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Abstract—We propose a novel and effective online method for
performing diagnosis of scan chains with the physical defective
circuits in the loop. We first apply flush tests to determine
the faulty chains and their corresponding fault types. Then,
we generate new patterns using an evolutionary algorithm and
quickly analyze the responses to perform diagnosis. We are able
to achieve an average of 70% and 37% improvement in the
diagnosis quality for the segmented and non-segmented scan
chains respectively, as compared to a state-of-the-art offline
industry tool, when 0 to 7 faults were randomly inserted in
each scan chain. Our method does require additional tester time,
which may be preferred to the computational, setup and overhead
costs of the offline diagnosis, especially during the yield learning
process.
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I. INTRODUCTION

Scan based testing is the de facto industry standard for
post silicon testing and diagnosis of large sequential circuits.
In fact, scan chains routinely occupy roughly 30% of the area
of modern digital chips [1]. However, none of the scan based
testing can proceed until the scan chains are healthy. Especially
during the low-yield regime after the introduction of a new
technology, the scan chains are frequently defective. Therefore,
identification of failure locations on the scan chains is the
predominant step in the testing and diagnosis process flow.
Also, since the scan chains are usually distributed evenly all
across the chip, chain diagnosis can be a significant contributor
to the yield learning.

The authors of [2] have summarized about two decades of
work on scan chain diagnosis. They classify the techniques
developed so far into three categories: tester based, hardware
based and software based. In the tester based techniques,
special equipment such as an electron beam probe [3] or
picosecond imaging [4] may be integrated with the tester
to perform a binary search for the failing scan cells. The
diagnostic resolution of these methods is good; however, time
spent in the binary search with the specialized equipment can
be prohibitive.

The hardware based techniques employ partner shift reg-
isters [5], XOR gates inserted between cells [6] or additional
scan cell set/reset circuitry [7], [8] to enhance the diagnosis
quality. These techniques have not been widely adopted by the
industry because they need additional hardware in or around
each scan cell. Therefore, there is a high hardware overhead
that is also prone to failure.

supported in part by NSF grant 1422054 and an Intel grant.

The software based techniques are more widely applied
because no design modification is needed. These can be further
classified into simulation based, probability based and dictio-
nary based. The classic simulation based method proposed by
Guo and Venkataraman [9], [10] makes use of the simulation
invariant bits in scan chains to identify the upper and lower
bounds of scan-chain failures. Their technique was further
enhanced by Kao et al. [11] by ‘jump simulation’ wherein
additional patterns are simulated to improve these bounds.
Huang et al. [12], [13] proposed other methods that rely on
backtracing the circuit graph from the observed mismatches on
good chains to improve the bounds on the scan chain failures.
More recently, Guo et al. [14] have proposed a dictionary-
based method that uses differential signatures of scan cell
failures to diagnose stuck-at, timing and multiple faults in a
single scan chain.

In this paper, we present a hardware-in-the-loop method
that generates and applies scan patterns to the circuit under
diagnosis (CUD) to rapidly improve the failure lower bounds
on scan chains with one or more stuck-at faults. It is a
tester based method but, unlike [3], [4], without the hassle
and cost of integrating the probe or imaging equipment. Our
method adapts to each individual defective chip and generates
the needed tests accordingly. We test our method on larger
ISCAS’89 circuit models with multiple stuck-at faults on
multiple scan chains and compare the achieved diagnosis
quality with that of a state-of-the-art commercial tool.

In Section II, we elaborate on the limitations of the
existing simulation based scan chain diagnosis methods and
the motivation behind our work. In Section III, we describe our
proposed scheme and its key advantages. Section IV lays out
the detail design of our proposed online scan chain ATPG and
diagnosis. In Section V and VI, we explain our experimental
setup, evaluation method and the results of our experiments.
Finally, we conclude the paper in Section VII.

