
Routing at Compile Time
Chun-Xun Lin∗, Tsung-Wei Huang†, Martin D. F. Wong‡

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, USA

E-mail: {∗clin99, †thuang19, ‡mdfwong}@illinois.edu

Abstract—The rapid evolution of modern C++ programming
language has completely changed the way developers write high-
performance and robust applications. By modern, we mean
C++17, which has revolutionized the “old-fashion” C++98 in
many aspects such as meta-programming, concurrency controls,
and functional programming. Despite the tremendous progress
in language innovation, research on how these advanced features
can improve EDA programs is still nascent. In this paper, we
introduce a novel routing framework using the technique of
generalized constant expression in C++17. Our framework allows
a router to take advantage of compile-time computation and thus
can save a significant amount of engineering effort that would
otherwise be issued every time the program runs. By prescribing
computation at compile time, the compiler is able to further
produce more optimized codes to run faster than ever before.

We have evaluated our framework on classic routing problems
and have demonstrated promising performance gain over which
is done solely at runtime. Our framework has the potential to
change many fundamental EDA building blocks and thus can
achieve better tool performance and engineering productivity.

I. INTRODUCTION

Grid-based maze routing is a fundamental problem in elec-

tronic design automation (EDA) [1] and is a integral part of

many routing applications such as global routing [2], [3] and

detailed routing [6]. A router is not only a standalone tool

in the EDA flow but it also works closely with other tools

in various stages to deliver useful information for optimizing

wire connection. A high-quality router is definitely positive to

improve runtime bottleneck and tool scalability, especially for

modern circuit designs which are far more dense and complex

than last decades. As a result, the goal of this paper is to revisit

the routing problem from a new angle of software engineering

using powerful language features of modern C++17.

There has been a great deal of research work on routing

algorithms [4], [5], [7]. Prior works are categorized to either

breadth-first search (BFS)-based solutions which highly rely

on memory to propagate the search space, or depth-first

search (DFS)-based variants which typically trade memory or

optimality for speedup. While these algorithms have their own

pros and cons and most have been extensively applied to real

designs over decades, a fundamental assumption they made

is computation at runtime. In other words, the computation or

algorithm will not be issued until executables are compiled and

loaded to operation system (OS)’s virtual space. This design

philosophy has been around for years due to the excellent

performance of C++ language since a major release in 1998.

1C.-X Lin and T.-W Huang contributed equally to this work.

While this “old-fashioned” C++98 has been present in existing

routers and other tools, modern C++17 is quickly changing the

way people develop robust and high-performance applications.

Given the unique attributes of routing problems, we have

observed a rich set of advanced language features in C++17

can be applied to revolutionize the framework people used to

develop routers. To speak in specifics, we are interested in

generalized constant expression, which enables the compiler

to evaluate function values at compile time.

Moving computations to compiler has many benefits in

dealing with routing problems. First, developers can save a

significant amount of engineering effort that would otherwise

be issued every time an executable is loaded. Monotonous

routines such as parsing and preprocessing prerequisite li-

braries cost additional runtime. This can be done at one

time with compile-time computation. Second, by prescribing

computation at compile time, the compiler is able to further

produce more optimized codes to run faster than ever before.

The computations are replaced by the results in the executable

and the runtime is reduced by consulting the results during

execution. Last but not least, defining value expression at

compile time makes the project less dependent on third-party

libraries or external APIs. Some routers [8], [9] use features

known in advance to speed up the routing and those features

are typically stored as an isolated library to be loaded during

execution time. This dependency can degrade the portability

of the router, making integration difficult when operations or

file f o r m a ts n e e d to b e r e d e fin e d .

In this paper, we present a compile-time routing framework

based on generalized constant expression of modern C++17.

In contrast to existing routing frameworks where computations

are issued at runtime, our approach can generate routing

solutions at compile time. By writing compiler-friendly meta

codes, our framework is advantageous in type safety, auto

deduction, and versatility. This enables fine-grained optimiza-

tion to generate more efficient codes which can accelerate

the router to the next level. To the best knowledge of the

authors, this is the first work that introduces a compiler-based

approach to solve the routing problems. Our contributions are

summarized as follows:

• Routing from compilation. In contrast to the normal

routing methods which are done at runtime time, our frame-

work of routing from compilation introduces a new way

to design high performance routers. We have successfully

demonstrated the viability of routing at compile time. Our

idea can inspire developers to rethink the way they used to

978-1-5386-1214-9/18/$31.00 ©2018 IEEE 169 19th Int'l Symposium on Quality Electronic Design

apply in EDA tools, and to incorporate modern C++ features

to broaden the performance gain.

