

Extracting Hardware Assertions Including
Word-Level Relations over Multiple Clock Cycles

Mami Miyamoto1, Kiyoharu Hamaguchi2

Interdisciplinary Graduate School of Science and Engineering
Shimane University, Matsue, Shimane, 690-8504 JAPAN

1E-mail: s169513@matsu.shimane-u.ac.jp
2E-mail: hama@cis.shimane-u.ac.jp

Abstract

Various mining approaches have been proposed for the
automatic generation of temporal assertions from execution
traces of hardware designs. These approaches can handle
assertions based on LTL formulas or PSL, and many of them
can represent word-level relations such as inequalities, additions,
and so on. In the existing methods, however, such relations are
searched only within a clock cycle. They cannot extract a
property such that two values at inputs are added, and its result
appears two clock cycles later at an output. We propose a
method to extract relations over multiple clock cycles between
variables as atomic propositions by analyzing execution traces
and to generate assertions including the relations. Our method
can also efficiently generate assertions by extracting frequent
relations between atomic propositions over multiple clock
cycles as propositions, that is, conjunctives of atomic
propositions. The experimental results demonstrate the
feasibility of the proposed method.

Keywords
Assertion mining;

1. Introduction
Assertions in hardware design verification are properties that

the design should satisfy. They are mainly used for assertion-
based verification. Assertion-based verification is a common
approach for functional verification. The assertions are used as
checkers in simulation and formal verification. Assertions are
usually defined manually, but assertion definition is a process
that requires much time and high expertise. Therefore, as a
complementary approach to manual definition of assertions,
many approaches have been proposed for automatically
extracting assertions. Extracted assertions can be used for
checking design evolutions, finding errors and documentation.
In addition, by extracting the relations between input and output
signals of the design as assertions, it can be reused for other
designs.

There are two kinds of approaches for assertion mining:
static approach and dynamic approach. Since the static
approaches such as [1] [2] relies on formal analysis of designs,
it has been known that it cannot scale well. Recently, the
dynamic approaches, where assertions are mined from
simulation traces, have been studied well, and have been
successful in finding assertions that are good in terms of
compactness, understandability and fault detection capacities.
As shown in section 2, various mining approaches have been
proposed for the automatic generation of temporal assertions
from execution traces of hardware designs. However, the
existing methods cannot extract properties such that “𝑥 and 𝑦 as

inputs at a clock cycle are added and its result appears two
clock cycle later at output 𝑧.” Such properties can be described
using local variables in SVA (System Verilog Assertion). An
SVA description for the above property can be “ (1, 𝑣! =
𝑥, 𝑣! = 𝑦) |−> ##2(𝑧 = 𝑣! + 𝑣!) .” However, since the
existing methods use LTL (Liner Temporal Logic) and PSL
(Property Specification Language), describing such a property
is not straightforward.

In order to address this problem, in this paper, we propose a
method to extract relations over multiple clock cycles between
variables as atomic propositions by analyzing execution traces
and to generate assertions including these relations. Our method
can also efficiently generate assertions by extracting frequent
relations between atomic propositions over multiple clock cycles
as propositions, that is, conjunctives of atomic propositions. This
process can prevent mining assertions with overly constrained
antecedents. The features of the proposed method are as follows:

• Extract relations between word-level variables over
multiple clock cycles as atomic propositions and
generate assertions including such propositions.

• Prevent mining assertions with overly constrained
antecedent by extract frequent relation between atomic
propositions over multiple clock cycles as propositions
using the frequent pattern mining.

• Consider the features of a digital circuit that often keep
values unchanged over multiple clock cycles and
perform assertion mining by focusing on the changes
of the values in the execution traces.

2. Related Works
There have been many dynamic approaches proposed for

hardware assertion mining, where temporal properties are to be
mined. In [3], some typical patterns such as req-ack relations or
state machine protocols are mined with data mining techniques.
[4] provides a method for finding repeated patterns. [5] and [6]
developed methods for mining patterns for interface protocols.
Assuming temporal template patterns including two variables,
[7] showed a practically fast mining algorithm which focus on
the changes of signal values, and applied the obtained assertion
sets to fault analysis. In [8] and [9], using a method based on
the decision tree algorithm and static analysis, more general
temporal patterns of form “ 𝑎𝑙𝑤𝑎𝑦𝑠 (𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡 −>
𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡)” have been successfully extracted, where
antecedents and consequents are conjunctions of Boolean
atomic propositions preceded by more than or equal to zero
“𝑛𝑒𝑥𝑡” operators. This work was extended to cover assertions

978-1-5386-1214-9/18/$31.00 ©2018 IEEE 244 19th Int'l Symposium on Quality Electronic Design

having uncertain delays within ranges in consequents for
targeting transaction level models in [10].

In the above works, as atomic propositions, Boolean (or
binary) variables were considered. Methods for handling word-
level features, which describes some relations on variables of
more than one bit-width, have been proposed in [11] and [12].
In [11], atomic propositions of form “𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡” were
extracted to construct assertions. In [12], to extract the word-
level arithmetic relations such as “𝑧 = 𝑎 + 𝑏” or“𝑥 > 𝑦”,
they used Daikon [13]. The latter work was improved through
[14] and [15], and in [16], they have proposed a method for
mining assertions which match given general LTL templates.

Extracted atomic propositions with arithmetic relations in the
existing methods, however, are searched only within a single
clock cycle. To the best of our knowledge, there has not been
any approaches available to handle word-level relations over
multiple clock cycles. We propose a method to cover these
features in this paper.

3. Preliminaries
This section introduces the definitions necessary for the

proposed method and assertions to be mined.
In the following, we assume a model 𝑀 as an RTL design. 𝑉

is a set of variables on 𝑀. Assertions are mined over 𝑉. The
variables in 𝑉 are given manually. In this paper, they are
arbitrary signals in 𝑀. They can be of bit-width 1 or more, and
they can be primary inputs, primary outputs or internal signals.
We give 𝑉! ⊆ 𝑉 as a set of variables which value is assigned in
the consequent of assertions. For example, variable 𝑧 in
relation 𝑧 = 𝑎 + 𝑏 is included in 𝑉!.

