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Abstract 

Various mining approaches have been proposed for the 
automatic generation of temporal assertions from execution 
traces of hardware designs. These approaches can handle 
assertions based on LTL formulas or PSL, and many of them 
can represent word-level relations such as inequalities, additions, 
and so on. In the existing methods, however, such relations are 
searched only within a clock cycle. They cannot extract a 
property such that two values at inputs are added, and its result 
appears two clock cycles later at an output. We propose a 
method to extract relations over multiple clock cycles between 
variables as atomic propositions by analyzing execution traces 
and to generate assertions including the relations. Our method 
can also efficiently generate assertions by extracting frequent 
relations between atomic propositions over multiple clock 
cycles as propositions, that is, conjunctives of atomic 
propositions. The experimental results demonstrate the 
feasibility of the proposed method. 
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1. Introduction 
Assertions in hardware design verification are properties that 

the design should satisfy. They are mainly used for assertion-
based verification. Assertion-based verification is a common 
approach for functional verification. The assertions are used as 
checkers in simulation and formal verification. Assertions are 
usually defined manually, but assertion definition is a process 
that requires much time and high expertise. Therefore, as a 
complementary approach to manual definition of assertions, 
many approaches have been proposed for automatically 
extracting assertions. Extracted assertions can be used for 
checking design evolutions, finding errors and documentation. 
In addition, by extracting the relations between input and output 
signals of the design as assertions, it can be reused for other 
designs. 

There are two kinds of approaches for assertion mining: 
static approach and dynamic approach. Since the static 
approaches such as [1] [2] relies on formal analysis of designs, 
it has been known that it cannot scale well. Recently, the 
dynamic approaches, where assertions are mined from 
simulation traces, have been studied well, and have been 
successful in finding assertions that are good in terms of 
compactness, understandability and fault detection capacities. 
As shown in section 2, various mining approaches have been 
proposed for the automatic generation of temporal assertions 
from execution traces of hardware designs. However, the 
existing methods cannot extract properties such that “𝑥 and 𝑦 as 

inputs at a clock cycle are added and its result appears two 
clock cycle later at output 𝑧.” Such properties can be described 
using local variables in SVA (System Verilog Assertion). An 
SVA description for the above property can be “ (1, 𝑣! =
𝑥, 𝑣! = 𝑦)  |−>   ##2(𝑧 = 𝑣! + 𝑣!) .” However, since the 
existing methods use LTL (Liner Temporal Logic) and PSL 
(Property Specification Language), describing such a property 
is not straightforward. 

In order to address this problem, in this paper, we propose a 
method to extract relations over multiple clock cycles between 
variables as atomic propositions by analyzing execution traces 
and to generate assertions including these relations. Our method 
can also efficiently generate assertions by extracting frequent 
relations between atomic propositions over multiple clock cycles 
as propositions, that is, conjunctives of atomic propositions. This 
process can prevent mining assertions with overly constrained 
antecedents. The features of the proposed method are as follows:  

• Extract relations between word-level variables over 
multiple clock cycles as atomic propositions and 
generate assertions including such propositions.  

• Prevent mining assertions with overly constrained 
antecedent by extract frequent relation between atomic 
propositions over multiple clock cycles as propositions 
using the frequent pattern mining.  

• Consider the features of a digital circuit that often keep 
values unchanged over multiple clock cycles and 
perform assertion mining by focusing on the changes 
of the values in the execution traces.  

 

2. Related Works 
There have been many dynamic approaches proposed for 

hardware assertion mining, where temporal properties are to be 
mined. In [3], some typical patterns such as req-ack relations or 
state machine protocols are mined with data mining techniques.  
[4] provides a method for finding repeated patterns. [5] and [6] 
developed methods for mining patterns for interface protocols. 
Assuming temporal template patterns including two variables, 
[7] showed a practically fast mining algorithm which focus on 
the changes of signal values, and applied the obtained assertion 
sets to fault analysis.  In [8] and [9], using a method based on 
the decision tree algorithm and static analysis, more general 
temporal patterns of form “ 𝑎𝑙𝑤𝑎𝑦𝑠 ( 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡  −> 
𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 )” have been successfully extracted, where 
antecedents and consequents are conjunctions of Boolean 
atomic propositions preceded by more than or equal to zero 
“𝑛𝑒𝑥𝑡” operators. This work was extended to cover assertions 
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having uncertain delays within ranges in consequents for 
targeting transaction level models in [10]. 

In the above works, as atomic propositions, Boolean (or 
binary) variables were considered.  Methods for handling word-
level features, which describes some relations on variables of 
more than one bit-width, have been proposed in [11] and [12].  
In [11], atomic propositions of form “𝑥   =   𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡” were 
extracted to construct assertions. In [12], to extract the word-
level arithmetic relations such as “𝑧   =   𝑎   +   𝑏” or“𝑥   >   𝑦”, 
they used Daikon [13]. The latter work was improved through 
[14] and [15], and in [16], they have proposed a method for 
mining assertions which match given general LTL templates. 

Extracted atomic propositions with arithmetic relations in the 
existing methods, however, are searched only within a single 
clock cycle. To the best of our knowledge, there has not been 
any approaches available to handle word-level relations over 
multiple clock cycles.  We propose a method to cover these 
features in this paper. 
 

3. Preliminaries 
This section introduces the definitions necessary for the 

proposed method and assertions to be mined. 
In the following, we assume a model 𝑀 as an RTL design. 𝑉 

is a set of variables on 𝑀. Assertions are mined over 𝑉. The 
variables in 𝑉  are given manually. In this paper, they are 
arbitrary signals in 𝑀. They can be of bit-width 1 or more, and 
they can be primary inputs, primary outputs or internal signals. 
We give 𝑉! ⊆ 𝑉 as a set of variables which value is assigned in 
the consequent of assertions. For example, variable 𝑧  in 
relation  𝑧 = 𝑎 + 𝑏 is included in 𝑉!.  

Definition 1. (Execution trace) Given a finite sequence of 
simulation instants 𝑡!𝑡!𝑡!… 𝑡!!!  and a model 𝑀  on a set of 
variables 𝑉 , an execution trace of 𝑀  is a finite sequence 
𝑇 = 𝑉!𝑉!𝑉!…𝑉!!!, where 𝑉! is the evaluation of variables in 𝑉 
at simulation instant 𝑡!, that is, 𝑉!(𝑣) is the value of 𝑣 ∈ 𝑉 at 𝑡!. 

Definition 2. (Atomic proposition) An atomic proposition is 
a logic formula that does not contain logical connectives. 

