threads can sustain more computations than 
its GPU counterpart. 

3. Optimizations 

3.1. General Optimizations 

3.1.1. Data Structure Optimization 
The input size to KNN is very large in many applications, 

and therefore, reading the input points becomes a critical 
component as far as KNN performance is concerned. In fact, 
it can take as much as 80-90% of the total execution time of 
training. Consequently, optimizing this step is important to 
improve the overall performance. Motivated by this, we 
employed two kinds of input points array: default array and 
its transposed array. Default input array where each row 
represents a single input point and each column represents a 
dimension. In our approach, this default representation is 
used for classification because it uses the input point-by-point 
to calculate the distance between the query point and the 
input point. In contrast, the transposed input array, has rows 
as dimensions and columns as input points. Transposed array 
is used for training, since it uses the same dimensional data to 
find the median and partition the points. By employing two 
different representations, we allow both training and 
classification to take advantage of data locality. 

The other strategy that we used is to employ a pointer 
array for the input points (Fig. 1(b)). Each element in pointer 
array contains the address of an input point, and the position 
in the pointer array represents the node where the pointed 
input point resides. For example, in Fig. 1(a), tree node R has 
the median point D1, and the leaf node LC and RC have D0, 

Table 1. List of optimizations employed in the CPU only, CPU + KNC, KNC only, KNL standalone (cache, flat), and CPU + GPU 
versions ( means the optimization is applied, and means it is not applied) 

Algorithm 1. K-Nearest Neighbor Training 

Figure 1. Optimized data structure for KNN. (a) A k-d tree (R: root,
LC: left child, RC: right child). (b) A pointer array that points to the
original\slash transposed input points. (c) Parallel k-d tree. 



D3 and D2, D4 input points which is represented in the 
pointer array in Fig. 1(b). The main reason why we use a 
pointer array is to reduce the costs associated with data 
swapping. We want to emphasize that the KNN algorithm 
needs to swap the input points a lot, and if the dimensionality 
of the data is large, the data swapping costs can be 
significant. The second reason is that the pointer array can 
express the tree structure as explained before. This can cut 
down the space required for the additional tree structure. 

3.1.2. Parallel k-d Tree Building 
Another novel optimization we have is a “hybrid” 

parallelization strategy that uses both intra-node parallelism 
and inter-node parallelism. CPU, GPU, and Xeon Phi can 
launch plenty of threads at once, and the success of any 
application targeting these architectures depends greatly on 
how this capability is exploited. Fig. 1(c) shows our parallel 
k-d tree construction strategy. In the k-d tree building 
algorithm, we consider two types of optimizations: exploiting 
intra-node parallelism and exploiting inter-node parallelism. 

At the beginning of our k-d tree building algorithm, there 
are only a few nodes to process; so, it is hard to take any 
advantage of the inter-node parallelism. However, each node 
has plenty input points, and this makes it attractive to utilize 
intra-node parallelism by parallelizing the median finding 
function and the set separation function. Meanwhile, a node 
close to the leaf node holds only a small number of input 
points, and thus, it is hard to employ any intra-node 
parallelism. In comparison, there are lots of nodes that can be 
processed in parallel, and consequently, we can take 
advantage of inter-node parallelism. 

Motivated by these observations, we propose a novel k-d 
tree construction strategy. More specifically, we split our k-d 
tree building process into two parts: one is applied to the 
nodes close to the root, the other is applied to the nodes close 
to the leaves. 
Intra-Node Optimization 

Intra-node optimization is to parallelize the median 
finding and data separation functions which dominate the 
execution time of the upper part k-d tree building. Fig. 2 
shows how we implement the parallel median finding and 
input point separation. To parallelize median finding 
function, we group input points in current node into chunks 
and find the local median using multiple threads. After all the 
local medians have been found, one thread finds the median 

of the local medians. The median of the local medians---
median of medians---is then considered to be the ``real'' 
median of the current node. Note that the median of medians 
is not the exact median, but this does not affect the 
correctness of the algorithm. The classification algorithm will 
always return correct results because its pruning mechanism 
is exact regardless of how well each partition is balanced. 

Next, to separate data, we go back to the original chunk 
and counts the number of points that has larger/smaller value 
than the median of median. And then we move the pointer 
points median to the center of pointer array and move rest 
pointers pointer larger/smaller value than the median to 
right/left position of the center. This step is also parallelized. 
Inter-Node Optimization 

Inter-node optimization enables the parallel construction 
of the lower part of the k-d tree. As shown Fig. 1(c), at a 
given depth level, the lower part has lots of nodes which do 
not have any dependency among themselves. As a result, one 
can execute them in parallel. In this parallelization, each 
thread handles one or more nodes. The algorithm for the 
inter-node optimization is similar to the original k-d tree 
construction algorithm except for the synchronization 
between the threads. In our implementation, we put barriers 
between depths; therefore, all the work at the next depth can 
start after all the work in the current depth is finished. 

