

Efficient K Nearest Neighbor Algorithm Implementations
for Throughput-Oriented Architectures

Jihyun Ryoo1, Meena Arunachalam2, Rahul Khanna2, Mahmut T. Kandemir1

1Pennsylvania State University, Old Main, State College, PA, USA

2Intel, 2111 NE 25th Avenue, Hillsboro, OR, USA
1E-mail: jihyun, kandemir@cse.psu.eud

1E-mail: meena.arunachalam, rahul.khanna@intel.com

Abstract
Scores of emerging and domain-specific applications need

the ability to acquire and augment new knowledge from
offline training-sets and online user interactions. This
requires an underlying computing platform that can host
machine learning (ML) kernels. This in turn entails one to
have efficient implementations of the frequently-used ML
kernels on state-of-the-art multicores and many-cores, to act
as high-performance accelerators. Motivated by this
observation, this paper focuses on one such ML kernel,
namely, K Nearest Neighbor (KNN), and conducts a
comprehensive comparison of its behavior on two alternate
accelerator-based systems: NVIDIA GPU and Intel Xeon Phi
(both KNC and KNL architectures). More explicitly, we
discuss and experimentally evaluate various optimizations
that can be applied to both GPU and Xeon Phi, as well as
optimizations that are specific to either GPU or Xeon Phi.
Furthermore, we implement different versions of KNN on
these candidate accelerators and collect experimental data
using various inputs. Our experimental evaluations suggest
that, by using both general purpose and accelerator specific
optimizations, one can achieve average speedups ranging
0.49x-3.48x (training) and 1.43x-9.41x (classification) on
Xeon Phi series, compared to 0.05x-0.60x (training), 1.61x-
6.32x (classification) achieved by the GPU version, both over
the standard host-only system.

Keywords
Machine Learning, K Nearest Neighbor, K-d Tree, Xeon

Phi, GPU, Parallelization, Training, Classification

1. Introduction
As modern applications rely more than ever on machine

learning (ML) kernels, this requires efficient implementations
of the frequently-used ML kernels on emerging parallel
computing platforms. While many implementations of
popular ML kernels exist on GPUs [1] [2] [3] [4], there are
not many studies that explore kernel implementations on
alternate accelerators or compare different types of
accelerators with each other.

In this work, we optimize and experimentally evaluate one
such ML kernel, namely, K Nearest Neighbor (KNN), on two
different accelerator-based systems: NVIDIA GPU and Intel
Xeon Phi. We focus on these two systems as they both offer
high degrees of architectural parallelism but differ from one
another in significant ways. While a GPU contains numerous

small execution units that can operate in parallel, Xeon Phi
has fewer, but more powerful, processing cores and provides
more opportunities for exploiting data reuse. Both
architectures also contain entirely different cache/memory
hierarchies. KNN is very widely used in various application
domains [5] [6] [7]. Our contributions are:

We discuss a set of general code/data optimizations for
KNN that can be used in both types of accelerators tested in
this work. These optimizations target at exploiting intra-node
parallelism and inter-node parallelism supported by these
architectures.

We present accelerator-specific optimizations for each
type of accelerator. While our optimizations for GPUs mostly
target shared memory, those for Xeon Phi include optimal
implementations of various operations such as `gather'.

We furnish a detailed performance evaluation of KNN on
both the accelerators. We evaluate several application
mapping strategies for Xeon Phi and explain the performance
behaviors observed using runtime statistics.

Our experiments indicate that Xeon Phi series can achieve
0.49x-9.41x performance improvements, compared to 0.05x-
6.32x improvements by GPU implementation. We want to
emphasize that our goal is not to determine which accelerator
is better than the other; rather, we want to discuss which type
of optimizations work well for which accelerator and why.

