
Measuring the Effectiveness of ISO26262 Compliant Self Test Library
Frederico Pratas, Thomas Dedes, Andrew Webber, Majid Bemanian, Itai Yarom

MIPS Tech, LLC, 3201 Scott Blvd., SC, CA 95054, USA
E-mail: {frederico.pratas,thomas.dedes,andrew.webber,majid.bemanian,itai.yarom}@mips.com

Abstract— Automotive SoCs are constantly being
tested for correct functional operation, even long after they
have left fabrication. The testing is done at the start of
operation (car ignition) and repeatedly during operation
(during the drive) to check for faults. Faults can result
from, but are not restricted to, a failure in a part of a
semiconductor circuit such as a failed transistor, intercon-
nect failure due to electromigration, or faults caused by soft
errors (e.g., an alpha particle switching a bit in a RAM or
other circuit element). While the tests can run long after
the chip was taped-out, the safety definition and test plan
effort is starting as early as the specification definitions.
In this paper we give an introduction to functional safety
concentrating on the ISO26262 standard and we touch on
a couple of approaches to functional safety for an Intellec-
tual Property (IP) part such as a microprocessor, including
software self-test libraries and logic BIST. We discuss the
additional effort needed for developing a design for the au-
tomotive market. Lastly, we focus on our experience of
using fault grading as a method for developing a self-test
library that periodically tests the circuit operation. We
discuss the effect that implementation decisions have on
this effort and why it is important to start with this effort
early in the design process.

Keywords— ISO26262, automotive, functional safety,
fault injection, Self-Test Library

I. Introduction

The automotive industry has been adopting a large num-
ber of electronic components into the design of all types of
road vehicles. These electronic components include every-
thing from Engine Control Units (ECUs), parking sensors,
automatic braking systems and sensors for advanced driver
assistance systems (ADAS) through to the radio/media
player and the car dashboard. Standards were already
established related to safety for aeronautics (DO254) but
nothing was addressing the specific problem of consumer
vehicles. Indeed, a standard as stringent as DO254 [1] can
not be directly applied to cars and motorbikes because im-
plementing the safety levels of such standards has a very
serious impact in the product engineering cost, execution
time (time-to-market) without a major benefit. However,
as electronic components play a more important role in
safety and mission-critical applications in today’s automo-
tive products, thus leading to a total system dependability,
the need for a standard that properly regulates and unifies
the way how industry is developing vehicles (or parts going
into vehicles) can not be ignored. This is even more im-
portant since there are a significant number of vehicles on
earth (more than a billion), and vehicles represent a public
safety issue both from the inherent risk of the vehicle itself
(carrying passengers at a speed) and their interaction with

the surroundings. Thus, there was a need for functional
safety to be defined as a concept, and that has been done
through different standards over the years.

Functional safety has been considered in a number of
standards - initially IEC 61508 [2] was used for automotive
applications prior to the adoption of ISO26262 as a stan-
dard in 2011 [3]. Other related standards address other
markets such as aeronautics, railways and industrial pro-
cesses, however, this manuscript focus on automotive and
the ISO26262 standard. The ISO26262 standard for ”Road
vehicles - Functional Safety” currently addresses the design
and manufacture of electronic devices for cars in particular,
however, a revision of the ISO26262 standard is underway
that adds part 11 to address applications to semiconductors
(including Intellectual Property or IP parts) and part 12
that addresses motorcycles. The new revision of the stan-
dard will also add material to address the requirements for
trucks and buses. The current projection is for this update
to the ISO26262 standard to be in draft in 2017 and to be
adopted as edition 2 of the standard in 2018.

As such there is an new requirement for IP designers tar-
geting the automotive market to comply with these stan-
dards and to understand how they can help higher tier
customers address the requirements of Functional Safety
through a distributed development model. In this model
IP suppliers have to work closely with the semiconductor
component vendor to understand the requirements of the
OEM/Tier 1 end customer.

