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Abstract—Analog circuits are widely used in different fields
such as medicine, military, aviation and are critical for the
development of reliable electronic systems. Testing and diagnosis
are important tasks which detect and localize defects in the circuit
under test as well as improve quality of the final product. Output
responses of fault-free and faulty behavior of analog circuit can
be represented by infinite set of values due to tolerances of
internal components. The data mining methods may improve
quality of fault diagnosis in the case of big data processing.
The technique of aggregation the classes of fault diagnostic
responses, based on association rule mining, is proposed. The
technique corresponds to the simulation before test concept:
a fault dictionary is generated by collecting the coefficients of
wavelet transformation for fault-free and faulty conditions as the
preprocessing of output signals. Classificator is based on k-nearest
neighbors method (k-NN) and association rule mining algorithm.
The fault diagnostic technique was trained and tested using data
obtained after simulation of fault-free and faulty behavior of the
analog filter. In result the accuracy in classifying faulty conditions
and fault coverage have consisted of more than 99,09% and
more than 99,08% correspondingly. The proposed technique is
completely automated and can be extended.

I. INTRODUCTION

Quality and reliability is important factors for efficient
development in the microelectronics industry. Tests in collab-
oration with fault diagnostics play a key role in the process
of manufacturing defect localization, detecting reasons for
its appearances whilst preparing the data for technological
process adjustment thus to increase the yield for the final
batch.

Nowadays, manufacturing of analog and mixed-signal in-
tegrated circuits are developed very actively. Testing and
fault diagnostics for such kind of integrated circuits (IC) are
essentially more complex in comparison with digital IC due
to the following features: 1) Continuous character of analog
signals processing; 2) Nonlinearity and complex functional
dependence between the input and output signals; 3) Influence
of component tolerance on the value of output signals; 4)
High sensitivity of output functions to the deviation of internal
component parameters and external environmental parameters;
5) The lack of effective models for defects and faults for
analog circuits, etc.

Traditionally, diagnostics of analog circuits are implemented
using which here on will be referred as Fault Dictionary (FD),

each row of which contains the upper and lower boundaries
of the range of possible values for controlled parameters in
different test nodes for all considered states of the circuit, i.e.
fault-free and faulty states containing different kinds of faults.
Fault detection occurs during the output response measurement
of the circuit-under-test (CUT) and sequential comparison
value is obtained within the boundaries in FD rows. The
condition of the CUT is diagnosed when the measured value
lays in the boundary range of the corresponding row in FD.

The technique to construct the generalization fault dictio-
nary based on artificial neural network taking into account the
component tolerances and using the association rule mining as
the preprocessing of a big volume of overlapped data which is
proposed in the paper. Proposed technique reduces complexity
of fault detection due to associative mode of operation as well
as decreases the high size of the FD thanks to implementation
of the FD as artificial neural network with fixed architecture
for different number of considered faults. Algorithms which
are used in this technique are parallel and ready to run on the
clusters.

This paper is organized as follows. Section II introduces the
background of the proposed technique to the construction of
the FD. Mathematical methods used for the main steps of DFT-
flow are described in Section III. Experimental results and
corresponding analysis are presented in Section IV. Finally,
summary and conclusions of this paper are presented in
Section V.

II. DESIGN-FOR-TESTABILITY AND FAULT SIMULATION

The concept of design-for-testability (DFT) is widely used
nowadays for improving the development process of reliable
and easy testable CUT as well as reducing the total time on
design and test of the developed circuit [1].

The involvement of the DFT-technique at early stages of a
device development is extremely important for the implemen-
tation of highly reliable analog and mixed-signal integrated
circuits with the guaranteed quality. It provides the principal
changes to improve circuit in minimum time and cost over-
heads.

Test generation is one of the main stages realized in DFT-
technique, which provides a selection of controlled parameters,
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test nodes, and test stimuli for a designed circuit, FD construc-
tion with efficiency estimation for obtained test patterns.