• Efficient engineering turnaround. Our framework is ad-

vantageous in improving the process efficiency of integrating

routers with other tools such as routability-driven placement

and timing. Embedding routing solutions into the object

codes of executables can greatly facilitate the engineering

turnaround, for example, debugging, testing, and runtime

crash that require frequent program relaunches to backtrace

the bugs and faults.

• Unified framework. The proposed framework makes a

router more standalone, portable and easier to integrate

with other tools. By pushing computations that are known

beforehand or by algorithms to compiler, our runtime suffers

from less dependency on external libraries and is more

flexible when the software advances to the next generation.

Experimental results have demonstrated routing at compile-

time can save considerable execution time, which has the

potential to change the way people develop the tools. With

integrating the routing at compile-time, the turnaround time

can also be greatly reduced by avoiding recomputing in each

iteration when testing or debugging the tools.

The rest of the paper is organized as follows. In section II,

we formulate the incremental grid-based routing problem. In

section III, we introduce two C++ new features, generalized

constant expression and template meta-programming, which

enable fine-grained compile-time computation. In section IV,

we first illustrate the routing algorithm and analyze the pros

and cons of compile-time routing using the two features, then

a compile-time router framework with the desirable feature

is present. Our experimental results is in section V and the

conclusion in section VI.

II. PROBLEM FORMULATION

In this paper, we consider the grid-based maze routing

problem under the presence of weights. Weighted maze rout-

ing plays an fundamental role in many routers and other

EDA tools. The input is a two-dimensional grid graph G =
{V,E,W,N}, where V is the node set for the cells, E is

the edge set for neighboring connections, W is the weight

vector denoting the cost of vertices or edges, N is a set of

two-pin nets with each net consisting of a source node and a

target node. For each source-target pair, a valid route is a path

starting from a source vertex and ends at the corresponding

target vertex. The length of a route is the sum of all weights in

the route. The goal is to establish connections for these two-

pin nets while minimizing the congestion cost given by inputs.

Instead of developing a complete router which requires more

sophisticated constraints (e.g., timing, design rule checking),

the goal of this paper focus on a prototype of compiler-

driven routing framework. We aim to discover the feasibility

of moving a common negotiation-based routing procedure to

compiler in order to speed up the engineering turnaround that

would otherwise be repeatedly invoked during the runtime,

for instance, debugging and testing timing programs given

a constant routing benchmark. The proposed framework is

illustrated in Figure 1. Compared to the regular routing flow

at runtime, the input benchmarks are modified as parts of

the source codes and will be compiled together to generate

solutions in our framework. It is observed that our framework

has less overhead from disk IO and dynamic memory man-

agements at runtime.

Disk

Memory

Algorithm

Compile

Router codes

Benchmark

(*.cpp/*.hpp)

Result

Compile

-std=c++1z

Router codes

+

(a) Runtime routing framework

(b) Compile-time routing framework

Memory

11100000011

10101001111

00000001100

10101001001

11011100111

00000011111

10111111111

00110001100

10101001001

11011100001

binary

binary
Execute

Execute

Benchmark

(netlist, assertion)

Input/Output overhead Dynamic memory

 allocation

(heap)

Static

Context

(stack)

Link to 3
rd

-party

libraries (.so, .a)

Standalone

executable

C++17 (GCC 6.2,

Clang 4.0)

Old-fashioned

C++

Fig. 1: The proposed compiler-driven routing framework and

its comparison to regular routing flow at runtime.

III. COMPILE-TIME COMPUTATION IN C++17

In this section, we introduce essential C++ features that

enable compile-time computation. C++ has experienced an

enormous advancement in 2017, also referred to as C++17.