II. MOTIVATION

The automatic test equipment (ATE) for testing chips has
advanced a lot since the pioneering Teradyne J259 and IBM
360 that were introduced around 1966. Since then, we have
seen many improvements and introduction of new technologies
such as memory testing (1973), scan testing (1977), parallel
testing (1990’s), GHz testing (1995) and test compression
(early 2000’s). Resultantly, today’s ATEs are a lot faster, mas-
sively parallel and equipped with much smaller test heads. Our
method for online diagnosis is another proposed technology
improvement in this continuum of ATE evolution.
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Fig. 1. Deterioration in Avg Hit Index with more Faults per Chain
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Fig. 2. Deterioration in Avg First Hit Index with more Faults per Chain

A. More faults per chain deteriorate diagnosis quality

Figures 1 and 2 show three graphs each that represent the
diagnosis quality achieved using a state-of-the-art industrial
tool for three populations of defective chips that have a
maximum defect count of 1, 3 and 7 per scan chain. The
diagnosis quality in these graphs and subsequent discussion
is represented by two quantities.

1) Average Hit Index: The diagnosis tool reports a ranked
list of suspects for each scan chain. The index of an actual
fault location f in this list is called the hit index or hi(f).
We define the average hit index of a simulated faulty circuit
instance as follows:-

hiavg =

∑
∀f∈Fins

hi(f)

|Fins|

where, Fins is the set of all faults inserted in the circuit.

2) Average First Hit Index: The minimum of the hit indices
of all faults inserted in a particular scan chain c is called
the first hit index or fhi(c). The average first hit index of
a simulated faulty circuit instance is defined as:-

fhiavg =

∑
∀c∈Cf

fhi(c)

|Cf |

where, Cf is the set of all faulty chains in the circuit.

As explained in [15], these quantities are legitimate alter-
native representations of the diagnostic resolution when the
reported suspects are ranked. The graphs in Figures 1 and
2 plot the cumulative frequency distribution of the average
hit indices and the average first hit indices respectively. A
point (x, y) on these graphs means that y% faulty chips were

diagnosed with an average hi or average fhi of less than
or equal to x for the stated number of inserted faults per
chain. The higher the graph, the better is the diagnosis quality.
We observe that while both the average hi and the average
fhi deteriorate when more faults are inserted per chain, the
deterioration in the average hi is more significant.
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B. Limitations of Existing Methods

Methods proposed in [9]–[11] first simulate an all X
scan pattern and find if any of the scan cells capture non-X
responses. If the circuit is faulty free, the values of these scan
cells will remain the same irrespective of the applied pattern.
These invariant values help determine the bounds on the scan
chain failure. For example, Figure 3 shows the response to
the all X simulation and the actual response captured on the
tester. As the value of cell 3 is observed 0 upon scan out, we
can say that the stuck-at 1 fault in the scan chain can only
exist upstream of cell 3. Also, the fault must either be at cell
6 or downstream of it to be able to change its value to 1 upon
scan out. Hence, cell 6 is an upper bound. This upper bound
does not hold under multiple fault assumption as there may be
additional fault(s) upstream of cell 6.
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Fig. 4. Determining Bounds by Backtracing from Observation Points

In [12], the fundamental idea is to backtrace from an
observed mismatch at a known good observation point. Figure
4 illustrates the idea. The mismatch observed at cell 2 of the
good chain is traced back all the way to the input (faulty)
scan chain. We conclude that this mismatch could not have
propagated from scan cells 6 and 7 as they lie outside of the
fanin cone of the mismatch. Therefore, cell 5 in the faulty chain
is designated as the upper bound. However, under multiple
fault assumption, there exists a possibility of scan cell 6 and
7 being defective such that the faults could not be propagated
to the observation point(s) by the applied pattern.
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The multiple fault diagnosis technique in [13] computes
two intervals for the dominant fault pair. They define the
dominant fault pair as the two faults Fi and Fo that are closest
to the scan chain input and output respectively. Each interval
is defined by its corresponding upper and lower bound. The
key characteristics of their diagnosis are as follows.

a) The lower bound of Fo is definitive, which means that it
can be stated with certainty that no fault exists downstream of
the lower bound. b) The upper bound of Fo means that there
exists at least one fault downstream of it (until the lower bound
of Fo). c) The lower bound of Fi means that there exists at
least one fault upstream of it. d) The upper bound of Fi is
always the cell closest to the scan chain input pin.