The fault simulation is an important task for constructing
the FD and next fault diagnostics with high quality. The
catastrophic and parametric faults of analog circuits are vastly
distinguished. The catastrophic fault is the reason of short or
open effects in the circuit whilst parametric fault is caused
by deviation of component parameter outside the tolerance.
However, the set of catastrophic faults in analog circuit is
finite while the set of parametric faults is infinite. High
computational effort and the lack of realistic fault models are
the main problems of the fault simulation for analog circuits.
Component tolerances provide the set of possible responses for
each fault, which can be partially or completely overlapped
with the set of responses for the fault-free case. Therefore
fault simulation is a crucial task to estimate the influence of
different faults on the behavior of a correct operating IC.

The parallel computing system allows the performing de-
composition of the fault simulation task according to parallel
paradigm [2]. The main idea here is the use of independent
computational resources for simultaneous simulation of several
faults. Essential computational complexity deals with the cir-
cuit simulation with injected faults using Monte-Carlo method
[3], [4]. The number of Monte-Carlo iterations should be at
least thousand or ten thousand times in order to adequately
estimate the influence of component tolerances on the fault-
free and faulty circuit’s behavior. The explicit set of output
responses for fault free and faulty conditions are generated as
result of simulation which represents the dataset for further
big data mining.

In general, the sets of controlled output responses or their
essential characteristics (Si) obtained for different circuit’s
conditions may partially or completely intersect as well as
consisting of values, which do not intersect with values from
other sets. From two up to N+1 sets may participate in the
intersection, where N is the number of considered faulty
conditions for the circuit and one corresponds to the fault-
free condition. So, the following subsets can be picked out
in the result of the intersection: independent subsets (IS),
ambiguous double subsets (ADS), ambiguous triple subsets
(ATS) and potentially up to (N+1)-fold ambiguous subset. Eq.
(1)-(8) describe the rules of generating the each type of subsets
represented in Figure 1.

According to Eq. (1)-(8) , the values from independent
subsets ISi provide definite diagnosis of the i-th circuit’s
condition. Meanwhile, the subsets ADSij detect the faults i
and j accurately within the ambiguous group AG = {i, j} and
subset ATSijk detects the faults i, j and k accurately within
the ambiguous group AG = {i, j, k}.

The partial intersection of the sets Si as well as boundary
values and values near boundary between intersected sets
provide essential indeterminacy at generalization and may
cause the inaccuracy of training and consequently may be the
reason of low-quality fault diagnostics of the CUT with alpha
and beta errors.

The technique is to training the machine learning model

using the subsets obtained after intersection of sets Si (i =
1..N+1) instead of straight Si, which allows reducing the
indeterminacy at the training stage and increasing the accuracy
of further fault diagnosis, which is proposed in this paper.

IS1 = S1\S2\S3\S4 = (1)
= {x | x ∈ S1 ∧ x /∈ S2 ∧ x /∈ S3 ∧ x /∈ S4},

IS2 = S2\S1\S3\S4 = (2)
= {x | x /∈ S1 ∧ x ∈ S2 ∧ x /∈ S3 ∧ x /∈ S4},

IS3 = S3\S1\S2\S4 = (3)
= {x | x /∈ S1 ∧ x /∈ S2 ∧ x ∈ S3 ∧ x /∈ S4},

IS4 = S4\S1\S2\S3 = (4)
= {x | x /∈ S1 ∧ x /∈ S2 ∧ x /∈ S3 ∧ x ∈ S4},

DS12 = (S1 ∩ S2)\S3\S4 = (5)
= {x | x ∈ S1 ∧ x ∈ S2 ∧ x /∈ S3 ∧ x /∈ S4},

ADS13 = (S1 ∩ S3)\S2\S4 = (6)
= {x | x ∈ S1 ∧ x /∈ S2 ∧ x ∈ S3 ∧ x /∈ S4},

ADS23 = (S2 ∩ S3)\S1\S4 = (7)
= {x | x /∈ S1 ∧ x ∈ S2 ∧ x ∈ S3 ∧ x /∈ S4},

ADS123 = S1 ∩ S2 ∩ S3 = (8)
= {x | x ∈ S1 ∧ x ∈ S2 ∧ x ∈ S3}.