More and more useful features such as auto type deduction

and template programming are added into C++, allowing the

programmers to design more efficient software. With the evo-

lution of C++, the compiler has also been updated to support

the latest standard. A powerful feature of C++ is the ability

to perform compile-time computation, which is to enable

the compiler to evaluate the values of objects in compile-

time. This occurs when a program uses generalized constant

expression [10] or template meta-programming. We shall brief

the concept of meta-programming and generalized constant

expression and then address the challenges of compile-time

computation.

A. Modern Meta-programming

Template programming paradigm is the first C++ feature

that enables compile-time computation. Template is developed

by C++ in the early 90s and the motivation is to obviate

rewriting similar codes for different data types. A template

describes the generic way to create an object such as a function

or a class, and the compiler instantiates a template when the

program invokes the template with a given type. By using

templates, programmers can drive the compiler to generate

constant data in compile-time. To enhance the functionality of

template, modern C++ has introduced variadic template. Un-

like a normal template where the number of input arguments

are fixed, a variadic template can accept variable number of

arguments, which further increases the flexibility of template

meta-programming. For instance, Listing 1 demonstrates how

we alter the weights of the grid graph to perform incremental

routing at compile time 2.

1 template <

2 typename T, typename M,

3 typename N, typename R

4 >

5 struct UpdateWeight;

6
7 template <

8 typename T,

9 template <T...> class M,

10 template <T...> class N,

11 template <T...> class R, T... r

12 >

13 struct UpdateWeight<T, M<>, N<>, R<r...>> {

14 using type = R<r...>;

15 };

16
17 template <

18 typename T,

19 template <T...> class M,

20 template <T...> class N,

21 template <T...> class R

22 T... m, T m1, T... n, T n1, T... r

23 >

24 struct UpdateWeight<

25 T, M<m1, m...>, N<n1, n...>, R<r...>> {

26 using type = typename UpdateWeight<

27 T, M<m...>, N<n...>,

28 R<r..., m1+n1>>::type;

29 };

30
31 template <int...>

32 struct Numbers

33 {};

34
35 template <int... Weights>

36 struct Grid {

37 using elements = Numbers<Weights...>;

38 };

Listing 1: Routing grid graph at compile time.

The struct Grid is a variadic template to represent the

universe of a weighted grid graph. The Weights is a variadic

template argument called parameter pack that takes arbitrary

numbers of edges. The element in a parameter pack can be

access by pack expansion, which is the ellipsis “...”

followed by Weights in the struct Grid. We introduce

another variadic template UpdateWeight which operates

on four template arguments, T, M, N, and R to mimic weight

update on computing a shortest route. The template argument

T denotes the data type of the weight, which could be integer,

floating points, and other arithmetic types. The template argu-

ments R stores the grid graph with weights updated from the

M and N, and the final grid map is forwarded back to another

variadic template Numbers. Working on these fundamental

template building blocks, we are able to establish sophisticated

routing procedures at compile time. Listing 2 demonstrates the

2All the code listings present in this paper are written in C++17 and are
compilable with GCC 6.2 or Clang 4.0 enabling -std=c++1z.

usage of our templates to reflect the weight update on a 5× 6
grid graph from a given route.

1 using weights = Grid<

2 1, 2, 1, 6, 1,

3 2, 1, 3, 8, 5,

4 1, 3, 1, 1, 7,

5 6, 8, 1, 1, 9

6 >;

7 using route = Grid<

8 1, 1, 0, 0, 0,

9 0, 1, 0, 0, 0,

10 0, 1, 1, 1, 0,

11 0, 0, 0, 1, 0

12 >;

13
14 using result = UpdateWeight<int,

grid_graph::elements, route::elements,

Numbers<>>::type;

Listing 2: Update weights (iterative and incremental) on the

grid graph at compile time.

Another key feature introduced by C++17 to facilitate the

meta-programming is the generalized constant expression. The

idea of constant refers to those variables whose values remain

fixed through the lifetime of the program. C++17 extends

this scope to compile time by allowing users to prescribe

function evaluations on constant values using the semantic

constexpr. A function or variable declared with constant

expression implies its value can be possibly derived at compile

time. When evaluation is not possible, a constant expression

falls back to runtime while the compiler is still able to generate

more optimized codes. In practice, constant expression can be

used combined together with the templates to write efficient

meta codes.