Definition 1. (Execution trace) Given a finite sequence of
simulation instants 𝑡!𝑡!𝑡!… 𝑡!!! and a model 𝑀 on a set of
variables 𝑉 , an execution trace of 𝑀 is a finite sequence
𝑇 = 𝑉!𝑉!𝑉!…𝑉!!!, where 𝑉! is the evaluation of variables in 𝑉
at simulation instant 𝑡!, that is, 𝑉!(𝑣) is the value of 𝑣 ∈ 𝑉 at 𝑡!.

Definition 2. (Atomic proposition) An atomic proposition is
a logic formula that does not contain logical connectives.

In this paper, in addition to relations within a single clock
cycle such as 𝑎 = 𝑇𝑟𝑢𝑒, 𝑎 = 5, 𝑎 > 5, 𝑎 > 𝑏, 𝑧 = 𝑎 + 𝑏, we
also consider relations between variables over multiple clock
cycles such as 𝑧[2] = 𝑎[0] + 𝑏[0] , as atomic propositions.
Such an atomic proposition refers to variables at multiple clock
cycles. We assign clock cycle 0 to the variables referred to at the
earliest clock cycle among them. Then, 𝑥[𝑖] is value of 𝑥
referred to 𝑖 clock cycles later. That is, 𝑧[2] = 𝑎[0] + 𝑏[0]
means “𝑎 and 𝑏 as inputs at a clock cycle are added and its result
appears two clock cycles later at output 𝑧.” In this paper, we
consider the following atomic propositions: (i) value assignment
(e.g., 𝑎 = 𝑇𝑟𝑢𝑒 , 𝑎 = 5), (ii) relation representing bit shift
operations between two variables 𝑧[𝑖] = 𝑎[𝑗] 𝑜𝑝 𝑛 , where
𝑜𝑝 =≪ or ≫, 𝑖 ≥ 𝑗, 𝑧 ∈ 𝑉! and 𝑛 ∈ ℕ, (iii) relation among three
variables 𝑧[𝑖] = 𝑎[𝑗] 𝑜𝑝 𝑏[𝑘], where 𝑜𝑝 = +, −, ×, /, 𝑏𝑖𝑡𝑤𝑖𝑧𝑒-
𝑎𝑛𝑑 , 𝑏𝑖𝑡𝑤𝑖𝑧𝑒-𝑜𝑟 , 𝑖 ≥ 𝑗 , 𝑗 ≥ 𝑘 and 𝑧 ∈ 𝑉! . Users can modify
these atomic proposition templates.

Definition 3. An atomic proposition 𝑧[𝑖] = 𝑎[𝑗] 𝑜𝑝 𝑛 of (ii)
and an atomic proposition 𝑧[𝑖] = 𝑎[𝑗] 𝑜𝑝 𝑏[𝑗] of (iii) in the
above, is defined to hold at clock cycle of 𝑚𝑖𝑛(𝑖, 𝑗, 𝑘).

It can be defined in a similar way for propositions. For
example, in Table 1, (𝑝[0] = 𝑇𝑟𝑢𝑒) ∧ (𝑞[1] = 𝑇𝑟𝑢𝑒) hold at 𝑡!,
and 𝑧[2] = 𝑥[0] + 𝑦[0] hold at 𝑡!.

Definition 4. (Proposition) A proposition is a composition of
atomic propositions through logical connectives. An atomic
proposition itself is a proposition.

A proposition trace is similarly defined as in an execution
trace. We use the following time window as used in [15].

Definition 5. (Time window) Given a trace (execution trace
or proposition trace) 𝜏 = 𝐴!𝐴!𝐴!…𝐴!!!, and two simulation
instants 𝑡! and 𝑡! such that 0 ≤ 𝑡! ≤ 𝑡! ≤ 𝑛 − 1, a time window
𝑇𝑊[𝑖, 𝑗] = 𝐴!𝐴!!!…𝐴! is the subsequence of contiguous
elements of 𝛼 included between 𝑡! and 𝑡!.

Table1. Example of an execution trace

EXECUTION TRACE
time 𝑝 𝑞 𝑥 𝑦 𝑧
𝑡! 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 2 2 1
𝑡! 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒 1 1 2
𝑡! 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 2 3 3
𝑡! 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒 0 4 2
𝑡! 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 0 4 5

We extract word-level relations between variables over

multiple clock cycles that hold in execution traces as atomic
propositions, and mine implications between two propositions
as assertions. For example, the property “if 𝑝 = 𝑇𝑟𝑢𝑒 holds in a
clock cycle and 𝑞 = 𝑇𝑟𝑢𝑒 holds in the next clock cycle, 𝑥 and 𝑦
at one clock cycle later are added and its result appears two
clock cycle later at 𝑧” holds in the execution trace shown in
Table 1. This can be described in SVA as follows: (𝑝 = 𝑇𝑟𝑢𝑒)
##1 (𝑞 = 𝑇𝑟𝑢𝑒) |−> ##1 (1, 𝑣! = 𝑥, 𝑣! = 𝑦) ##2 (𝑧 = 𝑣! +
𝑣!). In SVA, “𝑎𝑙𝑤𝑎𝑦𝑠” is assumed implicitly. In the following,
that property is simply described as (𝑝[0] = 𝑇𝑟𝑢𝑒) ∧
(𝑞[1] = 𝑇𝑟𝑢𝑒) −> ##2 (𝑧[2] = 𝑥[0] + 𝑦[0]). “ ##𝑛 ”
represents the elapse of 𝑛 clock cycles. “−>” is the ordinary
implication operator, which means (𝑝[0] = 𝑇𝑟𝑢𝑒) ∧ (𝑞[1] =
𝑇𝑟𝑢𝑒) and ##2 (𝑧[2] = 𝑥[0] + 𝑦[0]) have the same starting
clock cycle 𝑡! . Note that 𝑧[2] = 𝑥[0] + 𝑦[0] is regarded as
𝑇𝑟𝑢𝑒 at the clock cycle in which 𝑥 and 𝑦 are referred to. The
formula means that if (𝑝[0] = 𝑇𝑟𝑢𝑒) ∧ (𝑞[1] = 𝑇𝑟𝑢𝑒) holds,
(𝑧[2] = 𝑥[0] + 𝑦[0]) will hold 2 clock cycles later. We refer to
“##𝑛” as an offset of a consequent.

In this paper, the assertions are mined within each time
window of preset length. By determining the maximum number
of clock cycles of an assertion, we can avoid mining relations
between propositions that are too far apart. The propositions are
also extracted within each time window.