III. PROPOSED TECHNIQUE FOR FAULT DIAGNOSTIC

New methods of testing a complex circuit require large com-
puting power. Not only computing resources but also resources
of different memory levels and communication resources are
required. Graphics processing and co-processors units can
alleviate the processor bottleneck, but memory or disk bottle-
necks can only be eliminated by splitting data across multiple
nodes. Multi-nodes computing provides scalable power, so it
can eliminate bottlenecks in all three traditional computing

Fig. 1. Subsets generated by the intersection of the fault sets



Fig. 2. Main technique steps

resources (computation, memory, communication). However,
computationally complex Monte-Carlo simulation can be re-
alized on different nodes with generating an exhaustive large
amount of datasets about fault-free and faulty behavior of CUT
according to the full concept of big data.

The proposed technique can be described in the following
set of main steps:

1) Fault simulation using Monte-Carlo analysis taking into
account the component tolerances.

2) Wavelet-decomposition of CUT’s output responses.
3) Class Aggregation based on k-nearest neighbors algo-

rithm (k-NN) and Association Rule algorithms
4) Building Machine Learning Model

A. Monte-Carlo Fault simulation and Wavelet-decomposition

The simulation of analog circuit behavior in the time domain
is based on solution the system of differential equations

O = F

(
∂P
∂t
,P, t

)
, (9)

where O is a vector of output characteristics, P = {pk}, k ∈ N
is a set of component parameters and t is a time variant.

The random values Pi = {pik} obtained taking into account
the component tolerances are used in Eq. 9 instead of the
nominal values for each i-th iteration of the Monte-Carlo
simulation.

The random value of a parameter p is calculated according
to Eq. 10

p = p0(1 + ξ∆) (10)

where p0 is a nominal value; ξ is a random centered value
on the range [–1, 1] with specified distribution law; ∆ is the
relative deviation.

The Monte-Carlo simulation is performed for the fault-free
circuit as well as for the circuit with injection faults from the
fault list.

A sample output signal measured during one period after
finishing the transient processes is accumulated as the result
of each iteration of the Monte-Carlo simulation. Finally, the
set O of samples for total number s of Monte-Carlo iterations
is generated. The use of instant samples for testing and

fault diagnosis is not effective due to phase shift, noise and
distortion, effect of nonlinearity, etc. Therefore the extraction
of essential characteristics for sampled output signals based on
transformation from time to frequency domain is proposed.

The discrete wavelet transformation (DWT) is used for
extraction the essential characteristics according to Eq. 11

WΨ(s, τ) =

∫ +∞

−∞
O(t)Ψs,τ (t)dt, (11)

where

Ψs,τ (t) =
1√
s

Ψ

(
t− τ
s

)
, (12)

Ψ(t) is a real-valued wavelet, s = 2j is the scale and τ = 2jk
is the position value (both based on power of two).

The choice of wavelet depends upon the type of signal to
be analyzed and the application. Approximation coefficient
and detail coefficients obtained in result of DWT generate
the matrix X with r columns and s rows (Fig. 3), where r
is the total number of DWT coefficients; s is the number of
considered responses. Matrix X represents the dataset with
characteristics for conditions of fault-free and faulty circuit
and is ready for a machine learning for the purpose of testing
and fault diagnostics.

Fig. 3. The dataset structure

B. Class Aggregation and Building Model

This technique is used to aggregate the class labels of differ-
ent kinds of faults. It is required to increase the completeness
and accuracy of the machine learning model. As mentioned
in Section II different circuit’s conditions may partially or
completely intersect as well as consist of values, which do
not intersect with values from other sets. This technique of
class aggregation is often used in classification tasks with
unbalanced samples. The main task of quality checking is not
to miss any fault in the circuit. Therefore, fault coverage is
always a priority. Class aggregation step consists of two parts.