2. Background
2.1. K-Nearest Neighbor Algorithm

The purpose of KNN is to find the K nearest neighbors
from a given set of queries. To achieve this goal, it calculates
the Euclidean distance ‖࢞ሬሬԦ െ ሬሬԦ‖ between the queries and the࢟
inputs, and identifies the K closest input points for each
query. It is important to emphasize that, there are several
ways to find the K nearest neighbors. For example, a GEMM-
based KNN computes the distance between all input nodes
and all query nodes by matrix multiplication and finds the K
closest neighbors. GEMM-based KNN is an effective
algorithm. However, in a typical scenario, KNN is usually
performed on a fixed set of input points with different query
points but GEMM-based KNN always needs to calculate the
distance between all input points and query points even
though the input points are fixed. In such cases, the k-d tree-
based KNN has an advantage compared to the GEMM-based
KNN. More specifically, the k-d tree-based KNN creates a k-
d tree structure once and reuse it for data lookup. Basic

978-1-5386-1214-9/18/$31.00 ©2018 IEEE 144 19th Int'l Symposium on Quality Electronic Design

algorithm of k-d tree-based KNN training can be found in
Algorithm 1.

In this paper, we implemented/optimized k-d tree-based
KNN. This algorithm has two parts, training and
classification. In the training, it builds the k-d tree using
ۼ ൈ ۲ input points (ۼ: number of inputs, ۲: dimension) and
using the tree, the algorithm classifies the K nearest
neighbors of ۼۿ ൈ ۲ query points (ۼۿ: number of queries).
Detailed algorithm explanation can be found in [8].

2.2. GPU
GPUs were originally developed for graphics and image

processing. Since graphics and image processing algorithms
are highly parallel, GPUs are typically tuned for massively
parallel execution. However, nowadays, many parallel
applications (not just the graphic ones) are mapped to GPUs.
An NVIDIA GPU has lots of small computational units
(CUDA cores) in one SM and multiple SMs that can be
executed in parallel. A GPU architecture has many more
processing elements, and can use them well in handling data-
level parallelism and meeting the high throughput demands of
parallel tasks.

2.3. Xeon-Phi
Xeon Phi (also called MIC) is an accelerator for parallel

programs developed by Intel. Currently, there are two Xeon
Phi incarnations---Knights Corner (KNC) and Knights
Landing (KNL)---where Knights Landing is the latest. Like
GPUs, Xeon Phi is also designed for parallel computing; but,
the architecture of Xeon Phi is different from that of a GPU.

Xeon Phi has 50-72 cores, each supporting the execution of
multiple threads with deep pipeline. Note that, while Xeon
Phi cannot support as many threads as can be supported by a
GPU, each of its threads can sustain more computations than
its GPU counterpart.

3. Optimizations

3.1. General Optimizations

3.1.1. Data Structure Optimization
The input size to KNN is very large in many applications,

and therefore, reading the input points becomes a critical
component as far as KNN performance is concerned. In fact,
it can take as much as 80-90% of the total execution time of
training. Consequently, optimizing this step is important to
improve the overall performance. Motivated by this, we
employed two kinds of input points array: default array and
its transposed array. Default input array where each row
represents a single input point and each column represents a
dimension. In our approach, this default representation is
used for classification because it uses the input point-by-point
to calculate the distance between the query point and the
input point. In contrast, the transposed input array, has rows
as dimensions and columns as input points. Transposed array
is used for training, since it uses the same dimensional data to
find the median and partition the points. By employing two
different representations, we allow both training and
classification to take advantage of data locality.

The other strategy that we used is to employ a pointer
array for the input points (Fig. 1(b)). Each element in pointer
array contains the address of an input point, and the position
in the pointer array represents the node where the pointed
input point resides. For example, in Fig. 1(a), tree node R has
the median point D1, and the leaf node LC and RC have D0,

Table 1. List of optimizations employed in the CPU only, CPU + KNC, KNC only, KNL standalone (cache, flat), and CPU + GPU
versions (means the optimization is applied, and means it is not applied)

Algorithm 1. K-Nearest Neighbor Training

Figure 1. Optimized data structure for KNN. (a) A k-d tree (R: root,
LC: left child, RC: right child). (b) A pointer array that points to the
original\slash transposed input points. (c) Parallel k-d tree.

