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Abstract— With recent trend of wearable devices and
Internet of Things (IoTs), it becomes attractive to de-
velop hardware-based deep convolutional neural networks
(DCNNs) for embedded applications, which require low
power/energy consumptions and small hardware foot-
prints. Recent works demonstrated that the Stochastic
Computing (SC) technique can radically simplify the hard-
ware implementation of arithmetic units and has the poten-
tial to satisfy the stringent power requirements in embed-
ded devices. However, in these works, the memory design
optimization is neglected for weight storage, which will in-
evitably result in large hardware cost. Moreover, if conven-
tional volatile SRAM or DRAM cells are utilized for weight
storage, the weights need to be re-initialized whenever the
DCNN platform is re-started.

In order to overcome these limitations, in this work
we adopt an emerging non-volatile Domain-Wall Memory
(DWM), which can achieve ultra-high density, to replace
SRAM for weight storage in SC-based DCNNs. We pro-
pose DW-CNN, the first comprehensive design optimiza-
tion framework of DWM-based weight storage method. We
derive the optimal memory type, precision, and organi-
zation, as well as whether to store binary or stochastic
numbers. We present effective resource sharing scheme
for DWM-based weight storage in the convolutional and
fully-connected layers of SC-based DCNNs to achieve a de-
sirable balance among area, power (energy) consumption,
and application-level accuracy.

I. Introduction

The emerging of autonomous systems, such as unmanned
vehicles, robotics, and cognitive wearable devices, imposed
a challenge in designing computer systems with machine in-
telligence. The demand for machine intelligence has been
exacerbated by the explosion of the big data, which pro-
vides huge potential to enhance business decision making,
science discovery, and military or political analysis, etc.,
albeit whose processing is beyond the capacity of human
beings. Recently, deep learning, especially deep convolu-
tional neural networks (DCNNs), has been proven to be an
effective technique that is capable of handling unstructured
data for both supervised and unsupervised learning [1–7].
It becomes one of the most promising type of artificial neu-
ral networks and has been recognized as the dominant ap-
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Fig. 1. Comparison of key factors of different memory technologies,
(data from [28])

proach for almost all recognition and detection tasks [8].

The hardware accelerations for DCNNs have been a
booming research area on General-Purpose Graphics Pro-
cessing Units (GPGPUs) [9, 10] and Field-Programmable
Gate Arrays (FPGAs) [11–14]. Nevertheless, there is
a trend of embedding DCNNs into light-weight embed-
ded and portable systems, such as surveillance monitoring
systems [15], self-driving systems [16], and wearable de-
vices [17]. These scenarios require very low power/energy
consumptions and small hardware footprints, and ne-
cessitate the investigation of novel hardware computing
paradigms.

Recent works [18–23] considered the Stochastic Comput-
ing (SC) technique [24] as a low-cost substitute to conven-
tional binary-based computing for DCNNs. The SC tech-
nique has also been investigated on neural networks and
Deep Belief Networks (DBNs) [25, 26]. SC can radically
simplify the hardware implementation of arithmetic units,
which are resource-consuming in binary designs, and has
the potential to satisfy the low-power requirements of DC-
NNs. It offers a colossal design space for optimization due
to its reduced area and high soft error resiliency. How-
ever, the works [19,20] exhibit certain shortcomings of ne-
glecting the memory design optimization as the memory
storage requirements in state-of-the-art DCNNs has be-
come highly demanding [27] (especially to store weights in
fully-connected layers.) Moreover, if conventional volatile
SRAM or DRAM cells are utilized for weight storage,
the weights need to be initialized whenever the hardware
DCNN platform is powered on, which hurdles the desirable
“plug-and-play” property of such platforms.