The Functional Safety requirements can be split into:
• First are the technical requirements, related to fault tol-
erance throughout the design, depending on which safety
level its targeted. Indeed, ISO26262 provides different
safety categories depending on different criteria like sever-
ity, exposure and controllability.
• Secondly there are the flow requirements. Functional
Safety is not a standalone development flow, it has to be in-
tegrated into the regular development flow of the product,
whether it is hardware or software. This involves introduc-
ing new development stages (such as fault injection, which
is further discussed in this paper), to also adding traceabil-
ity. These requirements are due to the fact that Functional
Safety state-of-the-art is constantly changing and improv-
ing, thus one can trace that best practice was followed dur-
ing the project development.

This paper presents the basics of Functional Safety and
ISO26262, explaining what ASIL refers to, what are the
different types of faults, and what are the metrics that
ISO26262 uses in order to assess the safety level of the IP.
Then, it develops on how the normal system-on-chip de-
sign flow is impacted by the addition of Functional Safety
measures. Finally, it details some important aspects rela-
tive to the process of fault injection performed during the
development and validation of the STL, namely, how chal-

978-1-5386-1214-9/18/$31.00 ©2018 IEEE 156 19th Int'l Symposium on Quality Electronic Design

lenges related with the design size should be overcome. In
particular, it shows how different fault injection detection
techniques can affect the simulation time by two orders of
magnitude at the cost of introducing different levels of error
in the results and how that can be used to accelerate the
development phase for designs with different complexity.

II. Background

Reliable design and operation of a microprocessor in-
volves extreme challenges. In particular, there are many
sources of errors (faults) during different stages of the prod-
uct lifetime, from design until operation. Faults as de-
scribed by the ISO26262 standard largely fall into two cat-
egories: a) systematic faults - typically hardware or soft-
ware bugs that were not found during the development of
the IP, and b) random faults - typically faults that occur
when the device is in operation which are inherently due
to the technology used or transient events (such as alpha
particles striking the device when in operation). Moreover,
the ISO26262 gives several metrics to categorize each func-
tionality of a system into an Automotive Safety Integrity
Level (ASIL) by assessing the Controllability, the Severity
and the Exposure of each potential failure. For example
the authors in [5] assess how the ISO26262 would be ap-
plied to classify a microprocessor. The lowest level of all is
Quality Managed (QM) that does not specify any concrete
metrics for random fault tolerance but which may still be
applicable to certain electronic components within an auto-
mobile. In addition to the lowest ASIL QM there are four
other ASIL levels, ASIL A to ASIL D (high fault toler-
ance). The requirements for a particular ASIL level results
from the role the item and its related elements play in the
system. As mentioned before, the ASIL level is driven by
the hazard and environment conditions relating to severity,
exposure and controllability. For example, a braking sys-
tem may need to have the highest level of fault tolerance
(ASIL D), as it cannot brake or lock-up in an uncontrolled
manner. Once the initial ASIL level for the item has been
defined, the ASIL level for each of its components, parts
and sub-parts, can be defined by means of ASIL decomposi-
tion. ASIL decomposition is a common practice to decom-
pose the initial safety requirements into redundant safety
requirements. Redundancy in this context means having
multiple different solutions to avoid violation of the same
safety goal, which are based on independent functional el-
ements that are incorporated into the same component or
part. In particular, if redundant safety requirements are
mapped into independent elements, the probability of re-
peating the same error is reduced. In such a case, ISO26262
allows to lower the target of some of the metrics for each
independent element, in the form of ASIL X[Y], where Y
is the initial ASIL and X is the decomposed ASIL level
for the independent element. The decomposed ASIL X[Y]
differs from the standard ASIL X in that it requires the
confirmation measures to be conducted at the initial ASIL
level. For instance, an ASIL B[D] element requires the con-
firmation measures to be conducted by someone outside of
the organization (i.e., an independent auditor) according
to the ASIL D specifications.

Random faults within the ISO26262 standard fall into

TABLE I: ASIL levels [3]

Safety level SPFM LFM

QM - -
ASIL A - -
ASIL B >= 90% >= 60%
ASIL C >= 97% >= 80%
ASIL D >= 99% >= 90%

the categories: single-point fault metric (’SPFM’), latent
multi-point fault metric (’LFM’) and dependent faults.
SPFM relates to faults that have an immediate effect in
the device operation, whereas LFM refers to a fault that
remains unnoticed (latent) in the system until another fault
triggers its propagation into the system. This paper focuses
on fault tolerance to SPFM and LFM, as quantitatively
categorised to the different ASIL levels (see Table I).