Figure 5 depicts the overall situation that emerges from
this type of diagnosis. One may note that the entire chain
upstream of the lower bound of Fo is suspect. Therefore, the
results obtained by [13] are not very useful at improving the
average hit index. The key takeaway from this section is that
under multiple fault assumption there is no way to determine
an upper bound of failures in regular scan chains that is better
than the cell closest to the scan-in pin. Therefore, in online
diagnosis, we focus only on the lower bounds that can be
determined through scan tests.

III. PROPOSED SCHEME OF ONLINE SCAN DIAGNOSIS

A. Step I: Application of Flush Tests

In the first step, standard flush tests [16] are applied to
identify the faulty chains and the fault type.
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Fig. 6. Overall Scheme of Online Chain Diagnosis

B. Step II: Online Generation of Scan Tests and Diagnosis

Fig. 6 provides a high level view of the second step. We
start the process with a set consisting of the fittest (the notion of
fitness is defined in the next paragraph) k failing patterns from
the detection test set and N − 1 additional sets (or particles)
of k random patterns each. We apply these particles to the

chip under diagnosis (CUD). The optimization engine uses
the fitness as a feedback to modify the existing patterns to
evolve better diagnostic patterns. After a predefined number
of iterations, we have a final best particle that can diagnose
the CUD with a higher quality.
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C. Fitness

1) The Most Upstream Complement Bit: We define the
most upstream complement bit bmucj,i of a scan chain j as the
most upstream bit in j, in a scanned out response Ri whose
value is the complement of the scan chain j’s stuck-at value
as determined by the flush test.

2) Scan Chain Fitness: In the response Ri to the ith scan
pattern Vi, we define the distance of the most upstream com-
plement bit bmucj,i from the scan out pin of chain j as the scan
chain fitness fscj,i of chain j under Ri. Under conventional
scan cell numbering, where the index 0 is assigned to the cell
closest to the scan out, the scan chain fitness for chain j,

fscj,i = index(bmucj,i) + 1

The scan chain fitness fscj,i = 0 if there is no complement
bit in that chain.

3) Particle Fitness: The fitness fP of the particle P is
the sum of the best fitnesses of the scan chains under the
application of its constituent patterns. Mathematically,

fP =
∑
∀j∈C

max(fscj,i ,∀Vi ∈ P )

where, C is the set of scan chains in the circuit. Figure 7
provides an example of the computation of fitness for a particle
consisting of three patterns.

4) Lower Bounds Determination: Once we have the final
best particle at the end of the optimization run, we can compute
the lower bound LBj for each faulty scan chain j by the
following equation.

LBj = bmucj + 1

D. Segmented Approach

The main idea of this design modification is to have the
ability to scan out a partial scan chain. For this purpose, we
propose to divide the scan chain into p segments and link the
scan cell output at the end of each segment to the scan out pin
through one or more multiplexers. These multiplexers can be
easily instantiated into the design and can be controlled from
primary inputs or some configuration register with a much



smaller area overhead than [5]–[8]. Besides, the primary inputs
may be shared amongst the multiplexers if there is a constraint
on the pin count.