Recent breakthroughs in several non-volatile memory
(NVM) techniques, such as Ferroelectric RAM (FeRAM),
Spin-Transfer Torque Magnetic RAM (STT-MRAM), and
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Domain-Wall Memory (DWM), can potentially replace
conventional SRAMs in the neuromorphic systems in order
to satisfy the non-volatility and high density/low power re-
quirements. Figure 1 shows the comparison of various key
factors of different memory technologies. The Domain-
Wall Memory (DWM), a spintronic non-volatile memory
technology, can achieve one of the highest densities (40×
over SRAM) with similar read/write time and idle power
while maintain near-zero leakage power compared with oth-
ers [28–31]. In DWM, multiple bits are stored in a nanowire
in high storage density, which is suitable for weight stor-
age and retrieval. The unique characteristic of DWM can
drastically reduce the neuron size and enlarge the design
scalability of DCNNs.

In this paper, we propose DW-CNN, the first compre-
hensive design optimization framework of SC-based DC-
NNs using domain-wall memory as the weight storage
method. We start from a SC-based DCNN system moti-
vated by [19,20], and derive the most efficient weight stor-
age scheme, including the memory type, precision, and or-
ganization. The objective is to reduce area/hardware cost
and energy/power consumptions meanwhile maintaining a
high application-level accuracy for DCNN. We investigate
replacing SRAM by DWM for weight storage and storing
binary or stochastic numbers. Besides, we present effective
resource sharing scheme for DWM-based weight storage in
the convolutional and fully-connected layers of SC-based
DCNNs, and derive the optimal resource sharing to achieve
a desirable balance among area, power (energy) consump-
tions, and application-level accuracy. Experimental results
demonstrate the effectiveness of the proposed DW-CNN
framework in area/hardware cost and energy consumption
reductions.

II. Overview

A. Domain-Wall Memory Overview

Domain-Wall Memory (DWM), a recently developed
spin-based non-volatile memory hardware in which multi-
ple bits are stored in a ferromagnetic nanowire which are or-
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Fig. 4. Illustration of the convolution process.

ganized in array of vertical columns on a silicon wafer [28].
Figure 2-(a) illustrates the typical structure of a single-wire
DWM in 3-D view. As shown in Figure 2 (b), the informa-
tion bits in DWM are separated by magnetic domain walls,
and two magnetization directions can represent the binary
number 0 or 1. A domain wall is a magnetically neutral
zone separating two different polarization domains. Figure
2-(b) illustrates the domain wall as a interface of a gradual
re-orientation of the magnetic moments between two 180-
degree domains. A spin-coherent electric current, when
applying on the shift port at the two ends, can move all
domains and domain walls to the left or right at the same
velocity without overwriting previous bits [28].

The reading and writing operation in a DWM is shown
in Figure 2-(b). Reading data is achieved by measuring
the tunnel magneto-resistance of a magnetic tunnel junc-
tion (MTJ) unit, which is formed by an insulator sepa-
rating a strong ferromagnetic layer from the domain wall
nanowire [30]. Moreover, writing data in the domain wall
nanowire is accomplished by the fringing field of a domain
wall moved in the write port, which can alter the magne-
tization with a spin-coherent electric current. In addition,
the read port (Read Wordline) has one transistor and write
port (Write Wordline) has two transistors. Note that the
write and read operation can only occur in the MTJ. There-
fore, the current needs to “push” the bit until it is aligned
with the fixed layer, while the shift direction and velocity
are controlled by the current direction and amplitude [29].

B. Overview of DCNN

The basic architecture of deep convolutional neural net-
work is inspired by the biological feature of animal visual
vertex, which contains two types of cells and are only sen-
sitive to a small region of the visual field [32]. Unlike the
traditional fully connected neural networks, a neuron in
DCNN is only connected to a small region of the previous
layer.