Random faults are actually addressed in two ways the
first of which is the incorporation of ’safety mechanisms’
within the design of a part during development. An exam-
ple of such a ’safety mechanism’ would be the use of Error
Correcting Codes (ECC) or parity around cache or other
RAM structures included within the semiconductor design,
as well as adding extra safety to the system, either by using
highly redundant techniques such as processor lock-step, as
proposed in [8], or by embodying optimized checking hard-
ware structures such as the proposal in [9].

The second means to address random faults is to carry
out regular testing on the system. Tests can be carried out
both at start-up and during operation. In the former case,
a key area that can be regularly tested is the memory con-
sistency, e.g., using Memory BIST (MBIST). In the latter
case, the system can take sub-parts of the system out of
operation for testing, where testing is specifically checking
for faults. There are a number of ways to perform testing
during operation - for a general electronic circuit one com-
mon means would be to employ Logic BIST (LBIST) to
perform fault coverage analysis through randomised pat-
terns sent through all the flip-flops in the design via scan
chains added and used for Design For Test (DFT).

The two main metrics regarding Hardware Functional
Safety are ”Hardware Architecture Metrics” and ”Proba-
bilistic Hardware Metrics”. The former measures the abil-
ity for a design to cope with random hardware failures,
while the latter measures the likelihood of random hard-
ware failures to violate the safety goals. Although hard-
ware safety mechanisms are the strongest and most effi-
cient way to deal with safety, their cost in terms of area,
power consumption and timing opens the way to software
methods, less efficient, but also less costly, and with the
advantage of being able to be developed after production
of the hardware.

For a device that incorporates a microprocessor, software
testing can regularly check the functioning of the device via
a method called Self-Test Library (STL). STL has been
applied in the past [6].Such techniques consist of letting
the CPU run a sequence of code comprised of a library of
tests executed at predefined time intervals by the Device

Under Test (DUT). These tests are specially designed to
exercise and detect faults in the circuit [7], typically by
comparing results obtained with a golden dataset or com-
puted signature. In comparison to hardware mechanisms,
software techniques support autonomously testing,and di-
agnosis both the CPU and some peripherals without the
need to develop and implement any additional hardware
mechanisms. The main constraint to this method is that it
requires taking the execution unit out of production, thus
being unable to target areas of logic mandatory to the safe
state of the running application. For example, although
one can stall the execution unit for some time in order to
run the STL, it is not recommended to corrupt the memo-
ries, as it may have a functional impact on the application
once returned to the original execution flow.

The main goal in the STL development process is the
maximization of the fault coverage in the design, mainly
when targeting high ASILs. Achieving high fault coverage
in modern microprocessors imposes several challengesin the
STL. In fact, the very concept of the STL puts constraints
on its capabilities, namely:
• Duration of its execution can be crucial to the system.
As a matter of fact, no safety related system can be put on
hold indefinitely while performing its diagnostic. There-
fore, there is a constraint on how long the STL takes to
run. Additional constraints related to specific functionali-
ties can also apply, for example in the case of interrupts.
• The size of the code can also be of importance, as we
will often be looking at embedded systems where memory
space is a limited resource.

In order to address such challenges engineers usually
rely on a development flow that iterates between intro-
ducing software optimizations and assessing fault coverage.
Several software related optimization issues have been dis-
cussed in the past, for example in [10] the authors describe
the software development for targeting a small micropro-
cessor with 200k stuck-at faults. However, as processors
increase in size and complexity, the iteration process tends
to be limited by the significant simulation time required
to perform the fault coverage validation step [10]. In this
paper we analyse the impact of fault injection simulation
in the STL project development cycle for a small (≈ 400K
faults) and a medium size (≈ 2.5M faults) microprocessors.
In contrast to previous works, we show several strategies
that can be used to overcome the limitations and accelerate
the development cycle.

