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Abstract— At advanced VLSI nodes, detecting potential yield
detractors in the physical design is becoming increasing chal-
lenging. These design weak points or hotspots tend to be
complex geometric patterns that pass all the design rules but
are very difficult to manufacture. In this article, we demonstrate
how machine learning based techniques can be used to detect
these hotspots in a VLSI design. We propose a scalable data
generation flow that can be used to train any machine learning
model. We use this flow to generate a large balanced dataset
and train several models to systematically study the effects of
various parameters like the dataset size, the clip diameter and
the number of extracted features. We test several standard
machine learning algorithms with this dataset and finally
demonstrate models with very high hotspot detection accuracy.

I. INTRODUCTION

As VLSI technology continues to evolve, the manu-
facturing process is being pushed towards lower-k1 sub-
wavelength printing techniques and structurally intricate in-
tegration schemes. Consequently, physical design verifica-
tion from the perspective of manufacturability is becoming
increasingly challenging. Complex geometric patterns that
pass all the design rules, end up limiting the silicon yield of
the design. These patterns are referred to as design hotspots.
Early detection of these hotspots can result in tremendous
cost savings over the lifetime of the product.

Currently, the hotspots are detected in the mask tapeout
flow by using process simulations. However, despite nu-
merous advancements in these simulators, an accurate and
fast full chip 3D simulator that accurately represents all the
process steps in the manufacturing flow is lacking. Moreover,
existing physics based single step process simulators are slow
and expensive to calibrate [1], [2], [3], [4].

Machine learning based techniques are suitable for prob-
lems where a large volume of data is available and a
large number of parameters contribute to the final outcome.
Hotspot detection fits this criteria very well. Recently, several
groups have demonstrated the application of machine learn-
ing to lithography hotspot prediction in VLSI designs [5],
[6], [7], [8], [9], [10], [11], [12]. These techniques classify
clips from a large VLSI design as either a hotspot or a non-
hotspot. While these studies show good results, they lack
a comprehensive evaluation of various parameters like the
dataset size, hotspot diameter etc and the choice of machine
learning algorithm. Typically, the model is trained using
a dataset consisting of a few hundred to a few thousand
datapoints with the objective of identifying the presence of
a hotspot close to the center of the clip. This is not ideal for

a practical verification flow since a random clip from a large
physical design might hide a hotspot anywhere within its
extent. A model trained to predict the presence of a hotspot
at the center of a clip will misclassify the clip and result in
poor prediction performance.

We propose a labeled data generation flow which can
easily be scaled to very large datasets without running into
the issue of class imbalance [13]. The dataset generated using
this flow can be used to train a machine learning model and
classify a given layout clip as either having a hotspot or not
having one as shown in figure 1. The hotspot does not need
to be at the center of the clip for the it to be classified as a
hotspot clip. To understand the underlying trade-offs between
model prediction accuracy and the required computational
resources, we present a comprehensive study of various
machine learning algorithms against several parameters like
the size of the training dataset, the size of hotspot clips and
the number of features.

Fig. 1: Flowchart for detecting hotspots in a physical VLSI
design.

II. METHODOLOGY

This section describes the method used to generate en-
coded data from physical designs, and the procedure fol-
lowed to select, train and test various machine learning
algorithms.

A. Labeled data generation

Labeled data generation involves the generation of feature
vectors labeled as either hotspot or non-hotspot from the
physical design and an associated list of weak point or
hotspot locations. This labeled dataset is used to train and
test a supervised machine learning model as described in a
later section. For the experiments described in this article, a
physical layout about 200 mm2 in area with an associated
hotspot site list containing 48,054 locations was used. The
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hotspots were all of the same type, pinching or line break
which cause an open in a metal wire. Two different clip
or pattern sizes were picked for all the experiments in this
article based on photolithography considerations. A large clip
diameter corresponding to 20 times the minimum pitch of
the metal wire and a small clip diameter corresponding to
10 times the minimum pitch of the metal wire. To assess the
pattern diversity across the hotspot locations on the design,
an exact pattern classification was performed at the hotspot
sites. 48,054 locations folded into 48,035 unique patterns at
the large clip diameter and 47,997 unique patterns at the
small clip diameter. Since the ratio of unique pattern count
to total hotspot count is close to 1 for both clip diameters,
the hotspot sites have a very high pattern diversity.

Fig. 2: Flowchart for generating labeled data from a given
physical design with known hotspot locations.

The data generation process consists of two steps. The
first step generates a library of physical design clips or
patterns belonging to the hotspot and non-hotspot classes as
shown in figure 2. The hotspot clips are further divided into
two different classes - HSC (Hotspot Centered) and HSO
(Hotspot Off-center). The HSC clips are defined as those
layout clips which have a known hotspot exactly at the center
of the clip. On the other hand, the HSO clips are defined to
be those clips where the known hotspot is off-centered, while
still within the extent of the clip boundary.

