
Logic-based Row Redundancy Technique Designed in 7nm FinFET
Technology for Embedded SRAMs

Vivek Nautiyal, Nishant Nukala, Fakhruddin Ali Bohra, Sagar Dwivedi, Jitendra Dasani, Satinderjit Singh, Gaurav Singla and
Martin Kinkade

Arm Inc, San Jose, California, USA, E-mail: vivek.nautiyal@arm.com

Abstract—In this paper, a row-redundancy circuit using latches
is designed for 7nm FinFET ultra high density SRAM operating
at 1.75 GHz. Input and faulty addresses are compared in parallel
to the memory read access operation thus avoiding a major
impact on access or address setup time. Latch output data is
multiplexed with memory data and the impact on access time is
only 7ps at SS/0.675V/-40◦C corner. Data is written to redundant
latches only when address comparison matches. The proposed
circuit is implemented with no setup time impact and an overall
area overhead of the proposed row redundancy scheme is less
by 82% as compared to the area overhead of the conventional
redundancy scheme.

I. Introduction
It is a well-known fact that memories, especially em-

bedded SRAMs have been the heart of modern System on
Chip (SoC) designs. With shrinking geometries, the transistor
count/density in memories has enormously increased to such
an extent that the performance, power, yield and reliability of
the overall die are greatly influenced by memory design. Errors
of various kinds frequently creep into memories at smaller
technology nodes, aggrevate especially at low supply voltages
and hence significantly effect the chip yield. Mitigating these
errors is easier with increasing the supply voltage, however
this tremendously increases the power consumption making
this solution inadequate and demanding for better approaches
at both device and circuit levels.

Errors in SRAMs can be mostly classified as hard errors,
soft errors, timing-voltage-margin related errors and perfor-
mance related errors. Sources of these errors can be many.
Hard errors are mainly due to the fabrication defects which
can cause incorrect operation and damage the memory chip
permanently. These include, single bit faults where one mem-
ory bit (SRAM bitcell) is faulty or row/column faults where
a row or a column of the SRAM array is faulty. Hard errors
increase rapidly with scaling where manufacturing processes
and technologies become very sophisticated. Soft errors on the
other hand, are due to noises or alpha particles incidents on
the memory cells which result in information loss, but there
is no physical damage to the devices. These can be repaired
by rewriting the lost information. These errors also increase
with device scaling and are significant in SRAM designs.
Combination of redundancy techniques to repair the hard
errors and Error Checking and Correction (ECC) techniques
to repair soft errors have been shown in the literature to be
very effective in reducing these errors [3]. The redundancy
techniques proposed in the literature so far have a tremendous
impact on SRAM timing and also the spare bitcells used are in
general susceptible to various faults. The novel flip-flop (FF)
based redundancy technique proposed in this paper addresses

these issues and does not have any serious impact on the
SRAM timing and is also not sensitive to faults as it is logic-
based. Rest of the paper is organized as follows.

Section II discusses some of the previous work done in
redundancy. Section III explains the conventional redundancy
approach while section IV describes the novel flip-flop ap-
proach to row redundancy. Finally results are discussed in
section V.

II. Prior Work Related to Redundancy

A few details regarding the previous work done on redun-
dancy and which have been in the author’s range of investiga-
tions have been provided in this section. Most of the previous
work in this field is related to the different implementations
of spare rows/columns (implementation details are similar to
the flowchart shown in Fig1) and their modifications. Various
replacement circuit techniques such as intrasubarray replace-
ment, intersubarray replacement and subarray replacement
have been described in [3]. Due to the increasing memory
capacity, the memory array is divided heirarchically into sub
arrays. Intrasubarray and intersubarray replacement techniques
deal with replacing the faulty row/column in the same sub-
array and another subarray respectively. [8] proposes a new
intrasubarray replacement scheme where a flexible relationship
exists between spare lines and spare decoders. This novel
proposal has been shown to have a better usage of spare lines
and decoders and less probability of memory failure. Apart
from intra and inter subarray techniques, subarray replacement
techniques deal with DC characteristic faults, such as excessive
stand-by current.