E. Key Advantages

1) Adaptive to Actual Failures: The new patterns generated
during the swarm optimization are specific to the diagnosis
of the CUD and will be different for the CUDs that fail
differently.
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2) Fault Tolerance: Any logic or input fault can propagate
to either a) downstream of bmuc, or b) upstream of bmuc,
or c) to the bmuc itself. In the first case, it will not affect
diagnosis. In the second case, it will improve diagnosis if its
value is the same as bmuc (otherwise no effect). In the third and
relatively less likely case, it will deteriorate diagnosis (as the
faulty value is complement of bmuc). The existence of other
different patterns in the particle, however, helps mitigate such
occurrences. Figure 8 illustrates these effects.

IV. DETAIL DESIGN

We use binary particle swarm optimization (PSO) to
generate new and better test patterns for online scan chain
diagnosis. Genetic Algorithms (GA) and Simulated Annealing
(SA) are other valid meta-heuristics to optimize functions in
large discrete search spaces. We, however, borrow the basic
components of our PSO engine from [17] and modify them
to suit our requirement. Our particle swarm constitutes of N
particles, where each particle is a set of k scan patterns. We
choose k to be equal to the number of scan chains in the circuit
so that we can optimize each scan chain independently.

A. The Particle

A particle is a software object having position, velocity and
local best position as its data members.

1) Position: The particle position is a concatenation of k
scan patterns, where k is equal to the number of scan chains.
Each positional bit can be deemed as a binary position coor-
dinate in an mk dimensional space where m is the number of
primary inputs and the scan cells of the circuit under diagnosis
(CUD). Mathematically, P = [p0, p1, ..., pi, ..., pmk−1]

T where
pi ∈ {0, 1}.

2) Velocity: The particle velocity is a vector of real
numbers having the same size as the position vector. Each
component of the vector represents the magnitude of the
velocity in the corresponding dimension. Mathematically, V =
[v0, v1, ..., vi, ..., vmk−1]

T such that vi ∈ R and MINV EL ≤
vi ≤ MAXV EL. In each direction, the velocity is a real
number whereas the corresponding position is a bit, the rela-
tionship between whom is defined such that the magnitude of
velocity is directly proportional to the probability of flipping
the positional bit.

3) Local Best Position: We define the local best position
of a particle, at any moment during the optimization process,
as the position that had the highest fitness in the history of
that particle.

B. Global Best Position

We define the global best position, at any moment during
the optimization process, as the position of any particle that
had the highest fitness in the swarm’s history until that time.

C. Swarm Initialization

We initialize the swarm with N − 1 particles having ran-
domly generated position vectors. The magnitudes of the initial
velocity components are chosen from a uniform distribution in
the interval [HIGHV EL, MAXV EL], whereas their signs
are randomly assigned with equal probability. To ensure rapid
convergence of the swarm the velocities are initialized in a
high range i.e. HIGHV EL is chosen close to MAXV EL.

D. Swarm Seeding

Besides the initial random particles, we also seed the
swarm with a seed particle, using the k best scan patterns
(according to fitness) from the initial detection test set, making
the total particle count equal to N .

E. Swarm Iteration

In every iteration, we update the velocities, positions and
local best positions of all particles in the swarm. We also
update the global best position after all particles have been
updated.

1) Velocity Update: The velocity update in the ith dimen-
sion is governed by the following equation.

vi[t+ 1] = cinervi[t] + ccog(p
LB
i [t]− pi[t])

+ csoc(p
GB [t]− pi[t])

Here, vi[t + 1] and vi[t] are the velocities in the next
and present iterations respectively. The constants ciner, ccog
and csoc are the inertial, cognitive and social weights. And,
pi[t], pLB

i [t] and pGB [t] are the particle’s present position,
the particle’s local best position and the global best position
respectively.

In the above equation we see that the velocity update has
three components. 1) The particle’s present velocity. 2) The
difference between the particle’s present position and its local
best position. 3) The difference between the particle’s present
position and the global best position. The relative influence of



these components on the updated velocity is determined by the
inertial, cognitive and social weights respectively. In case when
the velocity in the next iteration is out of bounds, we limit
it to the maximum magnitude (i.e. vi[t + 1] := MINV EL
if vi[t + 1] < MINV EL and vi[t + 1] := MAXV EL if
vi[t+ 1] > MAXV EL).