1 constexpr int grid_size = 20;

2 constexpr int S = -2;

3 constexpr int T = 17;

4
5 constexpr int path(

6 const int P[N],

7 const int current,

8 const int count

9){

10 if(P[current] == S)

11 return count;

12 else

13 return path(P, P[current], count + 1);

14 }

15
16 constexpr int P[grid_size] = {

17 1, S, 1, 2, -1,

18 0, 1, 6, 7, -1,

19 11, 6, 11, -1, -1,

20 15, 11, 12, -1, -1

21 };

22
23 constexpr int length = path(P, T, 0);

Listing 3: Backtrace the path using const expression at

compile time.

Listing 3 shows an example of recursive constant expression

to retrieve a path trace from a grid graph. Starting from the

target node, the function path recursively counts the number

of nodes on the shortest paths stored in the backtrace array

P. It is observed that the logic of this simple procedure is

identical to many of that found in runtime algorithms using

dynamic programming. However, in order to issue compile-

time computations, all the arguments passed to the function

path should be declared as constant values during the evalu-

ation. Adding the keyword constexpr provides useful hints

to the compiler and makes the compilation easier to generate

more optimized codes. In this example, we invoke the function

path by passing a 4 × 5 grid graph together with a pair of

source and target nodes. With a decent modern compiler, the

path from the source to the target can be evaluated at compile

time. In other words, the function path is no longer present

in the object codes.

B. Challenges

While constant operations can be hard-coded to persist as

immutable objects at runtime, such method is neither flexible

nor general when operations have to be redefined or changed in

later developments. As we see, the way C++ defines compile-

time computation shares similarities with that of hardware

description language (HDL) in modeling electronic systems.

Loops and iterations are by default extended and flattened by

the compiler. This property gives rise to critical challenges in

writing efficient meta codes to implement routing algorithms.

One of the biggest challenges is to correctly implement the

flow control with meta codes. Even if template provides

programmers a flexible way to carry out compile-time com-

putation, the underlying implementation, though depending on

compilers, can introduce significant resource overhead (e.g.,

memory) due to the “flatness” property. Also, recursion is the

only way to operate on variadic templates, as parameter packs

rely on pattern matching to realize the control flow. Without

carefully designing templates, the instantiation of template

objects can easily go too deep to finish the compilation under

reasonable resources.

Writing constant expression codes does provide a better

alternative to implement flow control than pure template

instantiation. However, constant expression is not as general as

template instantiation as it requires every expression unit to be

immutable. Also, a constant expression cannot modify the state

of external objects beyond its scope (e.g., global variables).

Functions called from a constant expression should stick with

constant expressions as well. In fact, premier compilers and

C++ standards restrict constant expression to be only one

line. Even though this constraint has been relaxed by modern

C++17, many compiler vendors still suffer from a hard limit on

the depth a constant expression can join, including recursion,

jumping to other subroutines, and so on. Apparently, such

limitation can inevitably affect the capability of a function.

As a result, programmers need to rethink their algorithms and

data structure to suit with these paradigms in order to gain

benefits from compile-time computations.

Algorithm 1: Weighted Grid Graph Routing at runtime

Input: S: source vertices, T : target vertices, W : weights

of edges, V , E: vertices and edges on the grid

Output: shortestRoutes

1 dist← {};
2 prev ← {};
3 Q← {};
4 foreach v ∈ V do

5 dist← dist ∪ {0};
6 prev ← prev ∪ {0};
7 end

8 foreach (s, t) ∈ (S, T) do

9 foreach v ∈ V do

10 dist[v]← inf;
11 prev[v]← −1;

12 end

13 dist[s]← 0;

14 prev[s]← −2;

15 Q← {s};
16 while Q not empty do

17 q ← min(Q);
18 if q == t then

19 break;

20 end

21 foreach n ∈ neighbor(q) do

22 if dist[n] > dist[q] +W [E[n, q]] then

23 Q← Q ∪ {n};
24 dist[n]← dist[q] +W [E[n, q]]

prev[n]← q;

25 end

26 end

27 end

28 route← backtrace(prev, t);
29 updateWeight(W, route);
30 shortestRoutes← shortestRoutes ∪ route;

31 end

32 return shortestRoutes;

IV. ROUTING WITH META-PROGRAMMING

In this section, we first introduce the incremental weighted

grid graph routing at runtime. Then, we map the steps in the

runtime algorithm to our compile-time routing framework by

using the C++ features.