Traditionally, memory repairing involved replacement of
one faulty column with one spare column. [9] shows how
to use one spare column to repair multiple defective cells in
multiple columns. This is done by selectively decoding the
row address when generating the control signals for column
MUXes. Experimental results have successfully shown higher
probability repair rate compared to the traditional methods.
Another excellent publication which discusses a novel redun-
dancy approach is [11]. This paper proposes a redudancy
technique where spare word/bit lines and spare decoders
are provided on the chip to replace the faulty ones while
still maintaining the same address. This approach showed a
significant improvement in the number of usable bits on the
wafer. Yamagato et.al in [12] describe a way to optimize the
tradeoff between chip yield and area penalty. This ”Distributed
Globally Replaceable” scheme is proposed exclusively for row
redundancy, whose main theme is as follows: If the number
of defects exceed the number of redundant lines in one block

978-1-5386-1214-9/18/$31.00 ©2018 IEEE 274 19th Int'l Symposium on Quality Electronic Design

(bank), then redundant lines from other blocks are used to
replace the defective word lines. This has shown only a 3%
area increase (it is also shown that fewer redundant cells
are sufficient) and 61% improvement in repair efficiency. The
main aim of various redundancy approaches has always been
to continually make an optimal tradeoff between the number of
spare rows/columns in order to increase the yield and reduce
area penalty [1]. This optimization was also dealt from an
algorithmic perspective in a few publications like [5] and [4].

An important take away from all the redundancy approaches
discussed above is: Row redundancy has been shown to have
a biggest pay off since polysilicon design rules are more
aggressive than metal/contact design rules. Circuit design trade
offs have to be carefully made since row decoders are in the
critical timing paths and new row redundancy techniques are
to be developed to minimize timing impacts along with the
aim of reducing the area penalty and increasing the yield [7].
[10] is a patent which exclusively discusses row redundancy
while minimizing the impact on timing. However, the circuit
complexity is huge as it uses pipeling and state machine
approach. In this paper, we achieve similar performance as
in [10] without much circuit complexity.

III. Conventional Redundancy Scheme

Redundancy technique is in general used to repair the hard
errors. In the conventional redundancy approach, a spare row
and/or column array of memory cells are provided along
with the regular memory cells on the chip in advance. It is
assumed that the faulty row/columns are identified and the
faulty address bits are notified during wafer testing/Built-in
Self Test (BIST). The regular address bits received for either
the write or read operation are then compared with the already
stored faulty address bits. If the comparison matches, a ”match
signal” is set high indicating the memory location which
is faulty. The faulty row/column array is then disabled and
operation happens from the redundant/spare row/column array.
If the ”match signal” is low (indicating no fault), the read/write
operation happens from the regular array. Fig1 shows the flow
chart of the conventional row/column redundancy approach
and Fig2 pictorially illustrates the top level process of this
scheme. Though figures1 and 2 depict the general principles
of both row and column redundancy, the choice between them
depends on the density of the SRAM array. If the density of
the SRAM array is small then column redundancy is sufficient
otherwise row redundancy along with column redundancy
might become a necessity. Additionally, with the advent of
EUV lithography due to intense scaling, defects are not only
in the SRAM array, but also in the periphery, which further
necessiates the need for row redundancy as all the issues
cannot be addressed by column redundancy alone [2]. Conven-
tional redundancy scheme works very well and had improved
the yield significantly. However, there are several penalties to
be considered, out of which the most important one is that,
there is an intolerable impact on memory timing, specifically
the address setup time (which inturn effects the cycle time),
because of the entire process of comparison, disabling the
faulty row/column and enabling the spare row/column [6].

Start

Address Received
Begin Read/Write

operation

Compare Regular and
Faulty Address

Match Read/Write from Regular
Row/Column

Disable Regular
Row/Column and

Read/Write from Redundant
Row/Column End

NO

YES

Fig. 1: Flow Chart for Conventional Row/Column Redundancy
Scheme

Row
Dec

Row Addr.
Comparator

Regular Row Addr

Faulty Row Addr

Faulty Word
Lines

Redundant
Word Lines

Column Decoder

Column Addr.
Comparator

Regular Colmn Addr

Faulty Colmn Addr

Faulty
Data Lines

Redundant
Data Lines

Fig. 2: Top-Level Block Diagram of Conventional
Row/Column Redundancy Scheme

This also limits the maximum achievable frequency of the
conventional redundancy scheme.

The flip-flop based row redundancy scheme described next,
addresses this penalty and offers a solution to mitigate the im-
pact on timing unlike the conventional approach and achieves
a targetted frequency of 1.75GHz. It should be noted that, this
redundancy technique is specifically row based. As there is no
setup time penalty for column redundancy in both conventional
and flip-flop based schemes, spare SRAM column has been
used for column redundancy.