 3.1.3. Parallel K Nearest Neighbors Finding 
From the basic algorithm for classification, it can be seen 

that the executions of the queries have no dependencies 
among them. The reason is that finding the K nearest 
neighbors (KNN) algorithm is applied to each query 
independently and the previous steps do not affect any 
findings in the future. Therefore, we can fully parallelize the 
classification part. 

3.2. Optimizations for Xeon Phi (KNC Offload, KNL 
Native, and KNL Standalone) 

3.2.1. Code Acceleration Using Xeon Phi 
As indicated in Section 2.3, Xeon Phi has multiple threads 

that can execute in parallel. Thus, we implemented the 
optimizations discussed in Section 3.1. In this work, we 
tested three different Xeon Phi implementations: KNC 
offload mode, KNC native mode, and KNL standalone mode 
(flat or cache). The KNC offload mode makes use of both 
CPU and KNC (Knight Corner); that is, CPU launches the 
algorithm and handles the serial part while KNC executes the 
parallel part. In comparison, the KNC native mode uses only 
KNC which means that the host is not assigned any work, and 
KNC executes both the serial and parallel parts. Finally, the 
KNL standalone mode uses KNL (Knights Landing) alone, 
and it executes the entire application in KNL. 

Figure 2. Parallel median finding and input point separation. 

Figure 3. Parallel median finding and input point separation.



3.2.2. Gathering Using SIMD Unit 
The first optimization we consider for different Xeon Phi 

versions is “gathering”. One way of gathering data is to 
gather the discontinuous data which are referenced by a 
pointer. The input points are referenced using the pointer 
array, and this makes the data accesses random. As is well 
known, random data accesses lead to poor data locality and 
cache performance. Thus, we gather the data into one array 
when needed and this makes the data accesses almost serial, 
helping to improve data locality, and eventually cache 
performance. The other benefit of this optimization is that the 
array that has the gathered data can be used as a ``buffer''. 
Fig. 3 shows how we gathered data. This optimization is used 
in the parallel median finding/data separation function that 
runs in the upper part of training as well as in the serial 
median finding/data separation function in the lower part of 
training. 
Parallel Median Finding, Data Separation with Gathered 
Data 

The gathering optimization is shown in Algorithm 2. In 
our implementation, each chunk has one gather array and one 
thread gathers the input points and pointers that belong to the 
chunk. It is important to emphasize that the “for-loop”' in line 
8 can use the SIMD unit in Xeon Phi since there are no loop-
carried dependencies. After the gathering is done, our 
algorithm finds the median of the chunk and compares the 
input value in the gather array with the median to get CompA. 
The next step is to separate the pointers by moving the 

elements in the gather array. One thread takes control of the 
separation in one chunk. The algorithm compares the input 
point value in the gather array against the median, and moves 
the pointer in the gather array to the right position of the 
pointer array. Thus optimization eliminates the indirect data 
read by paying a small cost for gathering. The gathering is 
used in the local median finding step, the CompA building 
step, and the final separation step. In other words, there are 
lots of indirect data references in the KNN algorithm that can 
be improved via gathering. Besides, building CompA does not 
bring a high overhead, since the original algorithm without 
this optimization anyway needs to copy the pointer and put it 
back into the pointer array. 

Serial Median Finding, Data Separation with Gathered 
Data 

    At the beginning of the function, we first grab the input 
points with the pointers and copy the data to the gather array. 
As in the parallel median finding/data separation functions, 
gathering does not have any loop-carried dependencies, and 
as a result, it can also use the SIMD units Xeon Phi. Next, the 
algorithm finds the median and separates the pointer array by 
using the ``QuickSelect'' algorithm. Then, the separated 
pointers in the gather array are moved back to the original 
pointer array. In the serial version, using the gather operation 
may look to be inefficient at the first glance however, it is 
actually quite effective. The reason is that the SIMD units are 
very effective in gathering, and the QuickSelect algorithm 
reads the inputs several times. Thus, it is better to create the 
gather array and read data from the array. Another reason is 
that the original algorithm anyway needs to copy the pointers 
to the buffer. This is because, if it does not use the buffer, it 
can corrupt the data when moving the pointers. 