III. Flow

In a standard System-on-Chip (SoC) design, one usually
starts with design specification, followed by RTL imple-
mentation and IP integration, and SoC verification toward
a tape-out (see Figure 1). When designing an SoC for au-
tomotive it has been mentioned that there is the need to
integrate safety within the design flow. It happens that
most steps have a safety formal process associated. Start-
ing with the safety specification, followed by the design
of the safety mechanisms which are necessary to meet the
safety requirements, and terminating with the validation of
the safety mechanisms as part of the STL preparation. De-
veloping the safety part of a project alongside with the SoC

Fig. 1: Design and safety development steps

design is mandatory practice to avoid the cost of adding
safety mechanisms at the end of the design process.

However, in order to claim a certain ASIL for an IP,
an overall safety culture should be implemented within the
company. This goes from having a stricter development
flow: from specification breakdown, to code reviews gat-
ing a project’s advancement, to traceability of most things
(meeting minutes, bug tracking, change requests, etc...).
This ensures that if something happens after tape-out, any
company which had developped a part of a SoC can show
that due diligence was done. This paper will assume that
the SoC or IP have the safety mechanisms already and it
will focus on the process of developing the Safe Test Library
(STL) that is being used to check the correct behavior of
the design during operation. The STL address faults that
can occur during operation, while production faults are ad-
dressed by methods as scan & ATPG during production.

IV. Fault Injection and Grading

As described in Section 2, in Functional Safety fault in-
jection is a widely used technique for evaluating the system
sensitivity to faults, it can be used with different goals in
mind: to verify the performance of every Safety Mecha-
nism, dependability validation [11], failure prediction [12],
estimation of the fault tolerance level [13], and validation
of the fault tolerant solutions.

In this case we use fault injection to validate the level
of fault coverage of the STL. As described above the STL
is one of the software (SW) methods to provide diagnostic
coverage for safety-related elements. Its function is to be
periodically executed by a processing unit in order to test
that the processing unit itself or any part of the system is
operating as it should. The STL can both complement ex-
isting Hardware (HW) Safety Mechanisms by adding extra
coverage to reach higher ASILs, but it can also be suitable
for systems having little to no HW Safety Mechanisms.

The results obtained from the fault injection allow the
Functional Safety Engineer to do the safety analysis and
determine whether the system achieves the targeted ASIL
requirements or not. In our case study, we also assess the
coverage of the STL itself, thus helping in driving its devel-
opment. The key aspect when analysing software is in how
we categorize that a fault has been detected. In order to

Fig. 2: Strobing points in simplified CPU model

achieve that, we set up mechanisms to signal to the fault
injection tool that the software did indeed see the fault, so
that it can be categorized as ”detected”.

Faults are usually classified according to their impact
and ”observability”, i.e., assuming a specific ”observation”
point in the design (strobing point), either the boundaries
of a defined area, or the memory bus. Namely, in the con-
text of the STL development, we consider:
• Observed : The fault is observable if there is a difference
to the reference run (aka golden run) that is propagated to
the strobing point (in our case the pins of the processor)
that has not necessarily been detected by the STL.
• Not Observed : A not observable fault is such that its
effect is not observed in the strobing point, either because
the test is not able to trigger it, or because it cannot be
propagated to a detectable point (for example if it is always
masked by another signal).
• Detected : The effect of the fault reaches the strob-
ing point, and the STL is able to identify the execution
difference and flag an error.

The main problem regarding the STL coverage is actu-
ally how to collect it, and whether it makes sense from a
Functional Safety perspective. Indeed, the developer is in
charge of picking the observation points, and those vastly
impact on the resulting coverage figures. Different strob-
ing points also impact the simulation run time, and we will
cover that later on. The location of the strobing points
defines how optimistic or pessimistic the coverage metrics
will be in comparison to real numbers.