##2

(𝒑[𝟎] = 𝑻𝒓𝒖𝒆) ∧ (𝒒[𝟏] = 𝑻𝒓𝒖𝒆)
𝒛[𝟐] = 𝒙[𝟎] + 𝒚[𝟎]

Moreover, we consider the features of a digital circuit that
often keep values unchanged over multiple clock cycles, and
propose assertion mining by focusing on the changes of the
values in execution traces. As a result, the unchanged values
over multiple clock cycles can be considered as one value and
we can mine assertions that cannot be mined in the existing
method that consider all values. Table 2 shows a part of an
execution trace of a multi-cycle MIPS processor. In the MIPS
processors, the operation to be performed is determined by the
values of the signal 𝑂𝑝 and 𝐹𝑢𝑛𝑐𝑡 representing the type of
instruction. Multi-cycle processor executes one instruction over
multiple clock cycles. For an example, if 𝑂𝑝 = 0 and
𝐹𝑢𝑛𝑐𝑡 = 32 are read in the decode stage, the values of the
specified registers 𝑅𝐷1 and 𝑅𝐷2 at one clock cycle later are
added and its result appears one clock cycle later at 𝑊𝐷3 and is
written to the register. Such a property seems to be able to
describe as (𝑂𝑝[0] = 0) ∧ (𝐹𝑢𝑛𝑐𝑡[0] = 32) −> ##1
(𝑊𝐷3[1] = 𝑅𝐷1[0] + 𝑅𝐷2[0]). However, in actuality, this
assertion does not hold in the execution trace, because the same
values are kept in 𝑂𝑝 and 𝐹𝑢𝑛𝑐𝑡 until the next instruction is read.
See the middle table of Table 2.

Table 2. Execution traces of multi-cycle MIPS processor

EXECUTION TRACE _ EXECUTION TRACE ___

_
EXECUTION TRACE

Op Funct RD1 RD2 WD3 Op Funct RD1 RD2 WD3 Op Funct RD1 RD2 WD3
0 32 0 0 76 0 32 0 0 76 0 32 0 0 76
0 32 5 10 4 0 32 5 10 4 0 32 5 10 4
0 32 5 10 15 0 32 5 10 15 0 32 5 10 15
0 32 5 10 6 0 32 5 10 6 0 32 5 10 6
4 5 5 10 76 4 5 5 10 76 4 5 5 10 76
4 5 49 1 76 4 5 49 1 76 4 5 49 1 76
4 5 49 1 48 4 5 49 1 48 4 5 49 1 48

Thus, we perform extraction of propositions and mining of

assertions by focusing on the changes of the values. In the right-
most table of Table2, the values changed from the previous
values are shown in bold. By considering only such values, we
can extract the property (𝑂𝑝[0] = 0) ∧ (𝐹𝑢𝑛𝑐𝑡[0] = 32) −>
##1 (𝑊𝐷3[1] = 𝑅𝐷1[0] + 𝑅𝐷2[0]) from the execution trace.
Such a property becomes the assertion that holds in the
execution trace by interpreting as ((𝑂𝑝[−1] ! = 0) ∨
(𝐹𝑢𝑛𝑐𝑡[−1] ! = 32)) ∧ (𝑂𝑝[0] = 0) ∧ (𝐹𝑢𝑛𝑐𝑡[0] = 32) −>
##1 (𝑊𝐷3[1] = 𝑅𝐷1[0] + 𝑅𝐷2[0]). On the other hand, we
should not consider the changes of values for consequents of
assertions in the assertion mining phase. Suppose that, in the
left-most table of Table 2, the first line happens to be
0, 32, 5, 10, 4 instead of 0, 32, 0, 0, 76 . Then, the assertion
cannot be found, because 5, 10, 4 in the second line is ignored, if
we focus only changes of values.

4. Methodology
The proposed method consists of four phases:
1) Extracting of atomic propositions: Extract frequent

word-level atomic propositions that expressing value

assignment and relation between variables by analyzing
the execution trace.

2) Mining of propositions: Mining frequent propositions
over multiple clock cycles from atomic proposition trace
in order to obtain candidate antecedents of assertions.

3) Mining of assertions: Mining assertions from the trace
of frequent propositions obtained at phase 1 and 2.

4) Pruning and combining of assertions: Prune
unnecessary assertions from the mined assertion set and
combine consequents of assertions having the same
antecedent with “∧”.

We can consider that propositions which frequently hold in
the execution trace can represent the behaviors of the DUV. In
other words, it is possible to generate assertions with high
coverage for DUV behavior by mining the relation between
frequent propositions.

We can choose whether to focus on the changes of values or
to handle all the values in the traces. Whether or not the values
are kept over multiple clock cycles may be judged from the
execution traces or the documentations. The above procedure 1
- 4 can be performed independently from these two approaches.
In the following, we explain the approach in which we handle
all the values in the traces.

4.1. Extracting of frequent atomic propositions

In the first phase of the proposed method, we analyze the
execution trace of DUV and extract word-level atomic
propositions (described in Section 3) that frequently hold.

In order to make assertion mining more efficient and obtain a
high quality assertion set, we classify frequent atomic
propositions as follows:

(A) Candidate of antecedents: a set of the atomic
propositions representing value assignment within a
single clock cycle (e.g., 𝑎[0] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡).

(B) Candidate of consequents: a set of the atomic
propositions that assign a value to the variables in 𝑉!
(e.g., 𝑧[2] = 𝑎[0] + 𝑏[0] , 𝑧[1] = 𝑎[0] << 3 ,
𝑧[0] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑧 ∈ 𝑉!)).