In this paper, in addition to relations within a single clock 
cycle such as 𝑎 = 𝑇𝑟𝑢𝑒, 𝑎 = 5, 𝑎 > 5, 𝑎 > 𝑏, 𝑧 = 𝑎 + 𝑏, we 
also consider relations between variables over multiple clock 
cycles such as 𝑧[2]   = 𝑎[0] + 𝑏[0] , as atomic propositions. 
Such an atomic proposition refers to variables at multiple clock 
cycles. We assign clock cycle 0 to the variables referred to at the 
earliest clock cycle among them. Then, 𝑥[𝑖]  is value of 𝑥 
referred to 𝑖  clock cycles later. That is, 𝑧[2]   = 𝑎[0] + 𝑏[0] 
means “𝑎 and 𝑏 as inputs at a clock cycle are added and its result 
appears two clock cycles later at output 𝑧.” In this paper, we 
consider the following atomic propositions: (i) value assignment 
(e.g., 𝑎 = 𝑇𝑟𝑢𝑒 , 𝑎 = 5 ), (ii) relation representing bit shift 
operations between two variables 𝑧[𝑖] = 𝑎[𝑗]  𝑜𝑝  𝑛 , where 
𝑜𝑝 =≪ or ≫, 𝑖 ≥ 𝑗, 𝑧 ∈ 𝑉! and 𝑛 ∈ ℕ, (iii) relation among three 
variables 𝑧[𝑖] = 𝑎[𝑗]  𝑜𝑝  𝑏[𝑘], where 𝑜𝑝 = +, −, ×, /, 𝑏𝑖𝑡𝑤𝑖𝑧𝑒-
𝑎𝑛𝑑 , 𝑏𝑖𝑡𝑤𝑖𝑧𝑒-𝑜𝑟 , 𝑖 ≥ 𝑗 , 𝑗 ≥ 𝑘  and 𝑧 ∈ 𝑉! . Users can modify 
these atomic proposition templates. 

Definition 3. An atomic proposition 𝑧[𝑖] = 𝑎[𝑗]  𝑜𝑝  𝑛 of (ii) 
and an atomic proposition 𝑧[𝑖] = 𝑎[𝑗]  𝑜𝑝  𝑏[𝑗]  of (iii) in the 
above, is defined to hold at clock cycle of 𝑚𝑖𝑛(𝑖, 𝑗, 𝑘).  

It can be defined in a similar way for propositions. For 
example, in Table 1, (𝑝[0] = 𝑇𝑟𝑢𝑒) ∧ (𝑞[1] = 𝑇𝑟𝑢𝑒) hold at 𝑡!, 
and 𝑧[2] = 𝑥[0] + 𝑦[0] hold at 𝑡!. 

Definition 4. (Proposition) A proposition is a composition of 
atomic propositions through logical connectives. An atomic 
proposition itself is a proposition. 

A proposition trace is similarly defined as in an execution 
trace. We use the following time window as used in [15]. 

Definition 5. (Time window) Given a trace (execution trace 
or proposition trace) 𝜏 = 𝐴!𝐴!𝐴!…𝐴!!!, and two simulation 
instants 𝑡! and 𝑡! such that 0 ≤ 𝑡! ≤ 𝑡! ≤ 𝑛 − 1, a time window 
𝑇𝑊[𝑖, 𝑗] = 𝐴!𝐴!!!…𝐴!  is the subsequence of contiguous 
elements of 𝛼 included between 𝑡! and 𝑡!.  

 
Table1. Example of an execution trace 

EXECUTION TRACE 
time 𝑝 𝑞 𝑥 𝑦 𝑧 
𝑡! 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 2 2 1 
𝑡! 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒 1 1 2 
𝑡! 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 2 3 3 
𝑡! 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒 0 4 2 
𝑡! 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 0 4 5 

 
 
 

 
We extract word-level relations between variables over 

multiple clock cycles that hold in execution traces as atomic 
propositions, and mine implications between two propositions 
as assertions. For example, the property “if 𝑝 = 𝑇𝑟𝑢𝑒 holds in a 
clock cycle and 𝑞 = 𝑇𝑟𝑢𝑒 holds in the next clock cycle, 𝑥 and 𝑦 
at one clock cycle later are added and its result appears two 
clock cycle later at 𝑧” holds in the execution trace shown in 
Table 1. This can be described in SVA as follows: (𝑝 = 𝑇𝑟𝑢𝑒) 
##1 (𝑞 = 𝑇𝑟𝑢𝑒) |−> ##1 (1, 𝑣! = 𝑥, 𝑣! = 𝑦) ##2 (𝑧 = 𝑣! +
𝑣!). In SVA, “𝑎𝑙𝑤𝑎𝑦𝑠” is assumed implicitly. In the following, 
that property is simply described as ( 𝑝[0] = 𝑇𝑟𝑢𝑒 ) ∧ 
( 𝑞[1] = 𝑇𝑟𝑢𝑒 ) −>  ##2  ( 𝑧[2] = 𝑥[0] + 𝑦[0] ). “ ##𝑛 ” 
represents the elapse of 𝑛 clock cycles. “−>” is the ordinary 
implication operator, which means (𝑝[0] = 𝑇𝑟𝑢𝑒) ∧ (𝑞[1] =
𝑇𝑟𝑢𝑒) and ##2 (𝑧[2] = 𝑥[0] + 𝑦[0]) have the same starting 
clock cycle 𝑡! . Note that 𝑧[2] = 𝑥[0] + 𝑦[0]  is regarded as 
𝑇𝑟𝑢𝑒 at the clock cycle in which 𝑥 and 𝑦 are referred to. The 
formula means that if (𝑝[0] = 𝑇𝑟𝑢𝑒) ∧ (𝑞[1] = 𝑇𝑟𝑢𝑒) holds, 
(𝑧[2] = 𝑥[0] + 𝑦[0]) will hold 2 clock cycles later. We refer to 
“##𝑛” as an offset of a consequent. 

In this paper, the assertions are mined within each time 
window of preset length. By determining the maximum number 
of clock cycles of an assertion, we can avoid mining relations 
between propositions that are too far apart. The propositions are 
also extracted within each time window.  