IV. Flip-Flop Based Row Redundancy Scheme
Fig3 shows the flow chart of the proposed flip-flop based

row redundancy scheme. Unlike the conventional redundancy
scheme which uses spare rows, this approach uses master-
slave latches (flip-flops) to access the data. This simple, yet
effective approach has no impact on the memory address setup
timing when compared to the conventional approach. The input
address bits received is compared to the faulty address while
the data is simultaneously written or read (depending on the
operation) into the current location based on the address re-
ceived irrespective of whether the array is good or faulty. Note
that the memory access time is greater than the comparison
time, so a simultaneous address comparison and a memory
read will not result in an incorrect read operation. Meanwhile,
if there is a match between both the addresses, a ”match
signal” is set and depending on whether the operation is read or
write, the data is either read from or written into the redundant
latches provided. Since this approach uses an array of flip-flops

Start

Address Received
Begin Read/Write

operation

Compare Regular and
Faulty Address

Match

Read/Write from/to received
address location irrespective
of whether it is good or faulty.

Read
Cycle

Read
Cycle

YES

YES NO

Send Data from
Redundant

Storage Latch

NO

Generate a
delayed clock
and write into
Redundant

Storage
Latch

End

NOTE: Operation happens in parallel
for shaded boxes.

Fig. 3: Flow Chart for Flop Based Row Redundancy Scheme

and not any redundant memory array of rows, it can be used as
a separate bolt-on mechanism as shown in the top-level block
diagram in Fig4. Each FF block shown in Fig4 is a master-
slave latch. If there is a match between the faulty address bits
and the regular address bits and if the operation is a read, then
the data is accessed out of the redundant ”slave” latch in the
FF block (blue line) otherwise the data from memory is read
(red line). Q0 to QN/2 are the primary outputs of the MUXed
redundant FF and memory signals. If the address bits match
and the operation is a write, then the redundant latches are
written. This approach has many advantages compared to the
conventional row redundancy scheme and they are listed here.

• No setup time penalty
• No margin impact on the SRAM array
• Completely bolt-on
• Does not cost much area

Control
Circuit

colm0 colmN/2 colm0 colmN/2

Row
Dec

Row Addr.
Comparator

Regular Row Addr

Faulty Row Addr

SRAM Array: Without Redundant Rows

Red-
Control
Circuit

FF FF FF FF

Bolt-on Flop Array of Redundant Rows

Mux Mux

Q0 QN/2

if (Match && READ)
 Q= Latch Data;
else if (!Match && READ)
 Q= mem_data;
else If (Match && Write)
 Write into spare latches;

Match Signal

Fig. 4: Top-Level Block Diagram of Flop Based Row Redun-
dancy Scheme

• Completely digital operation
• Built-in instance from the memory compiler and no

additional work needed from the SoC side.
One caveat of this scheme is, for small instances area impact
can be more, but row redundancy is preferred for large
instances.

A. Operation and Signal Descriptions of Flop Based Redun-
dancy Scheme

Depending on the requirement, the number of bolt-on
redundant rows can be more than one as it is driven by
yield and over all accumulated density of embedded SRAMs
in SoC. However, based on the prevelant embedded SRAM
accumulated density, generally one row and one column
redundancy are sufficient for a 2MB SRAM. This section
explains the signals needed and discusses the approach in more
detail. Signals needed for column redundancy are omitted.
TableI describes all the signals needed and Fig5 gives an in-
depth view of the block diagram shown in Fig4. A brief
description of the memory operation in Fig5 is as follows: An
8-bank memory array has been shown. The ”Central Spine”
block has all the control circuitry needed to operate the entire
memory in a butterfly fashion. Two banks, for eg: bank0 and
bank1 as shown in the figure share a local control circuitry
called ”Right shared Bank01/Left shared Bank01”. This block
includes the sense amplifiers, I/O’s etc needed to access the
data from these two banks. Output of each local ”shared bank”
block is MUXed (along with the redundancy block output -
Q0 Red) and a ”Banksel” signal helps in selecting the required
final memory output. Note that the ”Conv Redundant Rows”
blocks are shown in the figure just to depict the floorplan of
conventional redundancy scheme.