3.3. Optimizations for GPU 

3.3.1. Code Acceleration Using the GPU 
GPU is a powerful coprocessor that can invoke many 

blocks of threads at the same time. Like Xeon Phi, we map 
the parallelized parts of the algorithm to the GPU: parallel 
median finding in training, parallel lower part building in 
training, and classification. The remaining parts of the 
application are run in the host. 

3.3.2. Parallel Median Finding Using Shared Memory and 
Data Separation 

GPU has a “shared memory”, a memory that is shared by 
all threads in the same block and each thread  can  access  the  

Algorithm 2. Parallelized Median Finding with Gathering 

Figure 4. Parallel median finding and data separation using 
GPU.

Table 2. List of the datasets used in our experiments 



entire data in the shared memory. We can exploit this shared 
memory in parallel median finding. Fig. 4 shows how the 
GPU finds the median of the selected node and separates the 
data. At the start, each thread of CUDA kernel finds the  
thread median from each chunk and when all the threads 
finish one thread finds block median. Then, CPU finds final 
median and calls another CUDA kernel to fill out CompA 
which will have counts of smaller/bigger input points than the 
median. After that, CPU again counts the accumulated sum of 
CompA, and lastly, GPU fills out the pointer array. 

3.3.3. Thread Mapping for the Lower Part 
In the lower part of the training process, the CPU calls the 

CUDA kernel with Block.N×Thread.N threads. When there 
are fewer threads than the nodes, each thread is mapped to a 
node in a sparse fashion. The reason why we map the threads 
sparsely is to make sure that the threads that will be mapped 
to child nodes are in the same block. On the other hand, if the 
number of threads is larger than the number of nodes, one 
thread takes care of several adjacent nodes. Since the pointer 
array for the adjacent nodes is contiguous, the thread can 
work on the continuous pointer array. 

4. Experimental Evaluation 
In our experiments, we used a CPU, Xeon Phi and a GPU. 

More specifically, we use Intel® Xeon® E5-2620 as the 
baseline and the host for GPU, and Intel® Xeon® E5-2697 v3 

as the host for the KNC offload mode. We tested two types of 
Xeon Phi systems: Intel KNC series coprocessor SE10/7120, 
with 61 cores, 16GB memory and a 352GB/s memory 
bandwidth, and Intel KNL series processor 7250, which has 
68 cores, 490GB/s of MCDRAM memory bandwidth 384GB 
memory with 115.2GB/s DDR4 bandwidth. The GPU we 
used in this work is NVIDIA Tesla P100, which has 16GB 
memory with 732GB/s memory bandwidth. We want to re-
iterate that our goal is not to rank different architectures, but 
instead explain the impact of various optimizations on 
different accelerator architectures. The codes were not 
optimized for the stand-alone host version. Table 2 shows the 
five datasets [11] used in our experiments, sorted by their 
sizes. We fix the value of K as 20. 

4.1. Overall Speedup 
Fig. 5 plots the performance of the KNN algorithm. There 

are five input sets and four architectures: KNC offload, KNC 
native, KNL standalone (Cache mode, Flat mode), and GPU. 
We compared our work with ALGLIB [12] which is a library 
for numerical analysis and data processing. Fig. 5 shows the 
normalized performance of each architecture with respect to 
the baseline. The baseline in this context represents the 
performance of the CPU version (an Intel Xeon E5-2620) 
with four threads (marked as baseline in the figure). The 
datasets are sorted by their sizes; Watch being the smallest 
and Higgs the largest. 

In the training phase, the KNC offload, KNL standalone 
Cache and Flat modes show improvements compared to the 
baseline; but, the GPU version is slower than the baseline. In 
the case of classification on the other hand, GPU gets 2.17x 
speedup compared to the baseline, while others get 3.84x 

Figure 5. Overall performance of the KNN training and classification. 

Figure 6. Breakdown of the KNN training and classification
latencies in GPU (Data_Read: function for reading data,
Med_of_Med: median of median finding function (training upper
part), Smaller_Than_Med: function for finding the number of
points which have smaller values than the median, Sort_by_Med:
function for sorting by median, Build_Down: function for building
the lower part of k-d tree, Find_KNN: function for classification). 

Figure 7. Stall reasons for GPU. 

Figure 8. The effect of our Xeon Phi optimizations. 