The STL detects faults by comparing an error signa-
ture (which is stored in a specific register) to a golden pre-
calculated dataset. Let us consider the simplified CPU rep-
resentation shown in Figure 2. We consider two possible
strobing points in the design:
• Realistic: The strobing point is located at the bound-
aries of the system. Observing the CPU pins gives 100%
certainty that any difference between the golden machine
and the faulty machine has indeed been propagated to the
outside. However, that doesn’t mean that it has been de-
tected by the STL. It only means that the fault is poten-
tially dangerous, as it has left the boundaries of the sys-
tem. To know whether it has been detected by the STL
or not, we rely on the fact that the STL, when detecting
a fault, is writing a specific value to a fixed memory po-
sition, which we can probe for on the memory bus. By

TABLE II: Target IP cores and respective number of faults

Core Name #Faults Relative size

uController ≈ 400K Small
CPU ≈ 2.5M Medium

looking specifically at the memory bus we know that, if a
difference occurs, the fault has been detected by the STL.
Note that we had to separate the strobing point on the
memory bus from any other strobing points on pins of the
CPU, as one (memory bus) will mean fault detection, while
others (others pins) will mean that the fault is dangerous,
but not necessarily detected. This observation point is the
most realistic one.
• Optimistic: Another possibility is to probe directly the
register in which the STL is storing the error signature. If
we observe a difference there, then it means that the STL
has the possibility to detect it. As we are observing a point
in the system before the actually detection mechanism trig-
gers, we can only ensure the STL has the data available to
detect the fault, not that it actually detected it, hence why
this strobing point can be quite optimistic, depending on
the STL’s behaviour and resilience. However, taking a de-
cision between considering a fault detected or not occurs
much earlier, which presents advantages, as shown below.

V. Experimental Setup and Results

The case study presented herein is based on a real project
developed within MIPS. This project targeted two different
MIPS processor IP cores as defined in Table II: i) a smaller
micro controller (henceforth named uController) composed
of a single threaded core with L1 caches and embedded
SRAM, and ii) a larger multi-threaded CPU (henceforth
named CPU) composed of four multi-threaded cores with
L1 caches and a shared L2 cache level. To perform fault
injection in the target IP we have used Synopsys VCS L-
2016.06 and Synopsys Z01X 3.2.3, both tools installed on
a Linux environment. VCS was mainly used when cross-
checking fault simulations with RTL simulations for de-
bugging purposes, while the fault injection tasks where per-
formed in Z01X. Z01X is a massively parallel fault injection
simulator that, in this context, was used to help develop
the STL. It provides detailed fault detection coverage re-
ports used when analysing the effectiveness of the STL. In
particular, we are interested in detailed information about
which faults in the design are: a) not observable; b) not
detected; and c) detected.

As explained in Section 4, a fault is considered as not
observable if it is not possible to drive its defect to the
detection point, i.e., there is not a visible effect, either be-
cause the STL is not able to detect the fault or because it
is not propagated through IO pins. The fault is considered
as observable but not detected if its effects are propagated
to an observable point in the design but STL is not able to
detect it. And finally, a fault is classified as detected when
the STL is able to return a positive detection result dur-
ing its execution. Z01X further classifies a subgroup of not
observable faults and untestable, namely those faults that

due to design/circuit constraints can not be exercised or
controlled. Such faults are by definition safe faults as they
do not have an impact in the functionality of the circuit1.

Because fault simulation is a computationally intensive
task, Z01X supports several features that can help opti-
mize the execution. The most relevant ones are: i) mini-
mize the list of faults that actually require a full simulation
by circuit analysis, ii) execute multiple fault simulations in
parallel, and iii)) use statistical methods to speedup some
of the analysis (at the expense of some accuracy). In i),
for example, the tool discards untestable faults, as well as
other not observable faults by performing an early stage
classification based on toggle analysis of the golden run,
i.e., a simulation without any faults being injected. For
ii), the tool can simulate multiple batches of faults at the
same time. Finally, in iii) the designer can configure the
tool to both perform fault sampling and only simulate a
subset of the total fault universe, thus obtaining represen-
tative coverage figures in a quicker way; as well as skip any
faults that require a significantly larger amount of com-
putational resources and time, usually due to factors such
as oscillations and instability in the design, we refer to this
type of faults from this point forward as HyperFaults (HF).
Examples of this class of faults are:
• HyperActive: Indicates the faulty machine’s activity
overwhelmed the simulation. Hyperactive faults are typi-
cally a very small number of faults that require more sys-
tem resources than other faults.
• HyperMemory: Indicated high memory usage by the
faulty machine. Hyperactive faults are typically a very
small number of faults that require more system resources
than other faults.