2) Position Update: To update position, we generate a uni-
formly distributed pseudo-random number x over the interval
0 and |MAXV EL|. If our velocity component’s magnitude,
|vi| > x, we flip the bit of the corresponding position
component, i.e., pi[t + 1] =∼ pi[t]. Otherwise, there is no
change i.e., pi[t + 1] = pi[t]. This ensures that a higher
magnitude of the velocity increases the probability of the
position bit being flipped.

3) Fitness Computation and Local and Global Best Update:
Once we have determined the position vectors of all particles
for the next iteration, we compute the fitness of every particle
and update the local and global best position, if needed.

F. The Optimization Algorithm

The overall process for online scan chain diagnosis is
formally summarized in Algorithm 1.

Algorithm 1 Proposed Online Diagnosis Algorithm
1: Apply original test set to circuit
2: Use the k best failing patterns to create a seed particle
3: Compute and save the fitness of the seed particle
4: Initialize swarm with the seed particle and N − 1 random

particles
5: for i = 1 : MAX ITERATIONS do
6: for All particles in swarm do
7: Update velocity and position
8: Apply position as scan patterns to the CUD
9: Compute fitness

10: if fitness > local best fitness then
11: Update local best position and fitness
12: end if
13: if fitness > global best fitness then
14: Update global best position and fitness
15: end if
16: end for
17: end for
18: Compute scan chain lower bounds

V. EVALUATION METHODOLOGY

A. Generation of Faulty Circuits and Baseline Results

We evaluate our proposed method of online scan chain
diagnosis on 5 larger full-scan ISCAS’89 circuits each having
5 scan chains. We create detection test sets for each benchmark
using a state of the art industrial tool and generate two
populations of faulty circuits with 0-3 and 0-7 faults per scan
chain each having 300-600 faulty circuit instances. Then, we
perform baseline diagnosis by the same tool using the detection
as well as the additional diagnostic patterns in our experiments.

B. Online Diagnosis Configuration

For each faulty circuit instance, we create the seed particle
using 5 fittest failing patterns from the detection test set. Then,
we initialize a swarm of 3 particles with random positions and
velocities such that we have 4 total particles including the seed.
Setting MINV EL = −50000, MAXV EL = 50000 and
HIV EL = 48000 produces the initial velocities within the
top 4% of the velocity range. We then run the online diagnosis
with MAX ITERATIONS = 5 to evolve and save the
best particle. During this process, we set ccog = 20000,
csoc = 20000 and linearly vary ciner from 8000 to 100 over 1
to MAX ITERATIONS. All computations are done using
suitably scaled integers and no floating point operations are
involved.
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C. Comparative Analysis

The upper and lower bounds of the suspect range in the
baseline results are non-definitive, which means the actual
faults may be found beyond both ends of the suspect range.
We believe that this non-definitiveness is because the industrial
tool most likely uses a dictionary based approach such as [14].
On the other hand, the list of suspects from the online diagnosis
contains all the cells upstream from the chain lower bound.
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Fig. 10. Counting Hit Index Beyond the Suspect List

To have a fair comparison, we continue to count the hit
index beyond the suspect list reported by the offline tool.
Figure 10 illustrates the counting method. To start with, we
count all the suspects in the reported list from the top ranking
to the lowest ranking one. Then, we count alternately on both
sides of the suspect list until we hit all inserted faults in the
suspect list. The pink cells are the reported suspects and the
stars are the actual inserted faults, whereas the numbers are
the counted indices. E.g. in the second chain from the left, we
first count the reported suspects up to ‘3’ within the suspect
range and then on alternate sides i.e. ‘4’ upstream and ‘5’
downstream. As there is no more cells upstream, we continue



to count downstream and hit the fault at ‘6’, which becomes
the inserted fault’s hit index. An alternative to this counting
method is to continue counting upstream all the way until we
reach the end of the scan chain and then continue downstream.
This, however, yielded worse results for the offline diagnosis.