Algorithm 1. Extraction of frequent atomic propositions
 1: 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐺𝑒𝑡𝐴𝑡𝑜𝑚𝑖𝑐𝑃𝑟𝑜𝑝𝑠(𝑇,𝑚𝑎𝑥_𝑙𝑒𝑛, 𝑎𝑛𝑡_𝑡ℎ, 𝑐𝑜𝑛_𝑡ℎ)	 	
 2: 𝑎𝑛𝑡_𝑎_𝑝𝑟𝑜𝑝𝑠 = {}	 	
 3: 𝑐𝑜𝑛_𝑎_𝑝𝑟𝑜𝑝𝑠 = {}	 	
 4: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = {}	 	
 5: 𝑡! = 0	 	
 6: 𝐰𝐡𝐢𝐥𝐞 𝑡! ≤ (𝑙𝑒𝑛𝑔𝑡ℎ(𝑇) −𝑚𝑎𝑥_𝑙𝑒𝑛) 𝐝𝐨	 	
 7: 𝑎𝑝_𝑙𝑖𝑠𝑡 = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝑃(𝑇𝑊[𝑡! , 𝑡! +𝑚𝑎𝑥_𝑙𝑒𝑛 − 1])	 	
 8: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠. 𝑒𝑥𝑡𝑒𝑛𝑑(𝑎𝑝_𝑙𝑖𝑠𝑡)	 	
 9: 𝑡! = 𝑡! + 1	 	
10: 𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑝 = 𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)	 	
11: 𝐟𝐨𝐫 𝐚𝐥𝐥 < 𝑎𝑝,𝑚 >∈ 𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑝 𝐝𝐨	 	
12: 𝐢𝐟 ((𝑎𝑝 𝑖𝑠 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑜𝑓_𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡𝑠)	 	
 𝐚𝐧𝐝 (𝑚 ≥ 𝑎𝑛𝑡_𝑡ℎ)) 𝐭𝐡𝐞𝐧	 	
13: 𝑎𝑛𝑡_𝑎_𝑝𝑟𝑜𝑝𝑠 = 𝑎𝑛𝑡_𝑎_𝑝𝑟𝑜𝑝𝑠 ∪ {𝑎𝑝}	 	
14: 𝐢𝐟 ((𝑎𝑝 𝑖𝑠 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑜𝑓_𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑠) 	 	
 𝐚𝐧𝐝 (𝑚 ≥ 𝑐𝑜𝑛_𝑡ℎ)) 𝐭𝐡𝐞𝐧	 	
15: 𝑐𝑜𝑛_𝑎_𝑝𝑟𝑜𝑝𝑠 = 𝑐𝑜𝑛_𝑎_𝑝𝑟𝑜𝑝𝑠 ∪ {𝑎𝑝}	 	
16: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑎𝑛𝑡_𝑎_𝑝𝑟𝑜𝑝𝑠, 𝑐𝑜𝑛_𝑎_𝑝𝑟𝑜𝑝𝑠	 	

(𝑶𝒑[𝟎] = 𝟎) ∧ (𝑭𝒖𝒏𝒄𝒕[𝟎] = 𝟑𝟐)
−> ##𝟏(𝑾𝑫𝟑[𝟏] = 𝑹𝑫𝟏[𝟎]+ 𝑹𝑫𝟐[𝟎])

(𝑶𝒑[𝟎] = 𝟎) ∧ (𝑭𝒖𝒏𝒄𝒕[𝟎] = 𝟑𝟐)
−> ##𝟏(𝑾𝑫𝟑[𝟏] = 𝑹𝑫𝟏[𝟎]+ 𝑹𝑫𝟐[𝟎])

Focus on the
changes of values

each variable.

The procedure of frequent atomic proposition extraction is
shown in Algorithm 1. The function 𝑔𝑒𝑡𝐴𝑡𝑜𝑚𝑖𝑐𝑃𝑟𝑜𝑝𝑠 takes as
arguments an execution trace 𝑇, the length of time window for
mining assertions 𝑚𝑎𝑥_𝑙𝑒𝑛 and two thresholds 𝑎𝑛𝑡_𝑡ℎ and
𝑐𝑜𝑛_𝑡ℎ . 𝑎𝑛𝑡_𝑡ℎ is the thresholds of frequency for atomic
propositions (A), 𝑐𝑜𝑛_𝑡ℎ is the thresholds of frequency for
atomic propositions (B). First, the function 𝐺𝑒𝑡𝐴𝑡𝑜𝑚𝑖𝑐𝑃𝑟𝑜𝑝𝑠
extracts all atomic propositions that hold on each time window
of length 𝑚𝑎𝑥_𝑙𝑒𝑛 (line 6-9). At each iteration, the time
window is analyzed by the function 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝑃, and a list of
atomic propositions 𝑎𝑝_𝑙𝑖𝑠𝑡 that hold on the time window is
extracted (line 7). In order not to extract the same atomic
proposition that holds at the same time, the function
𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝑃 extracts only atomic propositions including the
variables that refer to values at time 𝑡!, that is, the starting clock
cycle of the time window. The atomic propositions in
𝑎𝑝_𝑙𝑖𝑠𝑡 are added to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (line 8).

Next, the frequency of each atomic proposition in 𝑎𝑝_𝑙𝑖𝑠𝑡 is
counted, and the set of pairs <atomic proposition 𝑝, frequency of
𝑝 > is obtained by the function 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 (line 11). Then, each
proposition is classified as (A) or (B), and only propositions
having a frequency exceeding the threshold value are selected
(line 11-15). “𝑎𝑝 𝑖𝑠 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑜𝑓_𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡𝑠” in line 12
means “the atomic proposition 𝑎𝑝 is classified as (A)” and
“𝑎𝑝 𝑖𝑠 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑜𝑓_𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑠” in line 14 means “the
atomic proposition 𝑎𝑝 is classified as (B).” 𝑎𝑛𝑡_𝑎_𝑝𝑟𝑜𝑝𝑠 is the
set of frequent atomic propositions that are candidate of
antecedent of assertions and 𝑐𝑜𝑛_𝑎_𝑝𝑟𝑜𝑝𝑠 is the set of frequent
atomic propositions that are candidate of consequent of
assertions.