Figure 3 illustrates the widely used DCNN architecture
LeNet-5 [33]. There are three types of layers in DCNN:
Convolutional Layer, Pooling Layer, and Fully Connected
Layer. The convolutional layer is a unique block of DCNN,
and calculates the inner product of the receptive fields and
a set of learnable filters to extract the feature of input [34].
Figure 4 illustrates the process of feature extraction by
convolution operations. The input feature map size is 7×7,
and the filter size is 3×3. Suppose the stride is two, then
the result of the convolution will have nine elements.
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Fig. 5. Basic operations in DCNN. (a) Inner product, (b) pooling,
(c) activation function.

The outputs of the convolution layer are fed to the pool-
ing layer. There are two common strategies of pooling: max
pooling and average pooling . Max pooling is to select the
maximum value in the selected region, and average pool-
ing is to calculate the average value in the selected region.
Pooling process will further reduce the dimension of data.
In this paper, we adopt max pooling as our pooling strategy
because of the better application-level performance in con-
vergence speed and classification accuracy. After the pool-
ing process, the data will be sent to the activation function.
Different activation functions can apply to DCNNs. How-
ever, the most suitable one for stochastic computing ap-
plications is the hyperbolic tangent (tanh) [35,36] because
it can be efficiently implemented as a finite state machine
with stochastic inputs or an up/down counter with binary
inputs.

In a DCNN, the high-level reasoning is done by the fully
connected layer which takes outputs from all neurons in
previous layer. Based on our experiment, the fully con-
nected layer is the least sensitive to the correlation between
weights. So a novel architecture of the fully connected layer
with optimized neuron structure will have a great potential
to reduce the neuron size as well as power consumption.

Three main operations of DCNN, i.e., inner product,
pooling, and activation function, are shown in Figure 5,
and these operations are cascadedly connected in DCNN.
Please note that the inner product operation is used in both
convolution and fully-connected neuron, but with different
scales.

C. Stochastic Computing (SC)

In SC, a stochastic number is utilized to represent a real
number by counting the number of 1’s in a bit-stream. In
the unipolar format, a real number x is represented by a
stochastic stream X, satisfying P (X = 1) = P (X) = x.
For example, the bit-stream 1100101110 contains six 1’s
in a ten-bit stream, so it represents a number P (X =
1) = 6/10 = 0.6. In bipolar format, a real number
can be represented by stochastic bit-stream X satisfying
2P (X = 1) − 1 = 2P (X) − 1 = x, thus 0.6 can be repre-
sented by 1101011111. The motivation of using stochastic
computing is that it greatly simplifies the involved com-
puting elements, which offers an immense design and op-
timization space. In this paper, the bipolar format is
adopted because the input signals and weights can be both
positive and negative. In SC, stochastic bit-streams can
be generated efficiently using random number generators

x
w

(a)

(b)

1,1,0,1,0,0,1,0 (0/8)

1,0,1,1,1,1,1,0 (4/8)
1,0,0,1,0,0,1,1 (0/8)A

Parallel
Counter 

A1

...
Mux

A2
A3

An
(c)

A1
A2
A3

An

X X
...

1,0,0....0,0
0,1,0....0,1
1,1,0....1,0

0,1,1....0,0

1,0,0....0,0
0,1,0....0,1
1,1,0....1,0

0,1,1....0,0

Fig. 6. SC components: (a) bipolar multiplication, (b) mux-based
addition, and (c) APC-based addition.

(RNGs) [37] or effective RNG sharing methods like the one
proposed in [38].
• SC Multiplication . The multiplication in SC do-

main can be easily performed by an XNOR gate for the
bipolar format. Figure 6-(a) depicts the bipolar mul-
tiplication process of c = ab by XNOR gate which is
c = 2P (c = 1) − 1 = 2(P (A = 1)P (B = 1) + P (A =
0)P (B = 0))− 1 = (2P (A = 1)− 1)(2P (B = 1)− 1) = ab.
• SC Addition . The objective of addition in SC domain

is to calculate the summation of 1’s of input stochastic bit-
streams. Figure 6-(b)(c) show two widely used hardware
implementations for SC addition: mux-based addition and
approximate parallel counter (APC)-based addition. For
the former structure, a bipolar addition is calculated as
c = 2P (C = 1) − 1 = 2( 1