D3 and D2, D4 input points which is represented in the
pointer array in Fig. 1(b). The main reason why we use a
pointer array is to reduce the costs associated with data
swapping. We want to emphasize that the KNN algorithm
needs to swap the input points a lot, and if the dimensionality
of the data is large, the data swapping costs can be
significant. The second reason is that the pointer array can
express the tree structure as explained before. This can cut
down the space required for the additional tree structure.

3.1.2. Parallel k-d Tree Building
Another novel optimization we have is a “hybrid”

parallelization strategy that uses both intra-node parallelism
and inter-node parallelism. CPU, GPU, and Xeon Phi can
launch plenty of threads at once, and the success of any
application targeting these architectures depends greatly on
how this capability is exploited. Fig. 1(c) shows our parallel
k-d tree construction strategy. In the k-d tree building
algorithm, we consider two types of optimizations: exploiting
intra-node parallelism and exploiting inter-node parallelism.

At the beginning of our k-d tree building algorithm, there
are only a few nodes to process; so, it is hard to take any
advantage of the inter-node parallelism. However, each node
has plenty input points, and this makes it attractive to utilize
intra-node parallelism by parallelizing the median finding
function and the set separation function. Meanwhile, a node
close to the leaf node holds only a small number of input
points, and thus, it is hard to employ any intra-node
parallelism. In comparison, there are lots of nodes that can be
processed in parallel, and consequently, we can take
advantage of inter-node parallelism.

Motivated by these observations, we propose a novel k-d
tree construction strategy. More specifically, we split our k-d
tree building process into two parts: one is applied to the
nodes close to the root, the other is applied to the nodes close
to the leaves.
Intra-Node Optimization

Intra-node optimization is to parallelize the median
finding and data separation functions which dominate the
execution time of the upper part k-d tree building. Fig. 2
shows how we implement the parallel median finding and
input point separation. To parallelize median finding
function, we group input points in current node into chunks
and find the local median using multiple threads. After all the
local medians have been found, one thread finds the median

of the local medians. The median of the local medians---
median of medians---is then considered to be the ``real''
median of the current node. Note that the median of medians
is not the exact median, but this does not affect the
correctness of the algorithm. The classification algorithm will
always return correct results because its pruning mechanism
is exact regardless of how well each partition is balanced.

Next, to separate data, we go back to the original chunk
and counts the number of points that has larger/smaller value
than the median of median. And then we move the pointer
points median to the center of pointer array and move rest
pointers pointer larger/smaller value than the median to
right/left position of the center. This step is also parallelized.
Inter-Node Optimization

Inter-node optimization enables the parallel construction
of the lower part of the k-d tree. As shown Fig. 1(c), at a
given depth level, the lower part has lots of nodes which do
not have any dependency among themselves. As a result, one
can execute them in parallel. In this parallelization, each
thread handles one or more nodes. The algorithm for the
inter-node optimization is similar to the original k-d tree
construction algorithm except for the synchronization
between the threads. In our implementation, we put barriers
between depths; therefore, all the work at the next depth can
start after all the work in the current depth is finished.

 3.1.3. Parallel K Nearest Neighbors Finding
From the basic algorithm for classification, it can be seen

that the executions of the queries have no dependencies
among them. The reason is that finding the K nearest
neighbors (KNN) algorithm is applied to each query
independently and the previous steps do not affect any
findings in the future. Therefore, we can fully parallelize the
classification part.