Table 3. Example of frequent atomic propositions

EXECUTION TRACE FREQUENT
ATOMIC PROPOSITIONS time 𝑝 𝑞 𝑟 𝑥 𝑦 𝑧

𝑡! 0 32 𝐹𝑎𝑙𝑠𝑒 5 1 0
𝑡! 0 34 𝑇𝑟𝑢𝑒 10 5 0 (A) 𝑝[0] = 0

 𝑞[0] = 32
 𝑞[0] = 34
 𝑟[0] = 𝑇𝑟𝑢𝑒
 𝑧[0] = 0

(B) 𝑧[2] = 𝑥[0] + 𝑦[0]
 𝑧[2] = 𝑥[0] − 𝑦[0]
 𝑧[0] = 0

𝑡! 43 5 𝐹𝑎𝑙𝑠𝑒 20 8 6
𝑡! 0 34 𝐹𝑎𝑙𝑠𝑒 3 30 5
𝑡! 0 32 𝑇𝑟𝑢𝑒 6 7 35
𝑡! 4 2 𝐹𝑎𝑙𝑠𝑒 4 4 -27
𝑡! 8 32 𝐹𝑎𝑙𝑠𝑒 1 2 13

For example, consider the execution trace shown in Table 3

(left). When {𝑧} = 𝑉! , 𝑎𝑛𝑡_𝑡ℎ and 𝑐𝑜𝑛_𝑡ℎ are 2, the atomic
propositions shown in Table 3 (right) are extracted. In this
example, we do not consider “𝐹𝑎𝑙𝑠𝑒” of Boolean variable.

The sets of frequent atomic propositions can be edited by
users. It is possible to extract other type of atomic propositions
specified by the users.

The frequent atomic propositions of antecedents are used as
candidate propositions of antecedents, and also used for
generating more complex propositions in the next phase. The
frequent atomic propositions of consequents are used as
candidate propositions of consequents as they are.

The time window or similar method is used in [15][9].
However, in these existing methods, the idea of the time window
is used to obtain temporal relations between atomic propositions
that hold in a clock cycle, and it is not used to obtain atomic
propositions over multiple clock cycles.

4.2. Mining of frequent propositions
The purpose of this phase is to mine frequent propositions

over multiple clock cycles from frequent atomic propositions as
antecedents of assertions. By not considering all combinations of
the atomic propositions as candidates of antecedents, it is
possible to prevent mining the assertions overly constrained
antecedents. In other words, it is possible to avoid extracting the
assertions that hold accidentally in the execution trace.

In existing method [15], frequent relations among the
frequent atomic propositions are not considered in assertion
mining. All temporal patterns between frequent atomic
propositions are considered as candidate antecedents of
assertions. Therefore, it seems that this method needs to limit the
maximum number of clock cycles of the assertions or the
antecedents to some extent. In [16], frequent relations among
atomic propositions that hold in each clock cycle are considered
as propositions, but frequent relations over multiple clock cycles
are not considered in assertion mining.

Mining of the frequent propositions is performed as follows:
i) Obtain the atomic proposition trace 𝜔 from the

execution trace 𝑇 and the set of frequent atomic
propositions which are candidate antecedents obtained
in previous phase.

ii) Consider each time window 𝑇𝑊[𝑡! , 𝑡! +𝑚𝑎𝑥_𝑙𝑒𝑛 −
1] of length 𝑚𝑎𝑥_𝑙𝑒𝑛 for 𝜔 and generate an item list
listing atomic propositions that hold in each time
window.

iii) Extract frequent itemsets with a frequency greater than
or equal to the minimum support 𝑚𝑖𝑛_𝑠𝑢𝑝 from the
item list by frequent pattern mining, and generate
frequent propositions by connecting the atomic
propositions in each large itemset with “∧”. In order to
prevent duplication of propositions, we extracted only
propositions including the atomic propositions that
hold at time 𝑡!.

Table 4. Example of an item list and frequent propositions

Item List
𝑇𝑊[𝑡!, 𝑡!] 𝑝 0 = 0, 𝑞 0 = 32, 𝑧 0 = 0, 𝑝 1 = 0, 𝑞 1 = 34,

𝑟[1] = 𝑇𝑟𝑢𝑒, 𝑧[1] = 0	
𝑇𝑊[𝑡!, 𝑡!]	 𝑝 0 = 0, 𝑞 0 = 34, 𝑟 0 = 𝑇𝑟𝑢𝑒, 𝑧 0 = 0, 𝑝 2 = 0, 	

𝑞[2] = 34	
𝑇𝑊[𝑡!, 𝑡!]	 𝑝[1] = 0, 𝑞[1] = 34, 𝑝[2] = 0, 𝑞[2] = 32, 𝑟[2] = 𝑇𝑟𝑢𝑒	
𝑇𝑊[𝑡!, 𝑡!]	 𝑝[0] = 0, 𝑞[0] = 34, 𝑝[1] = 0, 𝑞[1] = 32, 𝑟[1] = 𝑇𝑟𝑢𝑒	
𝑇𝑊[𝑡!, 𝑡!]	 𝑝[0] = 0, 𝑞[0] = 32, 𝑟[0] = 𝑇𝑟𝑢𝑒, 𝑞[2] = 32	

Frequent proposition support
𝑝[0] = 0 0.8
𝑞[0] = 32 0.4
𝑞[0] = 34 0.4
𝑟[0] = 𝑇𝑟𝑢𝑒 0.4
𝑧[0] = 0 0.4

(𝑝[0] = 0) ∧ (𝑞[0] = 32) 0.4
(𝑝[0] = 0) ∧ (𝑞[0] = 34) 0.4
(𝑝[0] = 0) ∧ (𝑧[0] = 0) 0.4

(𝑝[0] = 0) ∧ (𝑟[0] = 𝑇𝑟𝑢𝑒) 0.4
(𝑝[0] = 0) ∧ (𝑟[1] = 𝑇𝑟𝑢𝑒) 0.4
(𝑝[0] = 0) ∧ (𝑝[1] = 0) 0.4

(𝑝[0] = 0) ∧ (𝑝[1] = 0) ∧ (𝑟[1] = 𝑇𝑟𝑢𝑒) 0.4

Consider the example shown in Table 3. The item list
obtained when 𝑚𝑎𝑥_𝑙𝑒𝑛 = 3 is shown in Table 4. The
propositions obtained from the item list by performing the
frequent pattern mining with 𝑚𝑖𝑛_𝑠𝑢𝑝 = 0.4 are shown in the
lower side of Table 4.

The assertions in the proposed method consist of pairs of a
frequent proposition of candidate antecedents obtained in phase
1, 2 and a frequent proposition of candidate consequents
obtained in the previous phase 1.