The HSC (Hotspot Centered) clips are generated by clip-
ping out a square layout snippet with a given diameter at each
hotspot site present in the associated hotspot site list from
the physical design. Since each hotspot site in the site list is
used exactly once, the total number of HSC clips generated
is equal to the number of hotspots in the site list. For the
experiments described in this article, a total of 48,054 HSC
clips were generated for each clip diameter as shown in table
I.

The HSO (Hotspot Off-center) clips are generated by first
applying a different random offset to each hotspot location
in the hotspot site list and then clipping out a square snippet
with a given diameter at these offset sites from the physical
design. The maximum bound for the random offset is fixed
at 75% of clip radius so that the hotspot is guaranteed to be
contained within the central 75% region of the clip extent.
By imposing this constraint on the random offset, the context

TABLE I: Table showing the count of clips collected for each
of the 3 clip families for performing the machine learning
experiments.

Pattern class Total count
(Large clip diameter)

Total count
(Small clip diameter)

HSC 48,054 48,054
HSO 242,784 242, 625
NHS 257,216 257,375

around the hotspot is retained within the clip extent. This is
an important consideration in the generation of HSO clips
since the hotspot and the context around it are what truly
define a hotspot. For the experiments described in this article,
about 5 different HSO clips were generated per HSC clip,
for each clip diameter value. The total count of all clips
generated is shown in table I.

The NHS (Non-Hotspot) clips are generated by first ran-
domly picking locations on the physical design which are
at least a certain minimum distance away from each of
the hotspot locations in the hotspot site list. This minimum
distance is chosen to be 1.5 times the radius of the HSC
clips. Next, square layout snippets with a given diameter are
clipped from the physical design at each of these randomly
picked locations. This methodology guarantees the absence
of hotspots within the extent of any NHS clip. For the
experiments described in this article, the total number of
NHS clips selected is about 5 times the number of HSC
clips. The exact number for each clip diameter is shown in
table I. As shown in the table, this methodology results in a
balanced dataset, with the count of HSO clips roughly equal
to the count of NHS clips.

The second step in the data generation process is the con-
version of the labeled layout snippets into feature vectors that
can be read by a machine learning system. To generate the
feature vector from a layout snippet, a previously described
methodology was followed [14], [12]. Briefly, a square grid
is superimposed on top of the layout clip and the polygon
density is calculated within each grid cell to generate a square
matrix of density values. This two dimensional square matrix
is then unrolled into a one dimensional feature vector, also
referred to as the density vector. Since the size of each grid
cell is typically much larger than the 1 database unit (1 dbu)
resolution of the layout clip, this conversion results in a down
sampling of the layout clip. The bigger the size of each cell
in the square grid, the higher is the extent of down sampling.

B. Model training and testing

The labeled dataset consists of density vectors and their
corresponding labels - HSC, HSO or NHS. The composition
of the data set for each clip diameter is as shown in table I.
For all the experiments described in this article, the density
vectors labeled as HSC were ignored and discarded from the
data set. This was done to specifically remove any hidden
bias that the HSC clips might carry. Since all the HSC clips
have a line-break or pinching hotspot at the center, each clip
has a metal line that runs along the centerline of the pattern.



This specific feature of all HSC clips differentiates them from
clips of other classes and can be a hidden bias.

To generate the training and test data sets, the technique
of cross-validation or rotation estimation was used [15]. In
this technique, the dataset is split into 3 equal smaller sets.
For each of the 3 sets or folds, a model is trained using
the remaining 2 of the folds as training data. The resulting
model is then validated on the remaining part of the data.
The performance measure reported by this technique is the
average of the values computed across each of the 3 folds.
To report the model performance on each of the 3 folds, the
scoring metric of F1-score was used. This is a popular metric
used to measure the performance of binary machine learning
classifiers as it take both precision and recall into account.
The F1-score is defined as the harmonic mean of precision
and recall. An F1-score reaches its best value at 1 and worst
score at 0. The relative contribution of precision and recall
to the F1 score are equal.

TABLE II: Table with the model name and parameter value
ranges used for the machine learning experiments.