##2  

(𝒑[𝟎] = 𝑻𝒓𝒖𝒆) ∧ (𝒒[𝟏] = 𝑻𝒓𝒖𝒆)  
𝒛[𝟐] = 𝒙[𝟎] + 𝒚[𝟎]  



 

Moreover, we consider the features of a digital circuit that 
often keep values unchanged over multiple clock cycles, and 
propose assertion mining by focusing on the changes of the 
values in execution traces. As a result, the unchanged values 
over multiple clock cycles can be considered as one value and 
we can mine assertions that cannot be mined in the existing 
method that consider all values. Table 2 shows a part of an 
execution trace of a multi-cycle MIPS processor. In the MIPS 
processors, the operation to be performed is determined by the 
values of the signal 𝑂𝑝  and 𝐹𝑢𝑛𝑐𝑡  representing the type of 
instruction. Multi-cycle processor executes one instruction over 
multiple clock cycles. For an example, if 𝑂𝑝 = 0   and 
𝐹𝑢𝑛𝑐𝑡 = 32 are read in the decode stage, the values of the 
specified registers 𝑅𝐷1 and 𝑅𝐷2 at one clock cycle later are 
added and its result appears one clock cycle later at 𝑊𝐷3 and is 
written to the register. Such a property seems to be able to 
describe as ( 𝑂𝑝[0] = 0 ) ∧  ( 𝐹𝑢𝑛𝑐𝑡[0] = 32 ) −>  ##1 
(𝑊𝐷3[1] = 𝑅𝐷1[0] + 𝑅𝐷2[0] ). However, in actuality, this 
assertion does not hold in the execution trace, because the same 
values are kept in 𝑂𝑝 and 𝐹𝑢𝑛𝑐𝑡 until the next instruction is read. 
See the middle table of Table 2. 

 
Table 2. Execution traces of multi-cycle MIPS processor 

 
EXECUTION TRACE _ EXECUTION TRACE ___ 

_ 
EXECUTION TRACE 

Op Funct RD1 RD2 WD3 Op Funct RD1 RD2 WD3 Op Funct RD1 RD2 WD3 
0 32 0 0 76 0 32 0 0 76 0 32 0 0 76 
0 32 5 10 4 0 32 5 10 4 0 32 5 10 4 
0 32 5 10 15 0 32 5 10 15 0 32 5 10 15 
0 32 5 10 6 0 32 5 10 6 0 32 5 10 6 
4 5 5 10 76 4 5 5 10 76 4 5 5 10 76 
4 5 49 1 76 4 5 49 1 76 4 5 49 1 76 
4 5 49 1 48 4 5 49 1 48 4 5 49 1 48 

 
 
 
 
 
 
Thus, we perform extraction of propositions and mining of 

assertions by focusing on the changes of the values. In the right-
most table of Table2, the values changed from the previous 
values are shown in bold. By considering only such values, we 
can extract the property (𝑂𝑝[0] = 0) ∧ (𝐹𝑢𝑛𝑐𝑡[0] = 32) −> 
##1 (𝑊𝐷3[1] = 𝑅𝐷1[0] + 𝑅𝐷2[0]) from the execution trace. 
Such a property becomes the assertion that holds in the 
execution trace by interpreting as (( 𝑂𝑝[−1]  ! = 0 ) ∨ 
(𝐹𝑢𝑛𝑐𝑡[−1]  ! = 32 )) ∧  (𝑂𝑝[0] = 0 ) ∧  (𝐹𝑢𝑛𝑐𝑡[0] = 32 ) −> 
##1 (𝑊𝐷3[1] = 𝑅𝐷1[0] + 𝑅𝐷2[0]). On the other hand, we 
should not consider the changes of values for consequents of 
assertions in the assertion mining phase. Suppose that, in the 
left-most table of Table 2, the first line happens to be 
0, 32, 5, 10, 4  instead of 0, 32, 0, 0, 76 . Then, the assertion 
cannot be found, because 5, 10, 4 in the second line is ignored, if 
we focus only changes of values. 
 

4. Methodology 
The proposed method consists of four phases: 
1) Extracting of atomic propositions: Extract frequent 

word-level atomic propositions that expressing value 

assignment and relation between variables by analyzing 
the execution trace.  

2) Mining of propositions: Mining frequent propositions 
over multiple clock cycles from atomic proposition trace 
in order to obtain candidate antecedents of assertions.  

3) Mining of assertions: Mining assertions from the trace 
of frequent propositions obtained at phase 1 and 2. 

4) Pruning and combining of assertions: Prune 
unnecessary assertions from the mined assertion set and 
combine consequents of assertions having the same 
antecedent with “∧”. 

We can consider that propositions which frequently hold in 
the execution trace can represent the behaviors of the DUV. In 
other words, it is possible to generate assertions with high 
coverage for DUV behavior by mining the relation between 
frequent propositions. 

We can choose whether to focus on the changes of values or 
to handle all the values in the traces. Whether or not the values 
are kept over multiple clock cycles may be judged from the 
execution traces or the documentations. The above procedure 1 
- 4 can be performed independently from these two approaches. 
In the following, we explain the approach in which we handle 
all the values in the traces. 

 
4.1. Extracting of frequent atomic propositions 

In the first phase of the proposed method, we analyze the 
execution trace of DUV and extract word-level atomic 
propositions (described in Section 3) that frequently hold. 

In order to make assertion mining more efficient and obtain a 
high quality assertion set, we classify frequent atomic 
propositions as follows:  

(A) Candidate of antecedents: a set of the atomic 
propositions representing value assignment within a 
single clock cycle (e.g., 𝑎[0] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). 

(B) Candidate of consequents: a set of the atomic 
propositions that assign a value to the variables in 𝑉! 
(e.g., 𝑧[2] = 𝑎[0] + 𝑏[0] , 𝑧[1] = 𝑎[0] << 3 , 
𝑧[0] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑧 ∈ 𝑉!)). 