4.3. Mining of assertions

The purpose of this phase is to extract assertions of length
less than 𝑚𝑎𝑥_𝑙𝑒𝑛 that hold in the execution trace 𝑇 . An
assertion is an implication from a proposition of candidate
antecedents to a proposition of candidate consequents. The
length of an assertion is the number of clock cycles necessary for
the assertion to hold

Algorithm 2. Mining of assertions
 1: 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐺𝑒𝑡𝐴𝑠𝑠𝑒𝑟𝑡(𝑇,𝑚𝑎𝑥_𝑙𝑒𝑛,𝐴𝑛𝑡𝑠,𝐶𝑜𝑛𝑠)	 	
 2: 𝐴𝑠𝑠𝑒𝑟𝑡 = {}	 	
 3: 𝐹𝑎𝑖𝑙𝑒𝑑𝐴𝑠𝑠𝑒𝑟𝑡 = {}	
 4: 𝑡! = 0	
 5: 𝐰𝐡𝐢𝐥𝐞 𝑡! ≤ (𝑙𝑒𝑛𝑔𝑡ℎ(𝑇) −𝑚𝑎𝑥_𝑙𝑒𝑛) 𝐝𝐨	
 6: 𝐴𝑇 = 𝐺𝑒𝑡𝑃𝑟𝑜𝑝𝑇𝑟𝑎𝑐𝑒(𝑇𝑊[𝑡! , 𝑡! +𝑚𝑎𝑥_𝑙𝑒𝑛 − 1],𝐴𝑛𝑡𝑠)	
 7: 𝐶𝑇 = 𝐺𝑒𝑡𝑃𝑟𝑜𝑝𝑇𝑟𝑎𝑐𝑒(𝑇𝑊[𝑡! , 𝑡! +𝑚𝑎𝑥_𝑙𝑒𝑛 − 1],𝐶𝑜𝑛𝑠)	
 8: 𝑎_𝑠𝑒𝑡 = 𝐺𝑒𝑡𝑃𝑟𝑜𝑝𝑠(𝐴𝑇,𝐴𝑛𝑡𝑠)	
 9: 𝑐_𝑠𝑒𝑡 = 𝐺𝑒𝑡𝑃𝑟𝑜𝑝𝑠(𝐶𝑇,𝐶𝑜𝑛𝑠)	
10: 𝐟𝐨𝐫 𝐚𝐥𝐥 < 𝑎, 0 > ∈ 𝑎_𝑠𝑒𝑡 𝐝𝐨	
11: 𝐟𝐨𝐫 𝐚𝐥𝐥 𝑐 ∈ 𝐶𝑜𝑛𝑠 𝐝𝐨	
12: 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑜𝑓𝑓𝑠𝑒𝑡 𝐢𝐧 𝑚𝑎𝑥_𝑙𝑒𝑛 𝐝𝐨	
13: 𝐢𝐟 < 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 > 𝐢𝐧 𝐹𝑎𝑖𝑙𝑒𝑑𝐴𝑠𝑒𝑟𝑡 𝐝𝐨	
14: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒	 	
15: 𝐢𝐟 < 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 > 𝐢𝐧 𝑐_𝑠𝑒𝑡 𝐝𝐨	
16: 𝐢𝐟 𝑙𝑒𝑛𝑡ℎ(𝑎) ≤ 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐) 𝐝𝐨	
17: 𝐴𝑠𝑠𝑒𝑟𝑡 = 𝐴𝑠𝑠𝑒𝑟𝑡 ∪ {< 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 >}	
18: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒	 	
19: 𝐢𝐟 < 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 > 𝐧𝐨𝐭 𝐢𝐧 𝑐_𝑠𝑒𝑡 𝐝𝐨	 	
20: 𝐢𝐟 < 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 > 𝐢𝐧 𝐴𝑠𝑠𝑒𝑟𝑡 𝐝𝐨	
21: 𝐴𝑠𝑠𝑒𝑟𝑡 = 𝐴𝑠𝑠𝑒𝑟𝑡\{< 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 >}	 	
22: 𝐹𝑎𝑖𝑙𝑒𝑑𝐴𝑠𝑠𝑒𝑟𝑡	 	
 = 𝐹𝑎𝑖𝑙𝑒𝑑𝐴𝑠𝑠𝑒𝑟𝑡 ∪ {< 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 >}	 	
23: 𝑡! = 𝑡! + 1	 	
24: 𝐫𝐞𝐭𝐮𝐫𝐧 𝐴𝑠𝑠𝑒𝑟𝑡	 	

The procedure of assertion mining is shown in Algorithm 2.

The function 𝐺𝑒𝑡𝐴𝑠𝑠𝑒𝑟𝑡 takes as arguments an execution trace
T, the length of time window for mining assertions 𝑚𝑎𝑥_𝑙𝑒𝑛
and two sets 𝐴𝑛𝑡𝑠 and 𝐶𝑜𝑛𝑠 . 𝐴𝑛𝑡𝑠 is the set of frequent
propositions as candidate antecedent of assertions obtained in
phase 1 and 2. 𝐶𝑜𝑛𝑠 is the set of frequent propositions as
candidate consequent of assertions obtained in phase 1. First,
the function 𝐺𝑒𝑡𝐴𝑠𝑠𝑒𝑟𝑡 obtains the proposition trace 𝐴𝑇 and 𝐶𝑇
of length 𝑚𝑎𝑥_𝑙𝑒𝑛 by the function 𝐺𝑒𝑡𝑃𝑟𝑜𝑝𝑇𝑟𝑎𝑐𝑒 (line 6-7).
Next, the sets of propositions < 𝑝, 𝑜𝑓𝑓𝑠𝑒𝑡 > that hold in each
proposition trace are obtained (line 8-9). 𝑝 is a proposition in
𝐴𝑛𝑡𝑠 or 𝐶𝑜𝑛𝑠, and 𝑜𝑓𝑓𝑠𝑒𝑡 is the time at which the proposition
𝑝 holds regarding 𝑡! to be 0. Then, at each iteration, the function
𝐺𝑒𝑡𝐴𝑠𝑠𝑒𝑟𝑡 obtains two sets 𝐴𝑠𝑠𝑒𝑟𝑡 and 𝐹𝑎𝑖𝑙𝑒𝑑𝐴𝑠𝑠𝑒𝑟𝑡 (line 10-
23). In order to prevent duplication of assertions, we consider
only the propositions with 𝑜𝑓𝑓𝑠𝑒𝑡 = 0 for the antecedents
(line10). 𝐴𝑠𝑠𝑒𝑟𝑡 is the set of implications < 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 > that
hold in the execution trace before 𝑡!, and 𝐹𝑎𝑖𝑙𝑒𝑑𝐴𝑠𝑠𝑒𝑟𝑡 is the

set of implications < 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 > that does not hold in the
execution trace before 𝑡! . In line 16, in order not to mine
inconsistent assertions about time such as (𝑝[0] = 𝑇𝑟𝑢𝑒) ∧
(𝑞[1] = 𝑇𝑟𝑢𝑒) −> ##0 (𝑧[0] = 1), the lengths of the
propositions 𝑎 and 𝑐 are considered. < 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 >
represents “ 𝑎 −> ##𝑜𝑓𝑓𝑠𝑒𝑡 𝑐 .” The above processes are
performed for each time window. Finally, we can obtain the set
𝐴𝑠𝑠𝑒𝑟𝑡 of assertions that hold in the execution trace 𝑇.