As explained above, the main target of this project was
to develop an STL capable of providing diagnostic coverage
for the target IP cores. Fault injection was performed on
target modules in the IP, namely those that do not include
safety-related mechanisms implemented in HW. Several it-
erations were required during the project life cycle in order
to drive the STL development and achieve the target fault
detection coverage figures. Figure 3 shows the evolution
for the two different designs. As expected, achieving the
target coverage in the largest (and more complex) design
was a lot more challenging.

The shaded regions correspond to the amount of HFs
in the design. Due to the significant run time required
to simulate these faults, Z01X allows to drop them during
execution to accelerate the overall execution time (as ex-
plained above), at the cost of introducing an error in the
final result.

Since in our design the number of HFs was quite signif-
icant we had to look into strategies to reduce this number
and accelerate the overall execution time. Figure 4 shows
the relative run time (in log scale) for both IP designs
while using different strobing strategies, as explained in
Section 4. One can see that the run time is approximately
60x (uController) / 48x (CPU) faster when dropping HFs,
when compared with the full run. However, this means that
about 15% (uController) / 21% (CPU) of the faults in the

1We have performed additional simulation tests to confirm that all
faults classified as untestable by the tool were actually safe.

0%

20%

40%

60%

80%

100%

13% 25% 38% 50% 63% 75% 88% 100%P
ro

gr
e

ss
 t

o
 t

ar
ge

t
co

ve
ra

ge
 [

%
]

Project life

Project evolution

uController CPU

Fig. 3: Fault coverage evolution during project lifecycle

0.1

1

10

100

strobe external bus strobe external bus
(drop HF)

strobe internal
register

Ti
m

e
 [

%
]

(a) uController

0.1

1

10

100

strobe external bus strobe external bus
(drop HF)

strobe internal
register

Ti
m

e
 [

%
]

(b) CPU

Fig. 4: Simulation time for different strobing strategies

design are not simulated. By changing the strobing point
deeper into the design, as explained in Section 4, we are
able to reduce the number of HFs significantly. In fact, by
strobing the register that holds the STL error signature we
are able to reduce the amount of HFs to only 0.17% (uCon-
troller) / 6.49% (CPU) of the total number of faults in the
design. This strategy further reduces the total simulation
time by about 2.7x (uController) / 3.0x (CPU), resulting
in an overall speedup of 160x (uController) / 145x (CPU)
relative to the full run (see Figure 3), with the additional
gain that we now are simulating all the faults.

While the different approaches mentioned above improve
the execution time quite significantly, they also introduce

-4

0

4

8

12

16

strobe external bus (drop HF) strobe internal register

Er
ro

r
[%

]

min Error max Error

(a) uController

-8

-4

0

4

8

12

16

20

strobe external bus (drop HF) strobe internal register

Er
ro

r
[%

]

min Error max Error

(b) CPU

Fig. 5: Coverage error for different strobing strategies

an error in the results that needs to be taken into account
when analysing and using the data for decision making.
Figure 5 shows how the different approaches relate in terms
of error relative to the full run. Namely, one can see in
Figure 5 that dropping all HFs results in an uncertainty
of 15.44% (uController) / 21.1% (CPU) relative to the full
run. This results from the fact that, though all the sim-
ulated faults have maximum certainty, we don’t know the
exact result of the skipped HFs (which may be detected or
not). In particular, on the one hand, if we consider all HFs
as not-detected then we get a conservative result which is
3.11% (uController) / 3.17% (CPU) below the exact re-
sult. On the other hand, classifying all HFs as detected
faults leads to an overoptimistic result with error of 12.33%
(uController) / 17.93% (CPU).

When the strobing point is changed to stop the simula-
tion as soon as there is a deviation in the error signature
register, we also obtain an optimistic result. In this case
the difference is obtained because not all deviations are
actually detected by the STL (in some cases the failure
can be masked as explained in Section 1). For the exam-
ples shown in Figure 5 the error observed ranges between
13.08% and 13.25% (uController) / 12.13% and 18.62%
(CPU). For comparison purposes the coefficient of variation
of the root-mean-square deviation for the two strategies is
of 1.95 and 1.00 (uController) / 1.744 and 1.00 (CPU), re-
spectively. These results show that both strategies result
in a similar maximum error. Nevertheless, while dropping
the HFs results in a larger uncertainty, strobing the internal
register results in very optimistic results. These differences

are important mainly during the STL development phase,
because larger uncertainty complicates the assessment of
the improvements introduced in different versions of the li-
brary, while final values used for safety analysis should be
reported using the most conservative approach, i.e, follow-
ing the pessimistic results.