3.2. Optimizations for Xeon Phi (KNC Offload, KNL
Native, and KNL Standalone)

3.2.1. Code Acceleration Using Xeon Phi
As indicated in Section 2.3, Xeon Phi has multiple threads

that can execute in parallel. Thus, we implemented the
optimizations discussed in Section 3.1. In this work, we
tested three different Xeon Phi implementations: KNC
offload mode, KNC native mode, and KNL standalone mode
(flat or cache). The KNC offload mode makes use of both
CPU and KNC (Knight Corner); that is, CPU launches the
algorithm and handles the serial part while KNC executes the
parallel part. In comparison, the KNC native mode uses only
KNC which means that the host is not assigned any work, and
KNC executes both the serial and parallel parts. Finally, the
KNL standalone mode uses KNL (Knights Landing) alone,
and it executes the entire application in KNL.

Figure 2. Parallel median finding and input point separation.

Figure 3. Parallel median finding and input point separation.

3.2.2. Gathering Using SIMD Unit
The first optimization we consider for different Xeon Phi

versions is “gathering”. One way of gathering data is to
gather the discontinuous data which are referenced by a
pointer. The input points are referenced using the pointer
array, and this makes the data accesses random. As is well
known, random data accesses lead to poor data locality and
cache performance. Thus, we gather the data into one array
when needed and this makes the data accesses almost serial,
helping to improve data locality, and eventually cache
performance. The other benefit of this optimization is that the
array that has the gathered data can be used as a ``buffer''.
Fig. 3 shows how we gathered data. This optimization is used
in the parallel median finding/data separation function that
runs in the upper part of training as well as in the serial
median finding/data separation function in the lower part of
training.
Parallel Median Finding, Data Separation with Gathered
Data

The gathering optimization is shown in Algorithm 2. In
our implementation, each chunk has one gather array and one
thread gathers the input points and pointers that belong to the
chunk. It is important to emphasize that the “for-loop”' in line
8 can use the SIMD unit in Xeon Phi since there are no loop-
carried dependencies. After the gathering is done, our
algorithm finds the median of the chunk and compares the
input value in the gather array with the median to get CompA.
The next step is to separate the pointers by moving the

elements in the gather array. One thread takes control of the
separation in one chunk. The algorithm compares the input
point value in the gather array against the median, and moves
the pointer in the gather array to the right position of the
pointer array. Thus optimization eliminates the indirect data
read by paying a small cost for gathering. The gathering is
used in the local median finding step, the CompA building
step, and the final separation step. In other words, there are
lots of indirect data references in the KNN algorithm that can
be improved via gathering. Besides, building CompA does not
bring a high overhead, since the original algorithm without
this optimization anyway needs to copy the pointer and put it
back into the pointer array.

Serial Median Finding, Data Separation with Gathered
Data

 At the beginning of the function, we first grab the input
points with the pointers and copy the data to the gather array.
As in the parallel median finding/data separation functions,
gathering does not have any loop-carried dependencies, and
as a result, it can also use the SIMD units Xeon Phi. Next, the
algorithm finds the median and separates the pointer array by
using the ``QuickSelect'' algorithm. Then, the separated
pointers in the gather array are moved back to the original
pointer array. In the serial version, using the gather operation
may look to be inefficient at the first glance however, it is
actually quite effective. The reason is that the SIMD units are
very effective in gathering, and the QuickSelect algorithm
reads the inputs several times. Thus, it is better to create the
gather array and read data from the array. Another reason is
that the original algorithm anyway needs to copy the pointers
to the buffer. This is because, if it does not use the buffer, it
can corrupt the data when moving the pointers.

3.3. Optimizations for GPU

3.3.1. Code Acceleration Using the GPU
GPU is a powerful coprocessor that can invoke many

blocks of threads at the same time. Like Xeon Phi, we map
the parallelized parts of the algorithm to the GPU: parallel
median finding in training, parallel lower part building in
training, and classification. The remaining parts of the
application are run in the host.

3.3.2. Parallel Median Finding Using Shared Memory and
Data Separation

GPU has a “shared memory”, a memory that is shared by
all threads in the same block and each thread can access the

Algorithm 2. Parallelized Median Finding with Gathering

Figure 4. Parallel median finding and data separation using
GPU.