4.4. Pruning and combining of assertions

The purpose of this phase is to improve the quality of the
assertion set by pruning and combining. After pruning as follows,
we combine the consequent of assertions having the same
antecedent into one assertion with “∧”. First, if there is an
assertion 𝛼 as below, we prune the assertion 𝛼.

(i) 𝛼 assigns a value to the same variable 𝑣[𝑖] in antecedent
and consequent.

Next, if there are assertions 𝛼1 and 𝛼2 as below, we prune
assertion 𝛼2. The pruning (iii) is performed to improve the
readability of the assertion set by adopting the only simplest
assertion when several assertions are extracted for one behavior.

(ii) 𝛼1 and 𝛼2 have the same consequent, and the antecedent
of 𝛼2 includes the antecedent of 𝛼1.

(iii) 𝛼1 and 𝛼2 have the same antecedent and a consequent
that assigns a value to the same variable z[𝑖] (𝑧 ∈ 𝑉!), the
consequent of 𝛼1 representing the value assignment and the
consequent of 𝛼2 representing the relation between variables.

5. Experimental Results
All experiments were performed on an Intel Corei5-

4590@3.30GHz with 24GB RAM. We used four designs in our
experiments. Single-cycle MIPS processor, Multi-cycle
processor and Pipelined MIPS processor from [17]. CORDIC
design from OpenCores [18]. CORIC (Coordinate Rotation
Digital Computer) is an algorithm for computing transcendental
functions like sine and cosine.

5.1. Mining of assertions

Table 5 reports the number of variables in 𝑉 and 𝑉! used for
experiments (|𝑉|, |𝑉!|), the average number of bits of variables
in 𝑉 (𝑠𝑖𝑧𝑒(𝑣𝑎𝑟)), the maximum clock cycle of mining assertions
(𝑚𝑎𝑥_𝑙𝑒𝑛), the number of frequent antecedent / consequent
propositions (#𝑎𝑛𝑡 , #𝑐𝑜𝑛), the number of mined assertions
(#𝑎𝑠𝑠𝑒𝑟𝑡), the average numbers of antecedent / consequent
atomic propositions included in the mined assertions (𝑠𝑖𝑧𝑒(𝑎𝑛𝑡),
𝑠𝑖𝑧𝑒(𝑐𝑜𝑛)) and the total time required for the mining assertion
phase and pruning and combining phase (𝑡𝑖𝑚𝑒). 𝑚𝑎𝑥_𝑙𝑒𝑛 was
determined from the execution traces. We used execution traces
of 10000 lines for the MIPS processors and 3000 lines for
CORDIC design. We chose to focus on the changes of values for
MIPS processors, and chose to handle all the values in the traces
for CORDIC design. Each trace was obtained by random
simulation. In the MIPS processors, simulations were performed
using programs in which all instructions other than the Jump
instruction appeared randomly. In the CORDIC design, the value
of input variable 𝜃 was set randomly. In experiments on
CORDIC design, “𝑡ℎ𝑒𝑡𝑎 < 0” and “𝑡ℎ𝑒𝑡𝑎 ≥ 0” are added
manually as atomic propositions. The thresholds in the proposed

method were set to filter propositions which are obviously less
frequent.

Table 5. Experimental results of assertion mining

DUV |V| |Va| size(var) max_len #ant #con #assert size(ant) size(con) time
Single-cycle

MIPS processor 6 1 23.33 3 50 58 7 1.57 1.00 4.39s

Multi-cycle
MIPS processor 6 1 23.33 5 55 34 14 1.29 1.21 3.08s

Pipelined
MIPS processor 6 1 23.33 5 84 58 8 1.63 1.00 3.33s

CORDIC 6 2 14.33 2 20 29 9 1.10 2.60 1.24s

Table 5 shows that the proposed method can extract
assertions in a few seconds for a given set of word-level
variables. The following shows examples of the assertions
extracted in the experiments on pipelined MIPS processor and
CORDIC design.

(i) Pipelined MIPS processor
(𝑂𝑝𝐷 −1 ! = 0 ∨ 𝐹𝑢𝑛𝑐𝑡𝐷 −1 ! = 32) ∧	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 𝑂𝑝𝐷 0 = 0 ∧ 𝐹𝑢𝑛𝑐𝑡𝐷 0 = 32 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 −> ##1 (𝑅𝑒𝑠𝑢𝑙𝑡𝑊[2] = 𝑆𝑟𝑐𝐴𝐸[0] + 𝑆𝑟𝑐𝐵𝐸[0])

(ii) CORDIC
𝑖𝑛𝑖𝑡 0 = 0 ∧ 𝑡ℎ𝑒𝑡𝑎 0 ≥ 0 	 	
−> ##0 (𝑦[1] = 𝑦[0] + 𝑥_𝑠ℎ𝑖𝑓𝑡𝑒𝑑[0]) ∧ (𝑥[1] = 𝑥[0] − 𝑦_𝑠ℎ𝑖𝑓𝑡𝑒𝑑[0])	

The assertion (i) captures the behavior that add the values of
registers according to the given instruction (𝑂𝑝𝐷[0] = 0) ∧
(𝐹𝑢𝑛𝑐𝑡𝐷[0] = 32), and the assertion (ii) captures the
calculation of CORDIC design that obtain 𝑐𝑜𝑠𝜃 and 𝑠𝑖𝑛𝜃 when
𝜃 ≥ 0 and the reset signal is 0.