Algorithm Parameter: [Values]
kNN (k-Nearest Neighbor) n neighbors: [3-11]

SVM (Support Vector Machine)
kernel: [linear, rbf],
C: [10−2-102],
gamma(rbf): [10−4-104]

DT (Decision Tree) max depth: [5-19]
RF (Random Forest) n estimators: [8-64]

C. Selection of model parameters

Four popular machine learning algorithms were picked
for evaluation. These include - kNN - k-Nearest Neighbors
[16], SVM - Support Vector Machine [17], DT - Decision
Tree, RF - Random Forest [18]. Each of these algorithms
requires a set of configuration parameters to initialize the
setup. For example, the kNN algorithm which works by
picking the nearest neighbors in the n-dimensional feature
vector space, uses a parameter to define the number of
neighbors to be used for averaging. To pick the optimal
set of these parameters, several models for each algorithm
with parameter values spanning a large range of values were
used to train and test the model on a small partition of
the dataset consisting of 5000 data points. The parameters
which resulted in the highest average F1-score were picked
for further experimentation.

III. RESULTS

Several experiments were performed for each selected
machine learning algorithm by varying the following param-
eters - the clip diameter, the extent of down sampling for
density vector generation and the number of data points in
the training data set. Every experiment consisted of training
a machine learning model and testing it using the 3-fold
cross-validation technique as described in section II-B.

A. Visualizing data

The process of conversion of the layout clip into a feature
vector involves down sampling the clip by computing the
polygonal area density within each cell of an overlaid square
grid as described in section II-A. A down sampled image
of the clip can be generated by assigning each grid cell
an intensity value that corresponds to the density within
the cell. Figure 3 shows a series of these images generated
from a sample layout clip by down sampling over a square
grid with varying grid size. As the size of each cell in the
grid increases, the image resolution goes down and precise
geometric details about the polygons in the original clip are
successively lost.

Fig. 3: Series of images showing the effect of down sampling
on the original hotspot image. The image labels correspond
to the number of pixels.

Fig. 4: Representation of the density vector for each pattern
family for the large diameter clips with a feature vector
length of 400. Each row of pixels corresponds to the density
vector for a single pattern.

Another way to visualize the 3 clip families of HSC, HSO
and NHS is to look at the image representation of the one
dimensional density vector. Figure 4 shows the density vector
representation of 500 layout clips arbitrarily picked from
each clip family. In each of the 3 images, a row of pixels
corresponds to the density vector for a single clip. Each pixel
corresponds to a single feature in a single density vector with
an intensity value that scales with the feature value. The
image is generated by stacking rows of pixels for density
vectors in the same clip family. Distinctive banding patterns
can be seen in the HSC clip family, while the HSO and



NHS appear to be relatively random. The banding pattern
in the HSC clip family is most likely due to the similarity
in the appearance of all HSC clips which have a metal line
that runs along the centerline of the clip. The random offset
applied to the hotspot site appears to get rid of this banding
signature by disturbing the symmetry. The NHS image is
expected to appear random as it is a result of clips that
have been harnessed from the physical design without any
predisposition.

B. Effect of training dataset size

The size of the training data set is an important aspect
for any machine learning model. Typically, the bigger the
training data set, the more accurate a model is. Figure 5
shows the effect of increasing training data set size on
the model performance for four different machine learning
algorithms with the same down sampling grid cell size. For
both, the small and large clip diameters, across all machine
learning algorithms tested, it can be seen that the F1-score
monotonically increases as the the number of points in the
training dataset increase. For the large clip diameter, the
Decision Tree (DT) algorithm seems to be most sensitive
to the data set size. For the small clip diameter, the sensitive
across the four algorithms is roughly the same. The test
results for a large dataset size are discussed in section III-D.

Fig. 5: Learning curves showing the variation of the test data
set F1-score as a function of total number of data points for
four different machine learning algorithms at the same down
sampling grid cell size.

C. Effect of number of features

As discussed in section III-A, the extent of down sampling
directly controls the geometric information that flows from
the original clip to the feature vector. The bigger the grid
cell size, the higher the down sampling and the shorter the
feature vector. Figure 6 shows the model performance as a
function of the number of features for both the large and

small clip diameter cases for a dataset with 10,000 total data
points. The general trend observed across different models is
that the model performance improves as additional features
are added. For both clip sizes, the Support Vector Machine
(SVM) algorithm is found to be most sensitive to the number
of features while Random Forest (RF) is least sensitive.

Fig. 6: Variation of test dataset F1-score as a function of
the length of the density vector for four different machine
learning algorithms.

Fig. 7: Learning curves showing test dataset F1-score as
function of total number of data points for Support Vector
Machine (SVM) algorithm when the clip diameter is varied.