Table 2. List of the datasets used in our experiments

entire data in the shared memory. We can exploit this shared
memory in parallel median finding. Fig. 4 shows how the
GPU finds the median of the selected node and separates the
data. At the start, each thread of CUDA kernel finds the
thread median from each chunk and when all the threads
finish one thread finds block median. Then, CPU finds final
median and calls another CUDA kernel to fill out CompA
which will have counts of smaller/bigger input points than the
median. After that, CPU again counts the accumulated sum of
CompA, and lastly, GPU fills out the pointer array.

3.3.3. Thread Mapping for the Lower Part
In the lower part of the training process, the CPU calls the

CUDA kernel with Block.N×Thread.N threads. When there
are fewer threads than the nodes, each thread is mapped to a
node in a sparse fashion. The reason why we map the threads
sparsely is to make sure that the threads that will be mapped
to child nodes are in the same block. On the other hand, if the
number of threads is larger than the number of nodes, one
thread takes care of several adjacent nodes. Since the pointer
array for the adjacent nodes is contiguous, the thread can
work on the continuous pointer array.

4. Experimental Evaluation
In our experiments, we used a CPU, Xeon Phi and a GPU.

More specifically, we use Intel® Xeon® E5-2620 as the
baseline and the host for GPU, and Intel® Xeon® E5-2697 v3

as the host for the KNC offload mode. We tested two types of
Xeon Phi systems: Intel KNC series coprocessor SE10/7120,
with 61 cores, 16GB memory and a 352GB/s memory
bandwidth, and Intel KNL series processor 7250, which has
68 cores, 490GB/s of MCDRAM memory bandwidth 384GB
memory with 115.2GB/s DDR4 bandwidth. The GPU we
used in this work is NVIDIA Tesla P100, which has 16GB
memory with 732GB/s memory bandwidth. We want to re-
iterate that our goal is not to rank different architectures, but
instead explain the impact of various optimizations on
different accelerator architectures. The codes were not
optimized for the stand-alone host version. Table 2 shows the
five datasets [11] used in our experiments, sorted by their
sizes. We fix the value of K as 20.

4.1. Overall Speedup
Fig. 5 plots the performance of the KNN algorithm. There

are five input sets and four architectures: KNC offload, KNC
native, KNL standalone (Cache mode, Flat mode), and GPU.
We compared our work with ALGLIB [12] which is a library
for numerical analysis and data processing. Fig. 5 shows the
normalized performance of each architecture with respect to
the baseline. The baseline in this context represents the
performance of the CPU version (an Intel Xeon E5-2620)
with four threads (marked as baseline in the figure). The
datasets are sorted by their sizes; Watch being the smallest
and Higgs the largest.

In the training phase, the KNC offload, KNL standalone
Cache and Flat modes show improvements compared to the
baseline; but, the GPU version is slower than the baseline. In
the case of classification on the other hand, GPU gets 2.17x
speedup compared to the baseline, while others get 3.84x

Figure 5. Overall performance of the KNN training and classification.

Figure 6. Breakdown of the KNN training and classification
latencies in GPU (Data_Read: function for reading data,
Med_of_Med: median of median finding function (training upper
part), Smaller_Than_Med: function for finding the number of
points which have smaller values than the median, Sort_by_Med:
function for sorting by median, Build_Down: function for building
the lower part of k-d tree, Find_KNN: function for classification).

Figure 7. Stall reasons for GPU.

Figure 8. The effect of our Xeon Phi optimizations.