5.2. Effectiveness of frequent proposition mining

Table 6 shows the results of extracting assertions without
frequent proposition mining over multiple clock cycles
(explained in phase 2 in Section 4). In this experiment, all
temporal patterns of frequent propositions that hold at one clock
cycle are considered as candidate antecedents of assertions.
Comparing the Table 5 with Table 6, it can be seen that the
frequent proposition mining improves the execution time of
assertion mining. In addition, the number of assertions and the
size of antecedent are larger than shown in Table 5. This is
because assertions in which these antecedents are excessively
restricted that hold accidentally at the execution trace are
extracted. By this experiment, it was confirmed that frequent
proposition mining over multiple clock cycles is effective.

Table 6. Experimental results without

frequent proposition mining over multiple clock cycles
DUV #assert size(ant) size(con) time

Single-cycle MIPS processor 324 3.17 1.43 68.56s
Multi-cycle MIPS processor 137 2.96 2.38 19.15s
Pipelined MIPS processor 3925 3.73 2.91 251.97s

CORDIC 31 1.71 5.23 1.78s

5.3. Mutant analysis
We performed mutant analysis to measure the quality of a set

of assertions mined in the experiments of Table 5. A mutant is
an artificial error of DUV, and the mutant coverage is the ratio
between generated mutants and covered mutants. If an assertion
fails on the DUV containing a mutant, the mutant is covered by
the assertion. In our mutant analysis, the value of each output

signal of the control unit in the MIPS processors, and the value
of each signal of the set 𝑉\𝑉! in CORDIC are fixed at word-
level, and the resulting DUVs are regarded as the mutants. The
experimental results are shown in Table 7. #𝑚𝑢𝑡𝑎𝑛𝑡 is the
number of mutants, #𝑐𝑜𝑣𝑒𝑟𝑒𝑑 is the number of covered mutants
and 𝐴𝑣𝑔 is the average number of mutants covered by each
assertion. The mutant coverage achieved for CORDIC design is
100% for the proposed method. The mutant coverage for the
processors is not 100%, because there are mutants that do not
affect 𝑉. Table 7 shows that the assertion sets mined by the
proposed method can cover almost all the mutants affecting 𝑉.

Table 7. Results of mutant analysis

DUV #mutant #covered Avg
Single-cycle MIPS processor 24 16 9.00
Multi-cycle MIPS processor 24 21 4.93
Pipelined MIPS processor 24 18 8.63

CORDIC 7 7 2.00

6. Conclusions

In this paper, we proposed a method that to extract relations
over multiple clock cycles between variables as atomic
propositions by analyzing execution traces and to generate
assertions expressing the relations. The proposed method can
also efficiently generate assertions by extracting frequent
relations between atomic propositions over multiple clock cycles
as propositions. The experimental results show that the proposed
method can extract assertions including word-level relations
over multiple clock cycles. In addition, the results of mutant
analysis show that the assertions extracted by the proposed
method can capture the behavior of DUV.

As future works, it is necessary to increase the form of the
assertions that can be extracted, and to perform the experiments
for larger designs.

References
[1] L. -C. Wang, M. S. Abadir, and N. Krishnamurthy,

“Automatic generation of assertions for formal verification
of powerpc microprocessor arrays using symbolic
trajectory evaluation,” Design Automation Conference
(1998) 534-537.

[2] G. Ammons, R. Bodík, and J. R. Larus, “Mining
specifications,” ACM Sigplan Notices, vol. 37, no. 1
(2002) 4-16.

[3] S. Hangal, S. Narayanan, N. Chandra and S. Chakravorty:
“IODINE: a tool to automatically infer dynamic invariants
for hardware designs,” Design Automation Conference
(2005) 775-778.

[4] G. Fey and R. Drechsler, “Improving simulation-based
verification by means of formal methods,” Asia South-
Pacific Design Conference (2004) 640-643.

[5] B. Isaksen and V. Bertacco, “Verification through the
principle of least astonishment,” ICCAD (2006) 860-867.

[6] P. H. Chang and L. C. Wang, “Automatic assertion
extraction via sequential data mining of simulation traces,”
Asia and South Pacific Design Automation Conference
(2010) 607-612.

[7] W. Li, A. Forin and S. A. Seshia, “Scalable specification
mining for verification and diagnosis,” Design Automation
Conference (2010) 755-760.

[8] S. Vasudevan, D. Sheridan, D. Tcheng, S. Patel, W. Tuohy,
and D. Johnson, “GoldMine: Automatic assertion
generation using data mining and static analysis,” DATE
(2010) 626-629.

[9] S. Hertz, D. Sheridan, S. Vasudevan, “Mining Hardware
Assertions With Guidance From Static Analysis,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems,Volume 32 Issue 6 (2013) 952-965.

[10] L. Liu and S. Vasudevan, “Automatic Generation of
System Level Assertions from Transaction Level Models,”
J. Electronic Testing 29, 5 (2013), 669-684.

[11] L. Liu, C. H. Lin and S. Vasudevan, “Word level feature
discovery to enhance quality of assertion mining,”
IEEE/ACM International Conference on Computer-Aided
Design (ICCAD) (2012) 210-217.

[12] M. Bonato, G. D. Guglielmo, M. Fujita, F. Fummi, G.
Pravadelli, “Dynamic Property Mining for Embedded
Software,” IEEE/ACM/IFIP international conference onf
Hardare/softwere codesign and system synthesis (2012) 87-
196.

[13] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C.
Pacheco, M. S. Tschantz, C. Xiao, “The daikon system for
dynamic detection of likely invariants,” Sci. Comput.
Program., 69(1-3) (2007) 35-45.

[14] A. Danese, T. Ghasempouri, G. Pravadelli, “Automatic
extraction of assertions from execution traces of behavioral
models,” Design, Automation & Test in Europe Conference
& Exhibition (2015) 67-72.

[15] A. Danese, F. Filini and G. Pravadelli, “A time-window
based approach for dynamic assertions mining on control
signals,” IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC) (2015) 246-251.

[16] A. Danese, N. D. Riva, G. Pravadelli, “A-TEAM:
Automatic template-based assertion miner,” Design
Automation Conference (2017), Article No. 37.

[17] D. M. Harris, S. L. Harris, “Digital Design and Computer
Architecture,” 2nd ed., Waltham, MA: Morgam Kaufmann
(2012).

[18] OpenCores benchmarks. www.opencores.org.