TABLE I: Signals needed for Flop-Based Redundancy Scheme

Signal Name Description
D Data Input
GWEN Active Low, Write to the memory location when low

else read from the memory location
WEN Active Low, Bit Write Enable
WCLK Fast clock to D master latch
RED WCLK[7:0] Clock signals for 8 slave latches. This is activated only when the

”Match Signal” is triggered
iRED WCLK[7:0] Internal signal generated by interlocking WEN and RED WCLK
Match Signal Regular Row Address and Faulty Row Address comparison output
Q MEM Q output coming from the SRAM Array
Q RED Q output coming from the Redundant Slave latches
Q Q output of the Slave latches Vs SRAM Array
RED QSEL[7:0] One of the RED QSEL signals will go high and select the corresponding

latch and transmit the data to the output
MEM QSEL Selects the final output either from the redundant latches

or from the SRAM Array

Central
Spine

Right Shared Bank 01

Right Shared Bank 67

Bank 0 Right

Bank 1 Right

Bank 6 Right

Bank 7 Right

Left Shared Bank 01

Left Shared Bank 67

Bank 0 Left

Bank 1 Left

Bank 6 Left

Bank 7 Left

Red
Controller

Per
Bit
RR

Per Bit
RR

Bank Redundancy Mux

Row Address
Comparator

CLK
Generator

Q0_bank01

Q0_bank67

Q0_Red

Match
Signal

Banksel

Q0_Red

Q0_bank67
Q0_bank01

Q0
RA FRA

Match
SignalCA

Decoder

R
ED

_W
C

LK
<n:0>

1
2 A

Other Banks Not Shown Other Banks Not Shown

Conv Redundant rows Conv Redundant rows

Conv Redundant rows Conv Redundant rows

Conv Redundant rows Conv Redundant rows

Conv Redundant rows Conv Redundant rows

Fig. 5: Complete Block Level Schematic of Flop Based Row
Redundancy Scheme

Redundant bolt-on block operation: The block shown as
”A” in Fig5 is the bolt-on redundant flip-flop array. The
redundancy controller block (circled number 1 in the Fig)
and the per bit row redundancy (Per Bit RR) block (flip-
flop block circled number 2) are enlarged in figures6 and 7
respectively. An inherent assumption made in this work is,
the entire process of row redundancy happens only when the
Row Redundancy Enable (RREN) signal is asserted. Referring
to Fig6, when the Row Address (RA) and the Faulty Row
Address (FRA) match in comparison, a ”Match signal” is
generated. This process of comparison happens parallelly to

the memory write/read operation as explained in the flow
chart (Fig3). The ”Match Signal”and decoded Column Address
(CA) generate a Redundancy Write Clock (RED WCLK)
which is used to write into the redundant latches. The ”Match
Signal” and GWEN generate a MEM QSEL signal to select
the final output either from the latches or the memory array.
Other signals generated by the controller are a fast Write Clock
(WCLK) and a fast RED QSEL (generated using CA and
GWEN) to select one of the outputs from the redundant slave
latches. Solid block signals shown in the figure represent a
bus and solid lines represent one bit signals.

Column
Address (CA)

RA

FRA

GWEN

WCLK

MEM_QSEL

RED_QSEL

RED_WCLK

CLK
(External)

Row
Address

Comparator

Column
Decoder

Match
 Signal

Clock
Generator

Redundancy Controller

Write clk for
redundancy

GWEN
Mem sel
signal

CA
Decoded

Fig. 6: Redundancy Controller in the Flop Based Redundancy
Scheme

Each row redundancy bit, as already explained previously
is a master-slave(s) latch combination. Fig7 depicts this con-
figuration. When the operation begins, the master latch is
loaded with the primary data (D) using an internally generated
fast Write Clock (WCLK). A fast clock has been used here
inorder to avoid large hold times on D input. Slave latches
are operated only when the ”match signal” is set. This is
obvious as the iRED CLK used in the slave latches depends
on RED WCLK which is inturn generated from the ”Match
Signal” (Fig6). All the experiments in this paper are done using
mux=8 configuration. This means, there are one master latch
and 8 slave latches (one for each column line in the memory)
and an 8:1 mux to select the output data from one of these 8

iRED_WCLK

Master
Latch Slave

Latches

D
RED_
DATA

WEN

RED_QSEL

WEN locked
with

RED_WCLK

WCLK

8:
1

M
ux

RED_
DATA

RED_WCLK

2:
1

M
ux

Q0_MEM

MEM_QSEL

Q0_RED

Q

Row Redundancy Bit
Banksel

Fig. 7: Row Redundancy Bit in the Flop Based Redundancy
Scheme

slave latches in each row redundancy bit. Using such a master-
slave(s) configuration saves a very significant amount of the
chip area. The RED WCLK signal is a 8-bit bus derived from
CA and only one of its 8 bits is asserted at a time enabling
only one of the 8 slave latches.