(KNC offload), 3.94x (KNC native), 6.17x (KNL standalone
Cache mode), and 5.74x (KNL standalone Flat mode)
performance improvements. These results indicate that Xeon
Phi achieves a higher performance improvement in KNN
with k-d tree than GPU. There are several reasons why GPU
does not achieve its full potential; but, the major ones are
execution dependency and synchronization. From Fig. 6, it
can be seen that the Med_of_Med takes half of the upper part
(training)

and the Build_down takes most of the lower part
(training). Also, in the classification phase, the Find_KNN
takes the largest share of execution. Fig. 7 plots the stall
reasons for each of the GPU kernels. Fig. 6, 7 help us
understand the GPU performance. Med_of_Med and
Find_KNN are stalled mostly because of the execution
dependencies in the algorithm. Likewise, Build_down is
stalled generally due to synchronization. Since these
functions consume most of the cycles in the training and
classification phases, we can conclude that the upper part of
training and classification is stalled because of the execution
dependency and the lower part of training is stalled because
of the synchronization.

The other reason for the less-than-ideal GPU performance
in this case is the control flow in the algorithm. In training,
there are lots of branches in finding the median and
separating the input points. Likewise, in classification, the
distance comparison also has lots of branches. Xeon Phi
achieves better performance than GPU, because the former
can handle vectorized code with complex control flows more
efficiently than the latter. In fact, “control divergence” [13] is
known to be one of the major problems preventing some
applications (such as ours) from achieving their full potential
on GPUs.

It can also be observed from Fig. 5 that there are not many
differences in performance between KNL standalone (cache)
and KNL standalone (flat). KNL standalone (cache) uses
MCDRAM as cache and KNL standalone (flat) uses
MCDRAM as extended main memory. Since our dataset
sizes are smaller than the size of MCDRAM, we pinned the
entire data to the MCDRAM in the flat mode. In the cache
mode, after the first read of the data (cold miss), the entire
data is in MCDRAM. Therefore, the cache mode and the flat
mode exhibit similar performances.

Also, we compared our implementation with a previously-
published k-d tree based KNN implementation in ALGLIB
[12]. Our Xeon implementation is about 20x faster than
ALGLIB in training. For classification, our implementation is
faster than ALGLIB when the data size is large; however,
ALGLIB is faster in small dataset. This shows that our
implementation is more scalable than the ALGLIB.

4.2. Optimization
Fig. 8 shows the effect of the major optimizations---in

KNC offload, KNC native, KNL standalone (cache)---for
Random dataset with 240 threads in each case. The first
column in each group in this plot represents the performance
boost brought by applying our parallel median finding
optimization over the baseline. In each group, as we go from
left to right on the x-axis, we add one more optimization to
the previous case. For the upper part, parallelizing the

median finding and gather are effective, while parallelizing
the lower tree, gather and task controller are effective for the
lower part, generally. We also note that our optimizations are
beneficial to all architectures; however, they are more
effective in the KNL architecture (cache). This is because the
KNL has a higher memory bandwidth and a higher single
thread performance. As a result, the effect is accumulated as
the number of threads increases.

5. Related Works
While in this work we focused a k-d tree based KNN

implementation, there are also various other versions of
KNN. Wang et al. [14] suggested a fast tree-based KNN
algorithm which uses an SSR tree, and Keller et al. [15]
introduced the fuzzy KNN algorithm using fuzzy sets [16].

To improve the performance of KNN, researchers also
investigated various parallelization and optimization
strategies. Garcia et al. [17] used a brute force KNN
implementation, which is inherently highly-parallelizable.
Therefore, they used a GPU to parallelize the distance
calculation in their brute force KNN. Patwary et al. [8]
presented an implementation of KNN that targets mainstream
Intel processors in cluster environments. Our work is
different from these prior works as we are primarily
interested in evaluating the potential of various KNN
optimizations in different types of accelerators, and explore
both optimizations that are applicable to both GPU and Xeon
Phi, as well as those applied specific optimizations.