A. Weighted Grid Graph Routing at Runtime

Finding the optimal net routing order has been proved to

be a difficult task [11], and the general strategy adopted

by routers in EDA is to sequentially route each net. As

the goal of this work is to minimize congestion instead of

finding the optimal routing, our approach is to route each

net incrementally following the input order. To reflect the

congestion caused by routed nets, the weights of edges on

the grid graph must be updated every time a net is routed.

The classic maze routing problem can be seen as a special

case of our weighted grid graph routing problem, where the

maze routing problem considers only one source-target pair.

The typical way to solve the maze routing problem is via

breadth-first search (BFS). BFS starts from the source vertex

and propagates through neighboring vertices until reaching

the target vertex. Backtracing is employed to retrieve the

shortest route after arriving at the target vertex. Our idea

is to iteratively apply maze route on each source-target pair

and increase the weights of edges on the shortest route. We

sketch our incremental weighted grid graph routing algorithm

in Algorithm 1

The inputs to the algorithm are the vertices and edges on

the grid, weights of edges and the source-target pairs. The

algorithm finds the shortest route for each source-target pair

from line 8 to 32. From line 9 to 27, the maze routing starts

propagation from the source vertex and stops when target

vertex is found. In line 28, the backtrace subroutine starts

from the target vertex to retrieve all nodes on the shortest

route and another subroutine UpdateWeight increases the

weights of edges on the route in line 29. In line 30, the shortest

route is stored in the output.

B. Compile-time routing framework

Our goal is to map the runtime routing algorithm to the

compile-time routing framework using the two C++17 features

and we demonstrate how to convert the essential operations to

compile time.

First, we observe the routing algorithm has count-based

loops and a condition-control loop in control flow. The con-

stant expression has no difficulty in realizing these control

flows whereas employing recursion of template for the loops

is more complicated:

1 template <typename T,

2 typename G,

3 int Pair,

4 int Count> struct ForLoop;

5 template <typename T,

6 template <T...> class G,

7 T... g, int Count>

8 struct ForLoop<T, G<g...>, 1, Count> {

9 static const int count = Count;

10 };

11
12 template <typename T,

13 template <T...> class G,

14 T... g, int Pair, int Count>

15 struct ForLoop<T, G<g...>, Pair, Count> {

16 static const int count =

17 ForLoop<T,G<g...>,Pair-1,Count+1>::count;

18 };

Listing 4: A simple for-loop using template.

Listing 4 is a simple example of using a template ForLoop

to loop Pair times. In this example, the struct ForLoop

repeatedly instantiates itself with decreasing the Pair by 1

every time until Pair becomes 1.

Next, we need to update the values of variables in compile

time as the routing algorithm has mutable data such as the

weights and distance. For template, variables cannot be mod-

ified after initialization. In other words, changing the values

of variables is equivalent to create new variables to hold the

values. For constant expression, an important restriction is

unable to modify the status of external objects. To cope with

the immutability restriction, a workaround is to create a local

array with fixed size for the algorithm manipulation, which

requires to know the size of data in advance.

The last operation is to access the data in compile time.

An important observation is that the data access in routing

algorithm is very irregular. During the propagation the update

order is determined by the distance between each vertex and

the source vertex. Consequently only a subset of vertices might

be access and those vertices might vary greatly from pair to

pair. For variadic template, to retrieve a specific element in a

parameter pack , one way is to recursively visit the elements

until it is reached. Listing 5 demonstrates how to access the

Nth element in a parameter pack.

1 template <typename T, typename P, int N>

struct GetNthElement;

2
3 template <typename T,

4 template <T...> class P,

5 T p1, T... p2>

6 struct GetNthElement<T, M<p1,p2...>, 0> {

7 static const T value = p1;

8 };

9
10 template <typename T,

11 template <T...> class P,

12 T p1, T... p2, int N>

13 struct GetNthElement<T, P<p1,p2...>, N> {

14 static const T value =

GetNthElement<T,P<p2...>,N-1>::value;

15 };

Listing 5: Access an element in parameter pack. (method

1)

The struct GetNthElement is a variadic template to

recursively search the Nth element in the parameter pack P.