2P (A = 1) + 1
2P (B = 1)) −

1 = 1
2 (2P (A = 1) − 1) + 1

2 (2P (B = 1) − 1)) = 1
2 (a +

b). On the other hand, the APC uses parallel counter to
count the total number of 1’s among all input bit-streams
and outputs a binary number [39]. The mux-based design
has a simple structure and is suitable for addition with a
small number of inputs, but exhibits inaccuracy when the
number of inputs becomes large. The APC-based design is
very accurate and is suitable for a large number of inputs,
at the expense of more complicated circuit structure.

III. SC-Based DCNN Designs

Motivated by the prior works [19, 20] on SC-based DC-
NNs, we choose effective SC-based designs for the key op-
erations in DCNNs as summarized in the following (also
shown in Figure 7):
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1. We choose APC-base addition (together with XNOR-
based multiplication) to implement the inner product op-
eration because of the high accuracy when the number of
inputs is large, which is the case for neurons in the fully-
connected layers.
2. We design a hardware-oriented approximation in SC do-
main for the max pooling operation, which has a light hard-
ware cost and will not incur any extra latency. More specif-
ically, the input bit-streams (inner product results) with
length n are divided into bit-segments each with length k,
and therefore there are n

k segments in each bit-stream. We
deploy a segment counter for each input to count the num-
ber of 1’s in a bit-segment, and a comparator as shown in
Figure 7 (b). The basic idea is to find the largest number
represented by the current bit-segment, suppose from input
i, using segment counters and comparator, and then pre-
dict that i is the maximum in the next segment. Note that
the first segment is randomly chosen in order not to incur
any extra latency in clock cycles. This hardware-oriented
design successfully avoids the extra latency incurred if max
pooling is performed in a straightforward way by counting
the number of 1’s in all input bit-streams (inner product
values).
3. We adopt the tanh activation function in SC-based
DCNN designs because of its simplicity in SC-based imple-
mentations and relatively high performance [35]. Because
the output of APC is a binary number, we adopt the Btanh
design which can generate stochastic outputs based on bi-
nary inputs [25]. The Btanh function is implemented using
an up/down counter using small hardware footprint.

IV. DW-CNN Design Optimization for Weight
Storage

In state-of-the-art DCNNs, the requirement of weight
storage, in both convolutional and fully-connected layers, is
becoming highly demanding. For example, the large-scale
AlexNet requires 0.65 million weights for storage [36]. In
order to address this challenge, we derive the most efficient
weight storage scheme, including the memory type, preci-
sion, and organization, for SC-based DCNNs. The objec-
tive is to reduce area/hardware cost and energy/power con-
sumptions meanwhile maintaining a high application-level
accuracy for the DCNN. We first present a simple but ef-
fective weight reduction method which is applicable to both
SRAM-based or non-volatile memory-based weight storage.
Then we will investigate replacing SRAM by DWM and
storing binary or stochastic numbers as weights. Finally,
we present resource sharing scheme for DWM-based weight
storage in SC-based DCNNs, and derive the optimal re-
source sharing to achieve a desirable balance among area,
power (energy), and application-level accuracy.

Overall, in this section we answer the following three
questions: (i) What will be the gains when replacing SRAM
by DWM in SC-based DCNNs? (ii) Whether it is desirable
to store binary number or stochastic number as weights?
(iii) What will be the best resource sharing scheme and the
corresponding (binary or stochastic) number for storage?