6. Conclusion
We presented and experimentally evaluated the parallel

implementations of the KNN algorithm with k-d tree on
various parallel architectures. More explicitly, we used five
different architectures, which are KNC as offload, KNC as
native, KNL standalone with cache mode, KNL standalone
with flat mode, and NVIDIA GPU. We observed from our
experimental analysis that, one can achieve average speedups
0.49x-3.48x for training and 1.43x-9.41x for classification on
Xeon Phi series, compared to 0.05x-0.60x (training), 1.61x-
6.32x (classification) achieved by the host + GPU version,
both over the standard host only system. For the future works,
we will evaluate performance of Skylake and V100 which are
the next generations of CPU and GPU.

Acknowledgment
This work is supported in part by NSF grants 1409095,

1626251, 1629915, 1629129, 1526750, 1439057, and
1439021, and a grant from Intel.

Reference
[1] D. Ciresan, U. Meier, J. Masci and J. Schmidhuber, "A

committee of neural networks for traffic sign
classification," in Proc. IJCNN, 2011.

[2] S. Herrero-Lopez, J. R. Williams and A. Sanchez,
"Parallel Multiclass Classification Using SVMs on
GPUs," in Proc. GPGPU, 2010.

[3] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama and T. Darrell, "Caffe:
Convolutional Architecture for Fast Feature

Embedding," in Proc. ACM MM, 2014.

[4] Y. Li, K. Zhao, X. Chu and J. Liu, "Speeding up K-
Means Algorithm by GPUs," in Proc. CIT, 2010.

[5] D. Pandya, S. Upadhyay and S. Harsha, "Fault diagnosis
of rolling element bearing with intrinsic mode function
of acoustic emission data using APF-KNN," Expert Syst.
Appl., vol. 40, no. 10, pp. 4137-4145, 2013.

[6] Q. Liu and C. Liu, "A Novel Locally Linear KNN
Method With Applications to Visual Recognition," IEEE
Trans. Neural Netw. Learn. Syst., vol. PP, no. 99, pp. 1-
12, 2016.

[7] A. Shaikh, N. Mahoto, F. Khuhawar and M. Memon,
"Performance Evaluation of Classification Methods for
Heart Disease Dataset," Sindh Univ. Res. J., vol. 47, no.
3, pp. 389-394, 2015.

[8] M. M. A. Patwary, N. Satish, N. Sundaram, J. Liu, P.
Sadowski, E. Racahc, S. Byna, W. Bhimji, C. Tull,
Prabhat and P. Dubey, "PANDA: Extreme Scale Parallel
K-Nearest Neighbor on Distributed Architectures," in
Proc. IPDPS, 2016.

[9] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M.
B. Kjaergaard, A. Dey, T. Sonne and M. M. Jensen,
"Smart Devices are Different: Assessing and Mitigating
Mobile Sensing Heterogeneities for Activity
Recognition," in Proc. SenSys, 2015.

[10] P. Baldi, P. Sadowski and D. Whiteson, "Searching for
Exotic Particles in High-energy Physics with Deep
Learning," Nat. Commun., vol. 5, 2014.

[11] M. Lichman, "UCI Machine Learning Repository,"
University of California, Irvine, School of Information
and Computer Sciences, 2013. [Online]. Available:
http://archive.ics.uci.edu/ml.

[12] "ALGLIB," [Online]. Available: http://www.alglib.net.

[13] M. Rhu and M. Erez, "The dual-path execution model
for efficient GPU control flow," in Proc. HPCA, 2013.

[14] Y. Wang and Z.-O. Wang, "A Fast KNN Algorithm for
Text Categorization," in Proc. ICMLC, 2007.

[15] J. M. Keller, M. R. Gray and J. A. Givens, "A fuzzy K-
nearest neighbor algorithm," IEEE Trans. Syst., Man,
Cybern., Vols. SMC-15, no. 4, pp. 580-585, 1985.

[16] L. A. Zadeh, "Fuzzy Sets," Inf. Control, vol. 8, pp. 338-
353, 1965.

[17] V. Garcia, E. Debreuve and M. Barlaud, "Fast k nearest
neighbor search using GPU," in Proc. CVPR Workshops,
2008.