In the first part, the predictions based on k-nearest neigh-
bors algorithm (k-NN) are realized. Dataset from wavelet-
transformation is splitted into the training and testing subsets.
A model based on k-NN which is non-parametric method used
for classification and regression is built on the train part. The
algorithm is able to distinguish among all the observations of
the k known objects similar to new previously unknown object



which is based on the classes of the nearest neighbors of the
decision regarding the new object. Despite its simplicity, k-
NN can outperform more powerful classifiers and is used in
a variety of applications such as economic forecasting, data
compression and genetics [5]–[7].

In the second part, the association rule extraction algorithm
is run on the prediction from k-NN. Association rule problem
statement is well-defined [8], [9].

The following definition is used to process the association
rules algorithm:

Definition 1: Let I = {i1, i2, i3...id} be a set of different
attributes and the database D = {t1, t2, t3....tN} where tN ⊆
I . The association rule is an implication of the form of X =⇒
Y , where X,Y ⊆ I and X ∩Y = ∅. Measures of significance
are used to select interesting rules from the set of all possible
rules

supp(X) =
|{t ∈ T ;X ⊆ t}|

|T |
, (13)

where the support (called supp) is the ratio of the number
of transactions containing X ∪ Y . The problem of mining
association rules is in the generation of rules consider the user
specified minimum support (called minsup). According to the
Eq. 14, the algorithm generates 3d+2d+1 +1 rules, where d is
a number of unique classes. The minimum support threshold
value solely depends on the database, and its optimal value is
not possible to know in advance. However, excessively high
values will result in the loss of values in the interesting rare
classes. Very low value will increase the computational cost
in the calculation of large itemsets.

R =
k=1∑
d−1

[(
d

k

)
×
j=1∑
d−k

(
d− k
j

)]
= 3d + 2d+1 + 1. (14)

Prediction for the test part is used for association rule
extraction to decrease the number of classes. The data-flow
of the algorithm’s work is represented on Figure 4. Currently
there are several well-known algorithms such as Apriori, Eclat
and FP-Growth [10]–[12].

Fig. 4. An example of how an class aggregation algorithm works

The Algorithm 1 describes the pseudo-code of proposed
class aggregation algorithm. This algorithm aggregate the
classes based on predictions from k-NN.

Because of the k-NN algorithm nature it is highly par-
allelizable and well scaled with the many-core computing
architectures. Dataset(X, y) with minimum support threshold

Algorithm 1: Class aggregation algorithm
Data: Dataset(X, y) , minSupp
Result: ynew

1: trainX,y, testX,y = TrainTestSplit(Dataset) ;
2: model = KNeighborsClassifier(trainX,y) ;
3: yprediction = model.prediction(testX ) ;
4: L1 = findFrequentClassLabels(yprediction) ;
5: while Lk−1 6= ∅ do
6: Ck = candidates generated from Lk−1;
7: x = GetItemMinSupp(Ck, L1);
8: Tgt = getTransactionID(x);
9: foreach t ∈ D do

10: S= subset(Ck,t) ;
11: foreach c ∈ S do
12: c.count++ ;
13: end
14: end
15: Lk = items in Ck ≥ minSupp ;
16: end
17: ynew = NewClassLabels(Lk);

value was input where the dataset is split into the train and test
parts. However, each fault sample is divided individually in the
ratio of 80% test and 20% train. The data was obtained from
the simulation based on the Monte-Carlo method. Randomness
is used in the method of Monte-Carlo, which is why the test
and the training samples are not chosen randomly from the
dataset. However, in each split, the proportion of faults is
preserved, as in the input data set. The first model was trained
and predicted test part on line 3 and 4.

The first pass of the Apriori algorithm counts the item
occurrences to determine the 1–itemsets of faults. Apriori
algorithm part prunes those candidates of faults combinations
for which a subset is known to be infrequent. Usage of the
minimum support threshold significantly reduces the search
space of itemsets. The iterations begin with size 1-itemsets,
and the size is incremented after each iteration. The algorithm
terminates when no further successful extensions are found
which means if Ck is empty for some k. Based on Apriori
algorithm, new fault number was assigned on line 17 and
returned new vector ynew as the result.