Fig. 8. Impact of weight precision at each layer on the overall
application-level accuracy of LeNet-5 DCNN

A. Weight Reduction for SC-Based DCNNs

By trading off the precision and hardware resources, we
can reduce the size and operation energy of the memory
for weight storage. According to our software simulation
results, many least significant bits which are far from the
decimal point can be eliminated without turning into a
significant drop in overall accuracy. We adopt a mapping
equation that converts a real number to binary number
which is stored as the weight value. Suppose the weight
value (in real number) is x , and the number of binary bits
to represent weight value is w (i.e., weight precision), then
the binary number y is:

y =
int((x + 1)/2× 2w)

2w
(1)

where int is the operator of keeping the integer part. In
our experiments, we simulated the application-level error
rates in terms of different weight precisions. Figure 8 shows
the simulation results of the application-level error rates at
different weight precisions on a single layer or all layers.
Based on our results, the error rates in both single layer
and all layers are low enough when the weight precision
is seven bits. Thus, with the decrease of weight length,
we can implement weight storage more efficiently. Please
note that this weight reduction technique is applicable to
both SRAM-based and non-volatile memory-based weight
storages.

B. DWM for Weight Storage

SRAM is most often utilized for weight storage in neuro-
morphic computing systems because of the high reliability
and fast reading/writing speed. However, due to the inher-
ent volatility, the weights need to be re-initialized whenever
the hardware platform is turned on. Besides, SRAM cells
exhibit relatively large size due to the 6-transistor struc-
ture, which increases the neuron size and impairs scalabil-
ity. Both limitations necessitate the investigation of the
emerging small-footprint non-volatile memory devices for
effective weight storage systems.

Among emerging non-volatile memory devices, DWM
outperforms most of the others in area efficiency. Besides,
DWM is especially suitable for storing stochastic num-
bers because the data are stored in ferromagnetic nanowire
“strips”. We investigate replacing SRAM cells by non-



volatile DWM devices for weight storage, and moreover,
whether it is desirable to store binary number or stochas-
tic number as weights for SC-based DCNNs.

There are pros and cons on both storing binary num-
bers and stochastic numbers: Storing binary numbers re-
quires a smaller area/hardware cost for storing the mem-
ory bits, but incurs larger area and energy consumption
on the peripheral circuits because RNGs and compara-
tors are required to convert binary to stochastic numbers
for the inner product computation [38]. On the other
hand, storing stochastic numbers requires a relatively large
area/hardware cost for memory bits storage, but does
not need binary-to-stochastic conversion circuitry since the
stored stochastic numbers can be directly utilized for com-
putation. Another observation is that when binary number
is stored, all bits in the weight need to be retrieved simul-
taneously to convert to stochastic numbers [37]. On the
other hand, when stochastic number is stored, the bits can
be read out sequentially, which incurs less energy consump-
tion and is a natural fit to the DWM.

TABLE I

Comparison results on the weight storage of LeNet-5 for (i)

SRAM vs. DWM and (ii) binary vs. stochastic numbers.

Weights Data Type 7-bit Binary number 128-bit Stochastic number
Memory Type SRAM DWM SRAM DWM

Area(mm2) 6.12 5.96 3.64 0.15
Power(W ) 1.06 0.76 7.04 0.46

We perform testing on the weight storage of LeNet-5
DCNN to compare (i) SRAM and DWM-based weight stor-
age and (ii) storing using binary or stochastic numbers.
The comparison results on area and power consumptions
are shown in Table I. The overheads of read/write circuitry
and binary-to-stochastic conversion circuitry are accounted
for. As shown in the table, DWM-based weight storage
outperforms SRAM in area and power consumptions due to
the high area density and zero leakage power consumptions.
Moreover, storing stochastic number in DWM-based weight
storage is significantly more desirable because the benefits
of avoiding binary-to-stochastic conversion circuitry out-
weights the larger amount of bits for storage, demonstrat-
ing the suitability of DWMs for storing stochastic numbers.
Please note that this trend is different for SRAM-based
weight storage because of the significantly reduce area con-
sumption of DWM cells.