(KNC offload), 3.94x (KNC native), 6.17x (KNL standalone 
Cache mode), and 5.74x (KNL standalone Flat mode) 
performance improvements. These results indicate that Xeon 
Phi achieves a higher performance improvement in KNN 
with k-d tree than GPU. There are several reasons why GPU 
does not achieve its full potential; but, the major ones are 
execution dependency and synchronization. From Fig. 6, it 
can be seen that the Med_of_Med takes half of the upper part 
(training)  

and the Build_down takes most of the lower part 
(training). Also, in the classification phase, the Find_KNN 
takes the largest share of execution. Fig. 7 plots the stall 
reasons for each of the GPU kernels. Fig. 6, 7 help us 
understand the GPU performance. Med_of_Med and 
Find_KNN are stalled mostly because of the execution 
dependencies in the algorithm. Likewise, Build_down is 
stalled generally due to synchronization. Since these 
functions consume most of the cycles in the training and 
classification phases, we can conclude that the upper part of 
training and classification is stalled because of the execution 
dependency and the lower part of training is stalled because 
of the synchronization. 

The other reason for the less-than-ideal GPU performance 
in this case is the control flow in the algorithm. In training, 
there are lots of branches in finding the median and 
separating the input points. Likewise, in classification, the 
distance comparison also has lots of branches. Xeon Phi 
achieves better performance than GPU, because the former 
can handle vectorized code with complex control flows more 
efficiently than the latter. In fact, “control divergence” [13] is 
known to be one of the major problems preventing some 
applications (such as ours) from achieving their full potential 
on GPUs. 

It can also be observed from Fig. 5 that there are not many 
differences in performance between KNL standalone (cache) 
and KNL standalone (flat). KNL standalone (cache) uses 
MCDRAM as cache and KNL standalone (flat) uses 
MCDRAM as extended main memory. Since our dataset 
sizes are smaller than the size of MCDRAM, we pinned the 
entire data to the MCDRAM in the flat mode. In the cache 
mode, after the first read of the data (cold miss), the entire 
data is in MCDRAM. Therefore, the cache mode and the flat 
mode exhibit similar performances. 

Also, we compared our implementation with a previously-
published k-d tree based KNN implementation in ALGLIB 
[12]. Our Xeon implementation is about 20x faster than 
ALGLIB in training. For classification, our implementation is 
faster than ALGLIB when the data size is large; however, 
ALGLIB is faster in small dataset. This shows that our 
implementation is more scalable than the ALGLIB.  

4.2. Optimization 
Fig. 8 shows the effect of the major optimizations---in 

KNC offload, KNC native, KNL standalone (cache)---for 
Random dataset with 240 threads in each case. The first 
column in each group in this plot represents the performance 
boost brought by applying our parallel median finding 
optimization over the baseline. In each group, as we go from 
left to right on the x-axis, we add one more optimization to 
the previous case. For the upper part, parallelizing the 

median finding and gather are effective, while parallelizing 
the lower tree, gather and task controller are effective for the 
lower part, generally. We also note that our optimizations are 
beneficial to all architectures; however, they are more 
effective in the KNL architecture (cache). This is because the 
KNL has a higher memory bandwidth and a higher single 
thread performance. As a result, the effect is accumulated as 
the number of threads increases. 

5. Related Works 
While in this work we focused a k-d tree based KNN 

implementation, there are also various other versions of 
KNN. Wang et al. [14] suggested a fast tree-based KNN 
algorithm which uses an SSR tree, and Keller et al. [15] 
introduced the fuzzy KNN algorithm using fuzzy sets [16]. 

To improve the performance of KNN, researchers also 
investigated various parallelization and optimization 
strategies. Garcia et al. [17] used a brute force KNN 
implementation, which is inherently highly-parallelizable. 
Therefore, they used a GPU to parallelize the distance 
calculation in their brute force KNN. Patwary et al. [8] 
presented an implementation of KNN that targets mainstream 
Intel processors in cluster environments. Our work is 
different from these prior works as we are primarily 
interested in evaluating the potential of various KNN 
optimizations in different types of accelerators, and explore 
both optimizations that are applicable to both GPU and Xeon 
Phi, as well as those applied specific optimizations. 

6. Conclusion 
We presented and experimentally evaluated the parallel 

implementations of the KNN algorithm with k-d tree on 
various parallel architectures. More explicitly, we used five 
different architectures, which are KNC as offload, KNC as 
native, KNL standalone with cache mode, KNL standalone 
with flat mode, and NVIDIA GPU. We observed from our 
experimental analysis that, one can achieve average speedups 
0.49x-3.48x for training and 1.43x-9.41x for classification on 
Xeon Phi series, compared to 0.05x-0.60x (training), 1.61x-
6.32x (classification) achieved by the host + GPU version, 
both over the standard host only system. For the future works, 
we will evaluate performance of Skylake and V100 which are 
the next generations of CPU and GPU. 
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