The precision, fault coverage (recall) and F1 score (15) are
used for the evaluation of classification model [13]. These
metrics are widely used measures to evaluate a classification
model.

F1 =
2× precision× faultcoverage
precision+ faultcoverage

(15)

Fault coverage is defined as the ratio of correct assign-
ments by the system divided by the total number of correct
assignments. Precision is the ratio of correct assignments
by the system divided by the total number of the system’s
assignments.



IV. EXPERIMENTAL RESULTS

Active filters are the most commonly used elements for ra-
dio engineering and especially important for audio equipment,
signal processing systems, measuring instruments.

The bandpass Sallen-Key filter was used for experiments
(Figure 5). Sallen-Key filters are very convenient in batch
production since they require parts of the same denominations
and with a large allowable deviation. Implemented as a simple
circuit with two resistors, two capacitors and an operational
amplifier, representing a filter with the second order transfer
function. Filters of higher order can be obtained by the
connection of the elementary filters in series. The filter can
have an arbitrary gain bandwidth. The experimental filter
has the following nominals: R1 = 10k,R2 = 20k,R3 =
10k,Ra = 5k,Rb = 10k,C1 = 220n,C2 = 220n.

Fig. 5. Sallen-Key bandpass filter

The sine wave with frequency 72 Hz and amplitude 1V
was used as a test signal applied to the input of the filter.
The steady-state output responses Vout are measured at the
test node for a period. Wavelet transformation using the
Daubechies wavelet of fourth order (db4) is carried out to the
each output response. As a result, each response is represented
by 148 coefficients.

The fault list includes 28 faults and one fault-free circuit
condition. In turn to, the 28 faults are represented by two
types of catastrophic and parametric faults. Catastrophic faults
included short circuit and open circuit effects for each com-
ponent. Parametric faults included deviations of component
parameters on + 50% and – 50 % from the nominal. The
Monte-Carlo simulation used 20 000 iterations for fault-free
condition and 5 000 for each fault. The particular number of
the circuit condition (fault-free and faulty) is included into
associated vector Y for each simulation accordingly (Fig. 3).
Resulting data structure is also presented the table, where
the rows are the number of simulations, and the column is
the number of co-factors after the transformation. Also, the
structure of the data was ready for the application of machine
learning algorithms.

The k-NN algorithm was trained on the training part. The
model’s prediction on test part automatically occurred after
training. Association algorithm based on prediction generates
the new vector Ynew, where overlapping faults labels merged
together. According to Eq. 14 the total number of association
rules is 6.86×1013, because an experimental number of unique
faults is 28 and one fault-free condition.

The results are shown in Table 1. The initial k-NN model
was retrained based on the new vector of Ynew. New generated
k-NN model provided the following result as presented in the
Table 2.

According to the results, a reasonable accurate model was
obtained which was also had a wide coverage of all faults.

The experiment was done on system with Intel R©CoreTMi5-
4590 3.30 GHz, 16 GB of RAM and Windows 10 Pro. Python
programming language version 3.6 was used for the technique
implementation.

V. CONCLUSION

The technique of construction for the classifier for analog
fault testing and diagnosis was done by using the extraction of
the essential characteristics based on wavelet transformation,
Monte-Carlo method, association rules mining algorithms, and
machine learning algorithm. The proposed technique helps to
produce the high reliable analog and mixed-signals integrated
circuits. The experimental verification of the prediction quality
was performed on the most widely used filter topologies.
The results obtained for the Sallen-Key filter demonstrate the
high precision of prediction (> 99, 09%) and fault coverage
(> 99, 08%) in the task of fault diagnostics. The proposed
technique uses algorithms which were parallel and prepared
to handle the big data obtained in result of the exhaustive
simulation of analog circuits.
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