 
Algorithm 1. Extraction of frequent atomic propositions 
    1: 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧  𝐺𝑒𝑡𝐴𝑡𝑜𝑚𝑖𝑐𝑃𝑟𝑜𝑝𝑠(𝑇,𝑚𝑎𝑥_𝑙𝑒𝑛, 𝑎𝑛𝑡_𝑡ℎ, 𝑐𝑜𝑛_𝑡ℎ)	  	  
    2:          𝑎𝑛𝑡_𝑎_𝑝𝑟𝑜𝑝𝑠 = {}	  	  
    3:          𝑐𝑜𝑛_𝑎_𝑝𝑟𝑜𝑝𝑠 = {}	  	  
    4:          𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = {}	  	  
    5:          𝑡! = 0	  	  
    6:          𝐰𝐡𝐢𝐥𝐞  𝑡! ≤ (𝑙𝑒𝑛𝑔𝑡ℎ(𝑇) −𝑚𝑎𝑥_𝑙𝑒𝑛)  𝐝𝐨	  	  
    7:                    𝑎𝑝_𝑙𝑖𝑠𝑡 = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝑃(𝑇𝑊[𝑡! , 𝑡! +𝑚𝑎𝑥_𝑙𝑒𝑛 − 1])	  	  
    8:                    𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠. 𝑒𝑥𝑡𝑒𝑛𝑑(𝑎𝑝_𝑙𝑖𝑠𝑡)	  	  
    9:                    𝑡! = 𝑡! + 1	  	  
10:          𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑝 = 𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)	  	  
11:          𝐟𝐨𝐫  𝐚𝐥𝐥   < 𝑎𝑝,𝑚 >∈ 𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑝  𝐝𝐨	  	  
12:                    𝐢𝐟  ((𝑎𝑝  𝑖𝑠  𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑜𝑓_𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡𝑠)	  	  
                                                                                                                  𝐚𝐧𝐝  (𝑚 ≥ 𝑎𝑛𝑡_𝑡ℎ))  𝐭𝐡𝐞𝐧	  	  
13:                              𝑎𝑛𝑡_𝑎_𝑝𝑟𝑜𝑝𝑠 = 𝑎𝑛𝑡_𝑎_𝑝𝑟𝑜𝑝𝑠 ∪ {𝑎𝑝}	  	  
14:                    𝐢𝐟  ((𝑎𝑝  𝑖𝑠  𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑜𝑓_𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑠)  	  	  
                                                                                                                𝐚𝐧𝐝  (𝑚 ≥ 𝑐𝑜𝑛_𝑡ℎ))  𝐭𝐡𝐞𝐧	  	  
15:                              𝑐𝑜𝑛_𝑎_𝑝𝑟𝑜𝑝𝑠 = 𝑐𝑜𝑛_𝑎_𝑝𝑟𝑜𝑝𝑠 ∪ {𝑎𝑝}	  	  
16:          𝐫𝐞𝐭𝐮𝐫𝐧  𝑎𝑛𝑡_𝑎_𝑝𝑟𝑜𝑝𝑠, 𝑐𝑜𝑛_𝑎_𝑝𝑟𝑜𝑝𝑠	  	  

 
 

(𝑶𝒑[𝟎] = 𝟎) ∧ (𝑭𝒖𝒏𝒄𝒕[𝟎] = 𝟑𝟐) 
−> ##𝟏(𝑾𝑫𝟑[𝟏] = 𝑹𝑫𝟏[𝟎]+ 𝑹𝑫𝟐[𝟎]) 

(𝑶𝒑[𝟎] = 𝟎) ∧ (𝑭𝒖𝒏𝒄𝒕[𝟎] = 𝟑𝟐) 
−> ##𝟏(𝑾𝑫𝟑[𝟏] = 𝑹𝑫𝟏[𝟎]+ 𝑹𝑫𝟐[𝟎]) 

Focus on the 
changes of values 

each variable. 



 

The procedure of frequent atomic proposition extraction is 
shown in Algorithm 1. The function 𝑔𝑒𝑡𝐴𝑡𝑜𝑚𝑖𝑐𝑃𝑟𝑜𝑝𝑠 takes as 
arguments an execution trace 𝑇, the length of time window for 
mining assertions 𝑚𝑎𝑥_𝑙𝑒𝑛  and two thresholds 𝑎𝑛𝑡_𝑡ℎ  and 
𝑐𝑜𝑛_𝑡ℎ . 𝑎𝑛𝑡_𝑡ℎ   is the thresholds of frequency for atomic 
propositions (A), 𝑐𝑜𝑛_𝑡ℎ  is the thresholds of frequency for 
atomic propositions (B). First, the function 𝐺𝑒𝑡𝐴𝑡𝑜𝑚𝑖𝑐𝑃𝑟𝑜𝑝𝑠 
extracts all atomic propositions that hold on each time window 
of length 𝑚𝑎𝑥_𝑙𝑒𝑛   (line 6-9). At each iteration, the time 
window is analyzed by the function 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝑃, and a list of 
atomic propositions 𝑎𝑝_𝑙𝑖𝑠𝑡 that hold on the time window is 
extracted (line 7).  In order not to extract the same atomic 
proposition that holds at the same time, the function 
𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝑃 extracts only atomic propositions including the 
variables that refer to values at time 𝑡!, that is, the starting clock 
cycle of the time window. The atomic propositions in 
𝑎𝑝_𝑙𝑖𝑠𝑡  are added to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (line 8). 

Next, the frequency of each atomic proposition in 𝑎𝑝_𝑙𝑖𝑠𝑡 is 
counted, and the set of pairs <atomic proposition 𝑝, frequency of 
𝑝 > is obtained by the function 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 (line 11). Then, each 
proposition is classified as (A) or (B), and only propositions 
having a frequency exceeding the threshold value are selected 
(line 11-15). “𝑎𝑝  𝑖𝑠  𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑜𝑓_𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡𝑠” in line 12 
means “the atomic proposition 𝑎𝑝  is classified as (A)” and 
“𝑎𝑝  𝑖𝑠  𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑜𝑓_𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑠” in line 14 means “the 
atomic proposition 𝑎𝑝 is classified as (B).” 𝑎𝑛𝑡_𝑎_𝑝𝑟𝑜𝑝𝑠 is the 
set of frequent atomic propositions that are candidate of 
antecedent of assertions and 𝑐𝑜𝑛_𝑎_𝑝𝑟𝑜𝑝𝑠 is the set of frequent 
atomic propositions that are candidate of consequent of 
assertions.  
 

Table 3. Example of frequent atomic propositions 
 

EXECUTION TRACE  FREQUENT 
ATOMIC PROPOSITIONS time 𝑝 𝑞 𝑟 𝑥 𝑦 𝑧 

𝑡! 0 32 𝐹𝑎𝑙𝑠𝑒 5 1 0 
𝑡! 0 34 𝑇𝑟𝑢𝑒 10 5 0 (A)  𝑝[0] = 0  

  𝑞[0] = 32  
  𝑞[0] = 34  
  𝑟[0] = 𝑇𝑟𝑢𝑒  
  𝑧[0] = 0 

(B)  𝑧[2] = 𝑥[0] + 𝑦[0]  
  𝑧[2] = 𝑥[0] − 𝑦[0]  
  𝑧[0] = 0 

𝑡! 43 5 𝐹𝑎𝑙𝑠𝑒 20 8 6 
𝑡! 0 34 𝐹𝑎𝑙𝑠𝑒 3 30 5 
𝑡! 0 32 𝑇𝑟𝑢𝑒 6 7 35  
𝑡! 4 2 𝐹𝑎𝑙𝑠𝑒 4 4 -27 
𝑡! 8 32 𝐹𝑎𝑙𝑠𝑒 1 2 13  

 
For example, consider the execution trace shown in Table 3 

(left). When {𝑧} = 𝑉! , 𝑎𝑛𝑡_𝑡ℎ  and 𝑐𝑜𝑛_𝑡ℎ  are 2, the atomic 
propositions shown in Table 3 (right) are extracted. In this 
example, we do not consider “𝐹𝑎𝑙𝑠𝑒” of Boolean variable. 