This method is less efficient due to the recursive element visit.

Another way is to put all parameters in the array and returns

the Nth element. Listing 6 shows the second method.

1 template <typename T, typename M, int N>

2 struct GetNthElement;

3
4 template <typename T,

5 template <T...> class M,

6 T... m, int N>

7 struct GetNthElement<T,

8 M<m...>, N> {

9 static constexpr T array[sizeof...(m)] =

{m...};

10 static constexpr T value = array[N];

11 };

Listing 6: Access an element in parameter pack. (method

2)

The parameter pack M is put into array and the Nth element

is extracted in value. For constant expression, the access to

specific data is the same as access an element in an array.

To summarize, the proposed compile-time routing frame-

work is analogous to the runtime algorithm except some

changes are necessary in order to conform to the restriction

of compile-time computation. We detail those changes below.

First, one of the inputs, weights of edges, has to be updated

during routing. To handle this, a temporary array with the same

size is created to avoid modifying the input.

Second, unlike the runtime algorithm that can dynamically

allocate memory, the size of local arrays has to be determined

before compiled. In the routing algorithm, the size of dist

and prev is set to the grid size. For the array Q that keeps

the frontier vertices, the possible maximum number of frontier

vertices is equivalent to the perimeter of the grid and thus the

size of Q is set to the perimeter of the grid.

Third, the output shortestRoutes cannot be an input

parameter of the function as shortestRoutes will be

modified during routing. Therefore, in compile-time routing

the shortestRoutes is declared as a local array inside the

function and will be returned at the end of function. Determine

the way to store a shortest route is of critical importance since

this affects the size of shortestRoutes. For each shortest

route, we only store the source vertex, target vertex and bends,

which can save considerable space.

V. EXPERIMENTAL RESULTS

We implemented our framework in C++ language and

conducted experiment on a machine with a 2.4 GHz CPU

and 33 GB memory. Our framework is compiled by Clang

4.0 enabling the flag -std=c++1z to support for the latest

C++17 standard. We did not select the latest release of GCC

6 because many advanced C++17 features are still under con-

struction. There should be no significant difference between

compiler vendors as our framework follows the official C++

standards. We randomly generate 10 test cases of 500×500
grid graphs and run each test case over different numbers of

nets. The runtime routing algorithm presented in Algorithm

1 is considered as the baseline. For simplicity, we refer

the routing at compile time as the compile-time router and

routing at runtime as the runtime router. The elapsed time

of each program is denoted as “execution time.” We report

the execution time of each program on an average of 10 runs.

Both programs are compiled with O2 optimization flag to drive

compute-optimized codes.

We first compare the average execution time of both frame-

works on each benchmark. Figure 2 shows the execution

time. It is expected that the compile-time router completes

the routing faster than the runtime router over all test cases.

The execution time of the runtime router increases linearly

with the problem size while the counterpart of the compile-

time router remains almost zero. Figure 3 shows the speedup

of each set. The compile-time router achieves an order of

magnitude speedup over the runtime router in each set and the

speedup continues to scale with the increase of problem size.

Fig. 2: Comparison between routing at compile time and

routing at runtime

Fig. 3: The speedup of compile-time routing over runtime

routing

The benefit of our framework can be clearly observed in this

experiment. By pushing computations to compiler, we are able

to embed routing solutions into the objects of the executable.

For applications where routing blocks are treated as fixed black

box, our framework provides another optimization opportunity

for further speedup.

Next, in Figure 4 we demonstrate the compilation time of

the compile-time router on each benchmark. The compilation

time grows linearly with the problem size, which is similar

to the execution time of the runtime router. Though expected,

a great advantage of the compile-time router is that routing

is performed only once from compilation, and the result can

be reused many times during the runtime with almost zero

computation. This can greatly reduce the time and effort for

engineering turnaround. For example, consider a flow where

we need to extract the parasitics from a fixed routing block

for timing analysis as shown in Figure 6. During the timing,

the routing blocks remain unchanged and it is not efficient to

reroute the circuits for each turnaround iteration. While it is

true the solutions can be pre-stored in the database for later

reuse, such methods still involve frequent disk I/O overhead.