VI. RESULTS

A. Accuracy Comparison

The accuracy of the online method is always 100% because
the lower bound is definitive. The accuracy of offline diagnosis,
on the other hand, is usually less than 100% because many
faults miss the reported suspect list. However, due to the
adjustment made for a fair comparison in the previous section,
we effectively include the entire faulty chain in the list of
offline diagnosis suspects. Resultantly, the accuracy is marked
at 100% for both techniques and not reported here.

0

20

40

60

80

100

120

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0
0

1
1
1

1
2
2

1
3
3

1
4
4

1
5
5

1
6
6

1
7
7

1
8
8

1
9
9

2
1
0

2
2
1

2
3
2

2
4
3

2
5
4

2
6
5

2
7
6

2
8
7

2
9
8

%
ag

e
 o

f 
fa

u
lt

y 
ci

rc
u

it
s

Average Hit Index

Cumulative Frequency Distribution

Offline Online Online_4seg

Fig. 11. Comparison of Average Hit Index for Circuits having Max 3 Faults
Per Chain

0

20

40

60

80

100

120

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0
0

1
1
1

1
2
2

1
3
3

1
4
4

1
5
5

1
6
6

1
7
7

1
8
8

1
9
9

2
1
0

2
2
1

2
3
2

2
4
3

2
5
4

2
6
5

2
7
6

2
8
7

2
9
8

%
ag

e
 o

f 
fa

u
lt

y 
ci

rc
u

it
s

Average Hit Index

Cumulative Freq Distribution

Offline Online Online_4seg Online_16seg

Fig. 12. Comparison of Average Hit Index for Circuits having Max 7 Faults
Per Chain

0

20

40

60

80

100

120

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0
0

1
1
1

1
2
2

1
3
3

1
4
4

1
5
5

1
6
6

1
7
7

1
8
8

1
9
9

2
1
0

2
2
1

2
3
2

2
4
3

2
5
4

2
6
5

2
7
6

2
8
7

2
9
8

%
ag

e
 o

f 
fa

u
lt

y 
ci

rc
u

it
s

Average First Hit Index

Cumulative Frequency Distribution

Offline Online Online_4seg

Fig. 13. Comparison of Average First Hit Index for Circuits having Max 3
Faults Per Chain

B. Hit Index Comparison

The graphs in Figure 11 and 12 plot the cumulative
frequency distribution of the average hit index for the offline
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Fig. 14. Comparison of Average First Hit Index for Circuits having Max 7
Faults Per Chain

and two different configurations of the online diagnosis for
populations of faulty chips having at most 3 and 7 faults per
chain respectively. Again, a point (x, y) on these graphs means
that y% faulty chips were diagnosed with an average hit index
of less than or equal to x. Figure 13 and 14 show similar
plots for the average first hit indices for populations of faulty
chips having at most 3 and 7 faults per chain respectively.
It may be observed that the online diagnosis outperforms the
offline diagnosis in all populations for both the segmented and
unsegmented cases.

C. Benchmark-wise Results

The table I presents the benchmark wise aggregated results
for average hit index and average first hit index for different
techniques and configurations. The first and second columns
state the faults inserted per chain (FPC) in the population
and the names of benchmarks. Columns 3 and 4 list the
population averages of the average hit index (HI) and average
first hit index (FHI) achieved by the offline diagnosis using
the initial test set. Columns 5 and 6 present the HI and FHI
for the case when diagnostic patterns were generated by the
industrial tool. Columns 7-10 and 11-14 present the same
results for online diagnosis with a swarm having 4 particles, 5
patterns per particle and 5 iterations and 8 particles, 5 patterns
per particle and 5 iterations respectively. For the 0-3 FPC
case, we present results using 4 segments, whereas for the
0-7 FPC case the results are presented for 16 segments. The
online method outperforms the state-of-the-art offline method
for all benchmarks, in terms of the average hit index for all
faults inserted into circuits, even when the chains were not
segmented. The results for the segmented approach are even
better. In terms of the average first hit index, we do see the
offline method performing better than the online for a couple of
benchmarks. For the remaining benchmarks, the online method
is better, even when we are comparing the first hit indices.