The sets of frequent atomic propositions can be edited by 
users. It is possible to extract other type of atomic propositions 
specified by the users.  

The frequent atomic propositions of antecedents are used as 
candidate propositions of antecedents, and also used for 
generating more complex propositions in the next phase. The 
frequent atomic propositions of consequents are used as 
candidate propositions of consequents as they are.  

The time window or similar method is used in [15][9]. 
However, in these existing methods, the idea of the time window 
is used to obtain temporal relations between atomic propositions 
that hold in a clock cycle, and it is not used to obtain atomic 
propositions over multiple clock cycles.  

 

4.2. Mining of frequent propositions 
The purpose of this phase is to mine frequent propositions 

over multiple clock cycles from frequent atomic propositions as 
antecedents of assertions. By not considering all combinations of 
the atomic propositions as candidates of antecedents, it is 
possible to prevent mining the assertions overly constrained 
antecedents. In other words, it is possible to avoid extracting the 
assertions that hold accidentally in the execution trace. 

In existing method [15], frequent relations among the 
frequent atomic propositions are not considered in assertion 
mining. All temporal patterns between frequent atomic 
propositions are considered as candidate antecedents of 
assertions. Therefore, it seems that this method needs to limit the 
maximum number of clock cycles of the assertions or the 
antecedents to some extent. In [16], frequent relations among 
atomic propositions that hold in each clock cycle are considered 
as propositions, but frequent relations over multiple clock cycles 
are not considered in assertion mining.  

Mining of the frequent propositions is performed as follows: 
i) Obtain the atomic proposition trace 𝜔  from the 

execution trace 𝑇  and the set of frequent atomic 
propositions which are candidate antecedents obtained 
in previous phase.  

ii) Consider each time window 𝑇𝑊[𝑡! , 𝑡! +𝑚𝑎𝑥_𝑙𝑒𝑛 −
1] of length 𝑚𝑎𝑥_𝑙𝑒𝑛 for 𝜔 and generate an item list 
listing atomic propositions that hold in each time 
window.  

iii) Extract frequent itemsets with a frequency greater than 
or equal to the minimum support 𝑚𝑖𝑛_𝑠𝑢𝑝 from the 
item list by frequent pattern mining, and generate 
frequent propositions by connecting the atomic 
propositions in each large itemset with “∧”. In order to 
prevent duplication of propositions, we extracted only 
propositions including the atomic propositions that 
hold at time 𝑡!.  

 
Table 4. Example of an item list and frequent propositions 

Item List 
𝑇𝑊[𝑡!, 𝑡!] 𝑝 0 = 0, 𝑞 0 = 32, 𝑧 0 = 0, 𝑝 1 = 0, 𝑞 1 = 34,   

𝑟[1] = 𝑇𝑟𝑢𝑒, 𝑧[1] = 0	  
𝑇𝑊[𝑡!, 𝑡!]	   𝑝 0 = 0, 𝑞 0 = 34, 𝑟 0 = 𝑇𝑟𝑢𝑒, 𝑧 0 = 0, 𝑝 2 = 0,  	  

𝑞[2] = 34	  
𝑇𝑊[𝑡!, 𝑡!]	   𝑝[1] = 0, 𝑞[1] = 34, 𝑝[2] = 0, 𝑞[2] = 32, 𝑟[2] = 𝑇𝑟𝑢𝑒	  
𝑇𝑊[𝑡!, 𝑡!]	   𝑝[0] = 0, 𝑞[0] = 34, 𝑝[1] = 0, 𝑞[1] = 32, 𝑟[1] = 𝑇𝑟𝑢𝑒	  
𝑇𝑊[𝑡!, 𝑡!]	   𝑝[0] = 0, 𝑞[0] = 32, 𝑟[0] = 𝑇𝑟𝑢𝑒, 𝑞[2] = 32	  

 

Frequent proposition support 
𝑝[0] = 0 0.8 
𝑞[0] = 32 0.4 
𝑞[0] = 34 0.4 
𝑟[0] = 𝑇𝑟𝑢𝑒 0.4 
𝑧[0] = 0 0.4 

(𝑝[0] = 0) ∧ (𝑞[0] = 32) 0.4 
(𝑝[0] = 0) ∧ (𝑞[0] = 34) 0.4 
(𝑝[0] = 0) ∧ (𝑧[0] = 0) 0.4 

(𝑝[0] = 0) ∧ (𝑟[0] = 𝑇𝑟𝑢𝑒) 0.4 
(𝑝[0] = 0) ∧ (𝑟[1] = 𝑇𝑟𝑢𝑒) 0.4 
(𝑝[0] = 0) ∧ (𝑝[1] = 0) 0.4 

(𝑝[0] = 0) ∧ (𝑝[1] = 0)   ∧ (𝑟[1] = 𝑇𝑟𝑢𝑒) 0.4 
 



 

Consider the example shown in Table 3. The item list 
obtained when 𝑚𝑎𝑥_𝑙𝑒𝑛 = 3  is shown in Table 4. The 
propositions obtained from the item list by performing the 
frequent pattern mining with 𝑚𝑖𝑛_𝑠𝑢𝑝 = 0.4 are shown in the 
lower side of Table 4.  

The assertions in the proposed method consist of pairs of a 
frequent proposition of candidate antecedents obtained in phase 
1, 2 and a frequent proposition of candidate consequents 
obtained in the previous phase 1.  
 