VI. Conclusions

Recently there has been a significant drive in the auto-
motive market towards the implementation of more and
more complex automated functions (ADAS). This is in-
creasing the safety risks and thus the safety awareness and
responsibilities deeper into the supplier tiers. In fact, a
revision of the ISO26262 standard is currently underway
that adds part 11 to address applications to semiconduc-
tors (including Intellectual Property or IP parts). In this
paper we focus on a method for driving the development
of a self-test library that will periodically be used to check
the circuit operation of IP already in silicon. Namely, we
use fault injection simulation data, obtained with Synop-
sys Z01X, as a metric to gauge the effectiveness of the STL
software. Experimental results show that different fault in-
jection detection techniques can affect the simulation time
by two orders of magnitude at the cost of introducing dif-
ferent levels of error into the results for designs with differ-
ent complexity. We show how these have an impact on the
project development life cycle and that different techniques
should be used at different development stages.

References

[1] Radio Technical Commission for Aeronautics: DO-254, Design
Assurance Guidance for Airborne Electronic Hardware Interna-
tional Standard, 2000

[2] International Electrotechnical Commission: IEC 61508: Func-
tional Safety Standard International Standard, 2010

[3] International Organization for Standardization: ISO26262: Road
vehicles - Functional safety International Standard, 2011

[4] Synopsys: Z01X Functional Safety Assurance: High-Speed Fault
Simulation Solution for IEC 61508 and ISO26262 Compliance
Technical Reference Manual

[5] Y. C. Chang, L. R. Huang, H. C. Liu, et. al: Assessing auto-
motive functional safety microprocessor with ISO26262 hardware
requirements Technical Papers of 2014 International Symposium
on VLSI Design, Automation and Test, Hsinchu, 2014, pp. 1:4

[6] C. H. P. Wen, Li. C. Wang and K.-T. Cheng: Simulation-based
functional test generation for embedded processors IEEE Trans.
Comput., vol. 55, no. 11, Nov. 2006, pp. 1335:1343

[7] M. A. Skitsas, C. A. Nicopoulos and M. K. Michael: Dae-
monGuard: OS-assisted selective software-based self-testing for
multi-core systems Proc. IEEE Int. Symp. Defect Fault Toler-
ance VLSI Nanotechnol. Syst., Oct. 2013, pp. 45:51

[8] H. Kimura, H. Noda, H. Watanabe, et. al: 3.5 A 40nm flash
microcontroller with 0.80s field-oriented-control intelligent motor
timer and functional safety system for next-generation EV/HEV
Proc. IEEE ISSCC, San Francisco, CA, 2017, pp. 58:59

[9] I. Wali, A. Virazel, A. Bosio, et. al: A Hybrid Fault-Tolerant
Architecture for Highly Reliable Processing Cores J. Electron.
Test., vol. 32, no. 2, 2016, pp. 147:161

[10] P. Bernardi, R. Cantoro, S. De Luca, et. al: Development Flow
for On-Line Core Self-Test of Automotive Microcontrollers IEEE
Trans. Comput., vol. 65, no. 3, March 2016, pp. 744:754

[11] J. Arlat, M. Aguera, L. Amat, et al.: Fault injection for depend-
ability validation: a methodology and some applications IEEE
Trans. Softw. Eng., vol. 16, no. 2, Feb 1990, pp. 166:182

[12] M. Vieira, H. Madeira, I. Irrera, et. al: Fault injection for failure
prediction methods validation IEEE/IFIP Intl. Conf. on Depend-
able Systems and Networks, 2009

[13] M. Cukier, D. Powell and J. Ariat: Coverage estimation methods
for stratified fault-injection IEEE Trans. Comput., vol. 48, no. 7,
Jul 1999, pp. 707:723