D. Computational Complexity

The computational complexity of our method is O(k×p×
N × MAX ITERATIONS × G/10) = O(G), where G
is the number of gates in the circuit and we assume that the
number of scan elements and primary inputs of the circuit is
about G/10. The other quantities have been defined earlier
in the paper. We have observed in our experiments that, for
the scan chain diagnosis, small sized swarms can converge
to an acceptable quality in significantly fewer iterations than
the logic diagnostic test pattern generator (DTPG) proposed in



TABLE I. CIRCUIT-WISE COMPARISON OF AVERAGE HIT INDEX AND AVERAGE FIRST HIT INDEX

FPC Bench
Offline Online (4, 5, 5) Online (8, 5, 5)

Initial Test Set with Addl Patterns Full Chain Segmented Chain Full Chain Segmented Chain
Avg HI Avg FHI Avg HI Avg FHI Avg HI Avg FHI Avg HI Avg FHI Avg HI Avg FHI Avg HI Avg FHI

0-3

s05378 10.08 1.89 10.07 1.88 6.78 1.08 1.46 1.1 6.78 1.08 1.42 1.06
s09234 8.14 2.15 8.13 2.14 7.12 2.66 3.52 2.3 7.1 2.64 3.46 2.32
s13207 36.01 4.67 36.01 4.67 27.42 5.5 10.04 3.86 27.44 5.52 9.94 3.86
s15850 31.19 5.47 31.90 5.99 22.9 4.44 6.72 3.48 22.8 4.32 6.68 3.48
s38417 81.99 11.49 81.64 10.97 58.78 8.6 17.4 6.14 58.66 8.56 17.56 6.1
s38584 65.22 4.37 65.21 4.34 43.44 3.5 8.28 2.74 43.46 3.54 8.36 2.68

0-7

s05378 14.31 2.28 14.32 2.28 10.75 1.1 1.18 1.04 10.74 1.1 1.18 1.04
s09234 12.76 2.17 12.78 2.23 11.02 2.33 3.74 1.63 11.05 2.34 3.82 1.66
s13207 54.20 8.27 54.17 8.15 44.84 6.13 9.14 2.64 44.73 6.04 9.16 2.6
s15850 48.21 6.82 48.19 6.76 38.54 4.79 6.04 2.03 38.49 4.68 5.99 2.03
s38417 132.35 18.45 132.25 18.28 103.98 9.96 13.73 4.2 103.95 9.93 13.56 4
s38584 108.38 7.05 108.25 6.85 84.81 4.36 6.23 1.69 84.76 4.35 6.19 2.01

[17]. This is because there are many available ways of placing
the complement of a stuck-at value in a scan chain or segment.
The computational complexity for the offline approach, on the
other hand, is O(G2) if it is fault simulation based and even
higher if it is deterministic.

VII. CONCLUSION

We have proposed an effective online scan chain diagnosis
method for multiple stuck-at failures on scan chains that works
by iteratively modifying test patterns, and applying them to
the chip under diagnosis. The method is adaptive to the actual
defect(s) and eliminates the need for offline analysis. In our
experiments on the larger ISCAS’89 benchmarks, we achieved
70% and 37% improvement in the average avg. hit index over
all circuit instances, for the segmented and non-segmented
cases respectively, as compared to a state-of-the-art offline
industry tool, when 0 to 7 faults were randomly inserted in
each scan chain. Our method does require additional tester
time, which may be preferred to the computational, setup and
overhead costs of the offline diagnosis during the yield learning
process.
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