4.3. Mining of assertions 

The purpose of this phase is to extract assertions of length 
less than 𝑚𝑎𝑥_𝑙𝑒𝑛  that hold in the execution trace 𝑇 . An 
assertion is an implication from a proposition of candidate 
antecedents to a proposition of candidate consequents. The 
length of an assertion is the number of clock cycles necessary for 
the assertion to hold 

Algorithm 2. Mining of assertions 
    1: 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧  𝐺𝑒𝑡𝐴𝑠𝑠𝑒𝑟𝑡(𝑇,𝑚𝑎𝑥_𝑙𝑒𝑛,𝐴𝑛𝑡𝑠,𝐶𝑜𝑛𝑠)	  	  
    2:          𝐴𝑠𝑠𝑒𝑟𝑡 = {}	  	  
    3:          𝐹𝑎𝑖𝑙𝑒𝑑𝐴𝑠𝑠𝑒𝑟𝑡 = {}	    
    4:          𝑡! = 0	    
    5:          𝐰𝐡𝐢𝐥𝐞  𝑡! ≤ (𝑙𝑒𝑛𝑔𝑡ℎ(𝑇) −𝑚𝑎𝑥_𝑙𝑒𝑛)  𝐝𝐨	    
    6:                    𝐴𝑇 = 𝐺𝑒𝑡𝑃𝑟𝑜𝑝𝑇𝑟𝑎𝑐𝑒(𝑇𝑊[𝑡! , 𝑡! +𝑚𝑎𝑥_𝑙𝑒𝑛 − 1],𝐴𝑛𝑡𝑠)	    
    7:                    𝐶𝑇 = 𝐺𝑒𝑡𝑃𝑟𝑜𝑝𝑇𝑟𝑎𝑐𝑒(𝑇𝑊[𝑡! , 𝑡! +𝑚𝑎𝑥_𝑙𝑒𝑛 − 1],𝐶𝑜𝑛𝑠)	    
    8:                    𝑎_𝑠𝑒𝑡 = 𝐺𝑒𝑡𝑃𝑟𝑜𝑝𝑠(𝐴𝑇,𝐴𝑛𝑡𝑠)	    
    9:                    𝑐_𝑠𝑒𝑡 = 𝐺𝑒𝑡𝑃𝑟𝑜𝑝𝑠(𝐶𝑇,𝐶𝑜𝑛𝑠)	    
10:                    𝐟𝐨𝐫  𝐚𝐥𝐥   < 𝑎, 0 >  ∈ 𝑎_𝑠𝑒𝑡  𝐝𝐨	    
11:                              𝐟𝐨𝐫  𝐚𝐥𝐥  𝑐 ∈ 𝐶𝑜𝑛𝑠  𝐝𝐨	    
12:                                        𝐟𝐨𝐫  𝐞𝐚𝐜𝐡  𝑜𝑓𝑓𝑠𝑒𝑡  𝐢𝐧  𝑚𝑎𝑥_𝑙𝑒𝑛  𝐝𝐨	    
13:                                                𝐢𝐟   < 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 >   𝐢𝐧  𝐹𝑎𝑖𝑙𝑒𝑑𝐴𝑠𝑒𝑟𝑡  𝐝𝐨	    
14:                                                          𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒	  	  
15:                                                𝐢𝐟   < 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 >   𝐢𝐧  𝑐_𝑠𝑒𝑡  𝐝𝐨	    
16:                                                            𝐢𝐟  𝑙𝑒𝑛𝑡ℎ(𝑎) ≤ 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐)  𝐝𝐨	    
17:                                                                      𝐴𝑠𝑠𝑒𝑟𝑡 = 𝐴𝑠𝑠𝑒𝑟𝑡 ∪ {< 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 >}	    
18:                                                                      𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒	  	  
19:                                                𝐢𝐟   < 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 >   𝐧𝐨𝐭  𝐢𝐧  𝑐_𝑠𝑒𝑡  𝐝𝐨	  	    
20:                                                            𝐢𝐟   < 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 >   𝐢𝐧  𝐴𝑠𝑠𝑒𝑟𝑡  𝐝𝐨	    
21:                                                                      𝐴𝑠𝑠𝑒𝑟𝑡 = 𝐴𝑠𝑠𝑒𝑟𝑡\{< 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 >}	  	  
22:                                                            𝐹𝑎𝑖𝑙𝑒𝑑𝐴𝑠𝑠𝑒𝑟𝑡	  	  
                                                                                                = 𝐹𝑎𝑖𝑙𝑒𝑑𝐴𝑠𝑠𝑒𝑟𝑡 ∪ {< 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 >}	  	  
23:                    𝑡! = 𝑡! + 1	  	  
24:          𝐫𝐞𝐭𝐮𝐫𝐧  𝐴𝑠𝑠𝑒𝑟𝑡	  	  

 
The procedure of assertion mining is shown in Algorithm 2. 

The function 𝐺𝑒𝑡𝐴𝑠𝑠𝑒𝑟𝑡 takes as arguments an execution trace 
T, the length of time window for mining assertions 𝑚𝑎𝑥_𝑙𝑒𝑛 
and two sets 𝐴𝑛𝑡𝑠  and 𝐶𝑜𝑛𝑠 . 𝐴𝑛𝑡𝑠  is the set of frequent 
propositions as candidate antecedent of assertions obtained in 
phase 1 and 2. 𝐶𝑜𝑛𝑠  is the set of frequent propositions as 
candidate consequent of assertions obtained in phase 1. First, 
the function 𝐺𝑒𝑡𝐴𝑠𝑠𝑒𝑟𝑡 obtains the proposition trace 𝐴𝑇  and 𝐶𝑇 
of length 𝑚𝑎𝑥_𝑙𝑒𝑛 by the function 𝐺𝑒𝑡𝑃𝑟𝑜𝑝𝑇𝑟𝑎𝑐𝑒 (line 6-7). 
Next, the sets of propositions < 𝑝, 𝑜𝑓𝑓𝑠𝑒𝑡 > that hold in each 
proposition trace are obtained (line 8-9). 𝑝 is a proposition in 
𝐴𝑛𝑡𝑠 or 𝐶𝑜𝑛𝑠, and 𝑜𝑓𝑓𝑠𝑒𝑡 is the time at which the proposition 
𝑝 holds regarding 𝑡! to be 0. Then, at each iteration, the function 
𝐺𝑒𝑡𝐴𝑠𝑠𝑒𝑟𝑡 obtains two sets 𝐴𝑠𝑠𝑒𝑟𝑡 and 𝐹𝑎𝑖𝑙𝑒𝑑𝐴𝑠𝑠𝑒𝑟𝑡 (line 10-
23). In order to prevent duplication of assertions, we consider 
only the propositions with 𝑜𝑓𝑓𝑠𝑒𝑡 = 0  for the antecedents 
(line10). 𝐴𝑠𝑠𝑒𝑟𝑡 is the set of implications < 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 > that 
hold in the execution trace before 𝑡!, and 𝐹𝑎𝑖𝑙𝑒𝑑𝐴𝑠𝑠𝑒𝑟𝑡 is the 

set of implications  < 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 > that does not hold in the 
execution trace before 𝑡! . In line 16, in order not to mine 
inconsistent assertions about time such as (𝑝[0] = 𝑇𝑟𝑢𝑒) ∧ 
( 𝑞[1] = 𝑇𝑟𝑢𝑒 ) −>  ##0  ( 𝑧[0] = 1 ), the lengths of the 
propositions 𝑎   and 𝑐  are considered. < 𝑎, 𝑐, 𝑜𝑓𝑓𝑠𝑒𝑡 > 
represents “ 𝑎  −>   ##𝑜𝑓𝑓𝑠𝑒𝑡  𝑐 .” The above processes are 
performed for each time window. Finally, we can obtain the set 
𝐴𝑠𝑠𝑒𝑟𝑡 of assertions that hold in the execution trace 𝑇. 
 