D. Effect of pattern size

The clip size determines the amount of design context that
is captured around the hotspot. While this is obvious for HSC
class of clips, it is also true for HSO class of clips since the
hotspot is contained within the central 75% of the region



Fig. 8: Learning curves showing test dataset F1-score as func-
tion of total number of data points for k-Nearest Neighbors
(kNN) algorithm when the clip diameter is varied.

of the clip. Figures 7 and 8 show a comparison between the
model performance for large and small clip diameter datasets
for two machine learning algorithms - SVM (Support Vector
Machine) and kNN (k-Nearest Neighbors) when the down
sampling grid cell size is fixed. We find that irrespective of
the algorithm and grid cell size, models trained on data from
clips with a larger radius show a higher performance. While
this difference is quite obvious for kNN algorithm at all
dataset sizes shown in figure 8, it diminishes with increasing
dataset size for SVM algorithm as shown in figure 7. Based
on the results in section III-C, as the number of features
per layout clip increase, the model performance improves.
For a given grid cell size, a clip with a large size has more
features compared to a smaller clip. Thus, a model trained
on larger clip size dataset shows higher performance than
the one trained on a smaller clip size dataset.

Figure 9 shows the effect of clip or pattern size on model
performance for two algorithms - kNN and SVM, for the
same length of feature vector. Unlike the trend in figures 7
and 8, we find that when the length of the feature vector is
fixed, the models trained on clips with a smaller diameter
have a higher performance than the ones trained on clips
with a larger diameter. As noted in section III-C, with the
increase in the number of features per layout clip, the model
performance improves. The number of features or the length
of the density vector can be increased by either increasing
the size of the clip for a given grid cell size or by reducing
the grid cell size for a given size of the clip. In the case
of figure 9, to fix the number of features between different
sized clips, a finer grid was used for density computation
on the smaller clips. A finer grid preserves more geometric
information about the pattern than a coarser grid. Despite
the reduction in the design context around the hotspot in the
smaller diameter clips, the additional resolution available due
to the finer grid appears to boost the model performance.

Fig. 9: Learning curves showing test data set F1-score as
function of total number of data points for Support Vector
Machine (SVM) algorithm (Top) and k-Nearest Neighbors
(kNN) algorithm (Bottom). Results are shown for large and
small clip diameters, down sampled to 16 x 16 pixels.

Fig. 10: Test data set F1-score for k-Nearest Neighbor (kNN)
algorithm using a balanced data set with about 500,000 data
points. The plots show the comparison between large and
small clip diameters.

To investigate the model performance for different clip
diameters in the limit of a large dataset, we performed
multiple experiments using the kNN algorithm and the full
dataset of about 500,000 data points. These results are shown
in figure 10. The same set of results are presented in two
different ways. In figure 10, top, the model performance
is plotted as a function of the count of cells in the down
sampling grid. This is equivalent to the length of the feature
or density vector in the given context. In figure 10, bottom,
the model performance is plotted as a function of the grid
cell size used for down sampling. As previously mentioned,



for the same grid cell size, a clip with a larger diameter will
have a longer feature vector.

We find that at each fixed grid cell size value or density
vector length, the model trained on the dataset with small
clip diameter has a higher performance. Upon comparison
with the results with smaller datasets in figure 9, these
results are consistent. For the same length of the feature
vector, the smaller clips have a finer down sampling grid,
yielding models with a higher performance. However, upon
comparison with the results in figures 8 and 7, these results
seem to be surprising. For the same grid cell size, the models
trained on clips with a smaller diameter, appear to have
a slightly higher performance than the models trained on
clips with a larger diameter. However, the difference in F1-
score is on the order of 1-2 % and might not be statistically
significant.

IV. CONCLUSIONS

We have demonstrated that machine learning can be a
viable option for detecting hotspots in a physical design.
By solving the critical problem of class imbalance through
generation of multiple hotspot clips from a single hotspot in
the design, we are able to generate a large balanced dataset
and thereby build models with a very high classification ac-
curacy. We tested four standard machine learning algorithms,
viz. kNN - k-Nearest Neighbors, SVM - Support Vector
Machine, DT - Decision Tree and RF - Random Forest.
Once the configuration parameters of these algorithms are
optimized and a sufficiently large training dataset is available,
all of them work very well, with RF showing the highest
performance across different dataset sizes, clip sizes and
number of features. However, considering the simplicity of
the kNN algorithm, it shows very good results, with an F1-
score only a few % below the RF models.

By utilizing a large balanced dataset, we have studied the
effect of various parameters on the model accuracy. These pa-
rameters include - the diameter of the layout clips, the length
of the density vector and the size of the training dataset.
Based on our experiments, a larger training dataset size and
a longer density vector, both improve the model prediction
accuracy. Thus, a longer density vector with more features
can compensate for a smaller training dataset size and
vice versa. This complementary behavior is significant for
efficient utilization of computational resources. The trends
against the clip size are not as obvious in our study since we
only considered two clip sizes. A more comprehensive study
is needed to fully understand all the effects of clip size on
prediction accuracy.
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