If the input data is not changing frequently, then the user can
save power by not writing into the latches. This functionality is
achieved by Write Enable (WEN) bit signal. If WEN is high,
then writing into the latches is disabled. This feature is also
incorporated here by interlocking the WEN and RED WCLK
signals and the newly generated iRED WCLK is used as the
clock for slave latches as shown in Fig7. Finally, MEM QSEL
signal is used to select between Q0 RED the output bit the
of redundant slave latches and Q0 MEM the output bit of
the memory array. Note that when MEM QSEL goes high,
Q0 RED is selected and the ”Banksel” signal, shown in Fig5
is disabled thus having no performance or timing impact.

V. Results and Discussions

Fig8 shows the simulation results of the flop based re-
dundancy approach. Three different phases of operation are
shown. The first phase is writing into the slave latches when
there is a match between the regular and faulty row addresses.
The sequence of various signals shown is as follows: The
first signal shown is the external clock signal (CLK). An
internally generated fast write clock (WCLK) shown next is
derived from CLK. This signal is used to write into the master
latch in each row redundancy bit at the start of the operation.
The comparator generates the ”match signal” shown next
which along with CA is used to derive the RED WCLK bus.
Only one bit signal RED WCLK[0] shown in the waveform

Fig. 8: Simulation Results for Flop Based Row Redundancy
Scheme

indicates that first latch has been written and the data written
is RED DATA[0]. This completes the write phase.

The second phase is the read from the redundant latches.
Match signal is again generated and a RED QSEL[0] signal
derived from CLK, GWEN and CA is used as a select signal
for the 8:1 mux as shown in Fig7. Finally, the MEM QSEL
(shown as MEM QSELb in the figure) signal is triggered to
select the output from the redundant latches. At this point,
”Banksel” is disabled.

The last phase is the memory read incase there is no match
between the addresses. MEM QSELb signal goes low and the
data is selected from the memory muxes.

Figures9 and 10 show the access and setup timings re-
spectively for different row redundancy approaches at three
Process-Voltage-Temperature (PVT) corners. A very large
memory instance with 16384 words, 80 bits, mux 8 (80*8=640
columns) and 8 banks has been chosen and reported here for
comparison. This instance is highly dense containing 1:1:1
bitcells (1 fin of pull-up PMOS, 1 fin of access NMOS and 1
fin of pull-down NMOS). All the simulation results shown are
done using the commercially available tools in 7nm FinFET
technology. Timings with no redundancy, conventional redun-
dancy (comparator is internal to the memory) and proposed
flop based redundancy schemes are shown in the figures. It
can be seen that the increment in access time for the flop
based redundancy is negligible (less than 1%) compared to the
increment in setup time for conventional redundancy scheme.
Also, at slow corner, since the circuit delay dominates (more
than RC delay), the setup time for conventional scheme is
more by 53% compared to proposed scheme (Fig10). If the
overall access + setup time of the instance without redundancy,
at slow/0.675V/-40◦C corner is assumed to be Tps, then the
conventional scheme has T+120ps and flop based scheme has
T+7ps as their access + setup times. This clearly shows that
the flop based redundancy has improved the overall timing
overhead by 94.1% compared to the conventional scheme at

slow/0.675V/-40◦C corner.

Fig. 9: Access times for different row redundancy schemes at
various PVT corners

Fig. 10: Setup timings for different row redundancy schemes
at various PVT corners

TableII shows the access time and the comparator delay
of two instances: Biggest and thinnest at slow/0.675V/-40◦C
corner. It can be seen that the access time is much greater
than the comparator delay and this justifies that flop based
redundancy scheme will not have any impact on the setup
time.
TABLE II: Access Time and Comparator delay for two
different instances at slow/0.675V/-40◦C corner

Memory Access Time Comparator Delay
16384x80m8fb8 Xps (0.126*X)ps
16384x8m8fb8 Kps (0.153*K)ps

Area Comparison: Conventional redundancy approach has
4 redundant rows in each bank (shown as ”Conv Redundant
Rows” in Fig5) which results in an additional area overhead
of 1.2% compared to the biggest instance chosen (16384
words, 80 bits, mux 8 and banks 8) without any redundancy.