4.4. Pruning and combining of assertions 

The purpose of this phase is to improve the quality of the 
assertion set by pruning and combining. After pruning as follows, 
we combine the consequent of assertions having the same 
antecedent into one assertion with “∧”. First, if there is an 
assertion 𝛼 as below, we prune the assertion 𝛼. 

(i) 𝛼 assigns a value to the same variable 𝑣[𝑖] in antecedent 
and consequent. 

Next, if there are assertions 𝛼1 and 𝛼2 as below, we prune 
assertion 𝛼2. The pruning (iii) is performed to improve the 
readability of the assertion set by adopting the only simplest 
assertion when several assertions are extracted for one behavior. 

(ii) 𝛼1 and 𝛼2 have the same consequent, and the antecedent 
of 𝛼2 includes the antecedent of 𝛼1. 

(iii) 𝛼1 and 𝛼2 have the same antecedent and a consequent 
that assigns a value to the same variable z[𝑖]  (𝑧 ∈ 𝑉!), the 
consequent of 𝛼1  representing the value assignment and the 
consequent of 𝛼2 representing the relation between variables.  

 

5. Experimental Results 
All experiments were performed on an Intel Corei5-

4590@3.30GHz with 24GB RAM. We used four designs in our 
experiments. Single-cycle MIPS processor, Multi-cycle 
processor and Pipelined MIPS processor from [17]. CORDIC 
design from OpenCores [18]. CORIC (Coordinate Rotation 
Digital Computer) is an algorithm for computing transcendental 
functions like sine and cosine. 
 
5.1. Mining of assertions 

Table 5 reports the number of variables in 𝑉 and 𝑉! used for 
experiments (|𝑉|, |𝑉!|), the average number of bits of variables 
in 𝑉 (𝑠𝑖𝑧𝑒(𝑣𝑎𝑟)), the maximum clock cycle of mining assertions 
(𝑚𝑎𝑥_𝑙𝑒𝑛), the number of frequent antecedent / consequent 
propositions (#𝑎𝑛𝑡 , #𝑐𝑜𝑛 ), the number of mined assertions 
(#𝑎𝑠𝑠𝑒𝑟𝑡), the average numbers of antecedent / consequent 
atomic propositions included in the mined assertions (𝑠𝑖𝑧𝑒(𝑎𝑛𝑡), 
𝑠𝑖𝑧𝑒(𝑐𝑜𝑛)) and the total time required for the mining assertion 
phase and pruning and combining phase (𝑡𝑖𝑚𝑒). 𝑚𝑎𝑥_𝑙𝑒𝑛 was 
determined from the execution traces. We used execution traces 
of 10000 lines for the MIPS processors and 3000 lines for 
CORDIC design. We chose to focus on the changes of values for 
MIPS processors, and chose to handle all the values in the traces 
for CORDIC design. Each trace was obtained by random 
simulation. In the MIPS processors, simulations were performed 
using programs in which all instructions other than the Jump 
instruction appeared randomly. In the CORDIC design, the value 
of input variable 𝜃  was set randomly. In experiments on 
CORDIC design, “𝑡ℎ𝑒𝑡𝑎 < 0” and “𝑡ℎ𝑒𝑡𝑎 ≥ 0” are added 
manually as atomic propositions. The thresholds in the proposed 



 

method were set to filter propositions which are obviously less 
frequent.  

 
Table 5. Experimental results of assertion mining 

DUV |V| |Va| size(var) max_len #ant #con #assert size(ant) size(con) time 
Single-cycle 

MIPS processor 6 1 23.33 3 50 58 7 1.57 1.00 4.39s 

Multi-cycle 
MIPS processor 6 1 23.33 5 55 34 14 1.29 1.21 3.08s 

Pipelined 
MIPS processor 6 1 23.33 5 84 58 8 1.63 1.00 3.33s 

CORDIC 6 2 14.33 2 20 29 9 1.10 2.60 1.24s 
 

Table 5 shows that the proposed method can extract 
assertions in a few seconds for a given set of word-level 
variables. The following shows examples of the assertions 
extracted in the experiments on pipelined MIPS processor and 
CORDIC design. 

(i) Pipelined MIPS processor  
( 𝑂𝑝𝐷 −1   ! = 0 ∨ 𝐹𝑢𝑛𝑐𝑡𝐷 −1   ! = 32 )   ∧	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   𝑂𝑝𝐷 0 = 0 ∧ 𝐹𝑢𝑛𝑐𝑡𝐷 0 = 32 	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  −>   ##1  (𝑅𝑒𝑠𝑢𝑙𝑡𝑊[2] = 𝑆𝑟𝑐𝐴𝐸[0] + 𝑆𝑟𝑐𝐵𝐸[0])  

(ii) CORDIC  
𝑖𝑛𝑖𝑡 0 = 0 ∧ 𝑡ℎ𝑒𝑡𝑎 0 ≥ 0 	  	  
−>   ##0  (𝑦[1] = 𝑦[0] + 𝑥_𝑠ℎ𝑖𝑓𝑡𝑒𝑑[0]) ∧ (𝑥[1] = 𝑥[0] − 𝑦_𝑠ℎ𝑖𝑓𝑡𝑒𝑑[0])	  

The assertion (i) captures the behavior that add the values of 
registers according to the given instruction (𝑂𝑝𝐷[0] = 0) ∧ 
( 𝐹𝑢𝑛𝑐𝑡𝐷[0] = 32 ), and the assertion (ii) captures the 
calculation of CORDIC design that obtain 𝑐𝑜𝑠𝜃 and 𝑠𝑖𝑛𝜃 when 
𝜃 ≥ 0  and the reset signal is 0.  