Instead, our framework provides another alternative to improve

this issue by routing from compilation. As the routing so-

lutions are embedded in the compile-time router, substantial

turnaround time can be saved by avoiding recomputation in

each turnaround iteration, for example, debugging the faults

of the timer. Figure 5 shows the potential saving of engineering

efforts in terms of runtime improvement by adopting our

framework.

Fig. 4: Compilation time of compile-time router.

Fig. 5: Turnaround between router and timer.

Fig. 6: Turnaround cost for routing at compile time and

runtime.

VI. CONCLUSION

In this paper, we present a routing at compile time frame-

work that can substantially reduce the execution time by

prescribing computation to compilation. We utilize the two

powerful C++17 features: variadic template and generalized

constant expression that enable the computing at compile

time to build our routing at compile time framework. The

experimental results show that, compared with a routing at

runtime method, routing at compile time can achieve an order

of magnitude speedup and the execution time remains close

to zero even when the problem size increases. We further

demonstrate with integrating the compile-time computation,

considerable engineering turnaround can be saved by avoid-

ing recomputation. Our work shows the potential of using

compile-time computation to design better tools and benefit

the EDA flow. For future work, we plan to investigate potential

approaches to speed up the compilation, such as employing an

existing distributed build tool [12] or designing a distributed

compilation flow on a distributed execution engine [13].

VII. ACKNOWLEDGMENT

This work is partially supported by the National Science

Foundation under Grant CCF-1421563 and CCF-171883.

REFERENCES

[1] Lee, Chin Yang, “An algorithm for path connections and

its applications,” IRE transactions on electronic computers,

(3), pp. 346–365, 1961.

[2] Liu, Wen-Hao and Kao, Wei-Chun and Li, Yih-Lang and

Chao, Kai-Yuan, “Multi-threaded Collision-aware Global

Routing with Bounded-length Maze Routing,” ACM/IEEE

DAC, pp. 200–205, 2010.

[3] Liu, Wen-Hao and Kao, Wei-Chun and Li, Yih-Lang and

Chao, Kai-Yuan, “NCTU-GR 2.0: Multithreaded Collision-

Aware Global Routing With Bounded-Length Maze Rout-

ing,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, pp. 709–722, 2013.

[4] Soukup, J., “Fast Maze Router,” ACM/IEEE DAC, pp.

100–102, 1978.

[5] Hadlock, FO, “A shortest path algorithm for grid graphs,”

Networks, pp. 323–334, 1977.

[6] Zhang, Yanheng and Chu, Chris, “RegularRoute: An Ef-

ficient Detailed Router with Regular Routing Patterns,”

ISPD ’11, pp. 45–52, 2011.

[7] Huang, Tsung-Wei and Wu, Pei-Ci and Wong, Martin D.

F, “UI-Route: An Ultra-Fast Incremental Maze Routing

Algorithm,” SLIP ’14, pp. 4:1–4:8, 2014.

[8] C. Chu and Y. C. Wong, “FLUTE: Fast Lookup Table

Based Rectilinear Steiner Minimal Tree Algorithm for

VLSI Design.” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, pp. 70–83,

2008.

[9] G. Ajwani and C. Chu and W. K. Mak, “FOARS: FLUTE

Based Obstacle-Avoiding Rectilinear Steiner Tree Con-

struction,” TCAD ’11, pp. 194–204, 2011.

[10] Dos Reis, Gabriel and Stroustrup, Bjarne, “General Con-

stant Expressions for System Programming Languages,”

SAC ’10, pp. 2131–2136, 2010

[11] L. C. Abel, “On the Ordering of Connections for Au-

tomatic Wire Routing,” IEEE Transactions on Computers,

pp. 1227–1233, 1972

[12] distcc: http://distcc.org/

[13] Tsung-Wei Huang, Chun-Xun, Lin, and Martin D. F.

Wong, “DtCraft: A Distributed Execution Engine for

Compute-intensive Applications,” in IEEE/ACM ICCAD,

2017.