Minimum of 4 redundant rows are needed in conventional
scheme as this is due to the pitched layout limitation of the
word line driver. The flop based redundancy scheme on the
other hand has an area overhead of only 0.6% compared to the
same instance without any redudancy. The area overhead for
conventional scheme against no redundancy is 64 Contacted
Poly Pitches (CPP’s) and 35CPP’s for the proposed scheme
against no redundancy. This translates to about 82% extra area
overhead in the conventional scheme compared to flop based
scheme.

A Note on Power: In the proposed scheme redundant oper-
ation happens in parallel to the regular memory array access.
However, since this is logic based, power consumption of
redundant block is not significant compared to overall power.
Also, it is physically close to bank multiplexer and IO pins
with no additional routing overhead for input/output data. On
this basis, it can be claimed that the overall dynamic power
impact is less than 1%.

VI. Conclusions
In conclusion, a novel flip-flop based row redundancy

scheme has been proposed and designed in 7nm FinFET
technology, which helps in mitigating the impact on timing
and has a minimum area overhead, unlike the conventional
redundancy scheme.

REFERENCES

[1] S. Eaton, D. Wooten, W. Slemmer, and J. Brady. A 100ns 64K Dynamic
RAM using Redundancy Techniques. In Digest of Technical Papers:
1981 IEEE International Solid-State Circuits Conference, pages 84–85,
Feb 1981.

[2] T. S. et. al. A 7nm FinFET SRAM Macro Using EUV Lithography for
Peripheral Repair Analysis. In Digest of Technical Papers: 2017 IEEE
International Solid-State Circuits Conference, pages 208–209, Feb 2017.

[3] M. Horiguchi and K. Itoh. Nanoscale Memory Repair. Springer, New
York., 2011.

[4] C. T. Huang, C. F. Wu, J. F. Li, and C. W. Wu. Built-in Redundancy
Analysis for Memory Yield Improvement. In Proceedings. IEEE
Transactions on Reliability, Vol-52, Issue.4, pages 386–399, Dec 2003.

[5] W. K. Huang, Y. N. Shen, and F.Lombardi. New Approaches for the
Repairs of Memories with Redundancy by Row/Column Deletion for
Yield Enhancement. In Proceedings. IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, Vol-9, Issue.3, pages
323–328, Mar 1990.

[6] M. H. Kiyoo Itoh and H. Tanaka. Ultra Low Voltage Nano-Scale
Memories. Springer, 2007.

[7] K.Kokkonen, P.Sharp, R. Albers, J.Dishaw, F.Louie, and R.Smith. Re-
dundancy Technique for Fast Static RAMs. In Digest of Technical
Papers: 1981 IEEE International Solid-State Circuits Conference, pages
1660–1671, Feb 1981.

[8] M. A. Masashi Horiguchi, Jun Etoh and K. Itoh. A Flexible Redundancy
Technique for High-Density DRAM’s. In IEEE Journal of Solid State
Circuits, Vol-26, No.1, pages 12–17, Jan 1991.

[9] M. A. Masashi Horiguchi, Jun Etoh and K. Itoh. Improving Memory
Repair by Selective Row Partitioning. In Proceedings. 24th IEEE
International Syposium on Defect and Fault Tolerance in VLSI Systems,
pages 211–219, 2009.

[10] Nautiyal. Memory Device and Method of Controlling Access to Such
A Memory Device, US Patent: 7420859 B2, Sep 2008.

[11] S. E. Schuster. Multiple Word/Bit Line Redundancy for Semiconductor
Memories. In Proceedings. IEEE Journal of Solid State Circuits, Vol.SC-
13, No.5, pages 698–703, Oct 1978.

[12] T. Yamagata, H. Sato, K. Fujita, Y. Nishimura, and K. Anami. A
Distributed Globally Replaceable Redundancy Scheme for Sub-Half-
Micron ULSI Memories and Beyond. In Proceedings. IEEE Journal
of Solid State Circuits, Vol-31, No.2, pages 195–201, Feb 1996.