 
5.2. Effectiveness of frequent proposition mining 

Table 6 shows the results of extracting assertions without 
frequent proposition mining over multiple clock cycles 
(explained in phase 2 in Section 4). In this experiment, all 
temporal patterns of frequent propositions that hold at one clock 
cycle are considered as candidate antecedents of assertions. 
Comparing the Table 5 with Table 6, it can be seen that the 
frequent proposition mining improves the execution time of 
assertion mining. In addition, the number of assertions and the 
size of antecedent are larger than shown in Table 5. This is 
because assertions in which these antecedents are excessively 
restricted that hold accidentally at the execution trace are 
extracted. By this experiment, it was confirmed that frequent 
proposition mining over multiple clock cycles is effective. 

 
Table 6. Experimental results without 

frequent proposition mining over multiple clock cycles 
DUV #assert size(ant) size(con) time 

Single-cycle MIPS processor 324 3.17 1.43 68.56s 
Multi-cycle MIPS processor 137 2.96 2.38 19.15s 
Pipelined MIPS processor 3925 3.73 2.91 251.97s 

CORDIC 31 1.71 5.23 1.78s 
 

5.3. Mutant analysis 
We performed mutant analysis to measure the quality of a set 

of assertions mined in the experiments of Table 5. A mutant is 
an artificial error of DUV, and the mutant coverage is the ratio 
between generated mutants and covered mutants. If an assertion 
fails on the DUV containing a mutant, the mutant is covered by 
the assertion. In our mutant analysis, the value of each output 

signal of the control unit in the MIPS processors, and the value 
of each signal of the set 𝑉\𝑉! in CORDIC are fixed at word-
level, and the resulting DUVs are regarded as the mutants. The 
experimental results are shown in Table 7. #𝑚𝑢𝑡𝑎𝑛𝑡  is the 
number of mutants, #𝑐𝑜𝑣𝑒𝑟𝑒𝑑 is the number of covered mutants 
and 𝐴𝑣𝑔 is the average number of mutants covered by each 
assertion. The mutant coverage achieved for CORDIC design is 
100% for the proposed method. The mutant coverage for the 
processors is not 100%, because there are mutants that do not 
affect 𝑉. Table 7 shows that the assertion sets mined by the 
proposed method can cover almost all the mutants affecting 𝑉.  

 
Table 7. Results of mutant analysis 

DUV #mutant #covered Avg 
Single-cycle MIPS processor 24 16 9.00 
Multi-cycle MIPS processor 24 21 4.93 
Pipelined MIPS processor 24 18 8.63 

CORDIC 7 7 2.00 
 

6. Conclusions 

In this paper, we proposed a method that to extract relations 
over multiple clock cycles between variables as atomic 
propositions by analyzing execution traces and to generate 
assertions expressing the relations. The proposed method can 
also efficiently generate assertions by extracting frequent 
relations between atomic propositions over multiple clock cycles 
as propositions. The experimental results show that the proposed 
method can extract assertions including word-level relations 
over multiple clock cycles. In addition, the results of mutant 
analysis show that the assertions extracted by the proposed 
method can capture the behavior of DUV. 

As future works, it is necessary to increase the form of the 
assertions that can be extracted, and to perform the experiments 
for larger designs. 

 

References 
[1] L. -C. Wang, M. S. Abadir, and N. Krishnamurthy, 

“Automatic generation of assertions for formal verification 
of powerpc microprocessor arrays using symbolic 
trajectory evaluation,” Design Automation Conference 
(1998) 534-537. 

[2] G. Ammons, R. Bodík, and J. R. Larus, “Mining 
specifications,” ACM Sigplan Notices, vol. 37, no. 1 
(2002) 4-16. 

[3] S. Hangal, S. Narayanan, N. Chandra and S. Chakravorty: 
“IODINE: a tool to automatically infer dynamic invariants 
for hardware designs,”  Design Automation Conference 
(2005) 775-778. 

[4] G. Fey and R. Drechsler, “Improving simulation-based 
verification by means of formal methods,” Asia South-
Pacific Design Conference (2004) 640-643. 

[5] B. Isaksen and V. Bertacco, “Verification through the 
principle of least astonishment,” ICCAD (2006) 860-867. 

[6] P. H. Chang and L. C. Wang, “Automatic assertion 
extraction via sequential data mining of simulation traces,” 
Asia and South Pacific Design Automation Conference 
(2010) 607-612. 



 

[7] W. Li, A. Forin and S. A. Seshia, “Scalable specification 
mining for verification and diagnosis,” Design Automation 
Conference  (2010) 755-760. 

[8] S. Vasudevan, D. Sheridan, D. Tcheng, S. Patel, W. Tuohy, 
and D. Johnson, “GoldMine: Automatic assertion 
generation using data mining and static analysis,” DATE 
(2010) 626-629. 

[9] S. Hertz, D. Sheridan, S. Vasudevan, “Mining Hardware 
Assertions With Guidance From Static Analysis,” IEEE 
Transactions on Computer-Aided Design of Integrated 
Circuits and Systems,Volume 32 Issue 6  (2013) 952-965. 

[10] L. Liu and S. Vasudevan, “Automatic Generation of 
System Level Assertions from Transaction Level Models,” 
J. Electronic Testing 29, 5 (2013), 669-684. 

[11] L. Liu, C. H. Lin and S. Vasudevan, “Word level feature 
discovery to enhance quality of assertion mining,” 
IEEE/ACM International Conference on Computer-Aided 
Design (ICCAD) (2012) 210-217. 

[12] M. Bonato, G. D. Guglielmo, M. Fujita, F. Fummi, G. 
Pravadelli, “Dynamic Property Mining for Embedded 
Software,” IEEE/ACM/IFIP international conference onf 
Hardare/softwere codesign and system synthesis (2012) 87-
196. 

[13]  M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. 
Pacheco, M. S. Tschantz, C. Xiao, “The daikon system for 
dynamic detection of likely invariants,” Sci. Comput. 
Program., 69(1-3) (2007) 35-45. 

[14] A. Danese, T. Ghasempouri, G. Pravadelli, “Automatic 
extraction of assertions from execution traces of behavioral 
models,” Design, Automation & Test in Europe Conference 
& Exhibition (2015) 67-72. 

[15] A. Danese, F. Filini and G. Pravadelli, “A time-window 
based approach for dynamic assertions mining on control 
signals,” IFIP/IEEE International Conference on Very 
Large Scale Integration (VLSI-SoC)  (2015)  246-251. 

[16] A. Danese,  N. D. Riva, G. Pravadelli, “A-TEAM: 
Automatic template-based assertion miner,” Design 
Automation Conference (2017), Article No. 37. 

[17] D. M. Harris, S. L. Harris, “Digital Design and Computer 
Architecture,” 2nd ed., Waltham, MA: Morgam Kaufmann 
(2012). 

[18] OpenCores benchmarks. www.opencores.org. 