C. Efficient Resource Sharing Schemes on a Layer-
wise Consideration

Structural optimizations and resource sharing can fur-
ther reduce the hardware cost and energy consumptions
associated with weight storage in SC-based DCNNs. In
this section, we present effective resource sharing methods
for DWM-based weight storage in SC-based DCNNs. We
present different methods for the convolutional layer and
the fully-connected layer fully exploiting the distinct prop-
erties of these two types of layers.
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C.1 Weight Sharing for Convolutional Layers

In order to reduce the amount of hardware resource for
filter weight storage in convolutional layers, we develop a
weight sharing scheme based on a key observation that the
same filter can be applied to all inputs that correspond
to one whole feature map [8]. In this way, we can separate
one DWM “strip” into multiple filter-based blocks and each
block of filter weights is shared by all inner product blocks
for extracting one feature map. The proposed filter weight
sharing scheme is illustrated in Figure 9, in which binary-
based storage is assumed (and stochastic number is gener-
ated by the stochastic number generator (SNG)) without
loss of generality. This scheme can significantly reduce the
hardware cost for filter weight storage, along with routing
overhead and wire delay.

C.2 Resource Sharing in Fully-Connected Layers

The resource sharing in fully-connected layers is moti-
vated by two observations: (i) the imprecision in calcula-
tion at the fully-connected layers has the least significant
impact on overall application-level accuracy of DCNN, and
(ii) the bit-stream length (in stochastic number) of input
bit-streams (typically 512 or 1024) is higher compared with
that of weights (e.g., 27 = 128 bits as shown in Table 1).
Based on these motivations, we present a novel resource
sharing scheme for effective sharing of the (APC-based) in-
ner product block and memory reading/writing circuitry,
which could achieve significant reduction in hardware cost
and energy/power consumptions while maintaining high
overall accuracy.

Figure 10 depicts the proposed design of the resource
sharing scheme for the fully-connected layer. We store
every weight in the stochastic number format to elimi-
nate binary-to-stochastic conversion circuitry, resulting in
lower hardware cost and energy/power consumptions as
shown in Section 4.2. Let Si,j represent the j-th bit of
the i-th weight in the stochastic number format. With-
out loss of generality, Figure 10 demonstrates the case in
which the weights are stored using 25 DWM nanowires, and
the k-th nanowire stores weights wk, w25+k, w50+k, etc.
The input bit-streams from the previous layer are grouped
into 25 groups and selected by the multiplexers for the
(APC-based) inner product calculation. As a result, only
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a 25-input APC is required, which incurs significant re-
ductions in hardware cost and energy/power consumption
compared with the very large APC (e.g., with 800 inputs
for LeNet-5) in the original SC-based DCNN system [33].
The reading/writing circuitry of the weight storage block
can also be reduced, resulting in additional improvement
in area/energy efficiencies.

In the proposed design, the input bit-stream length and
weight bit-stream length need to be coordinated in order
to make sure that the input and weight bit-streams are
aligned. Moreover, the multiplexer and selection signals in
the proposed design will inevitably incur imprecisions due
to information loss. However, as discussed above, the im-
precision in calculation at fully-connected layers has min-
imum impact on the overall application-level accuracy of
DCNN. We will show in the experimental results that the
inaccuracies incurred by the multiplexer and input selec-
tion will have negligible impact on the overall accuracy.

V. Optimization Results

We conduct experients on SC-based DCNNs based on the
LeNet-5 architecture to reduce area and power consump-
tion, meanwhile keeping a desirable high application-level
accuracy. The widely used configuration of LeNet-5 struc-
ture is 784-11520-2880-3200-800-500-10, and SC-based DC-
NNs are evaluated with the MNIST handwritten digit im-
age dataset which contains 60,000 training data and 10,000
testing data. Parameters of key hardware circuitry are
obtained by using CACTI [40] for SRAM-based memo-
ries and synthesized using Synopsys Design Compiler for
logic circuits. Parameters on DWM technology are inhered
from [41], including the DWM reading/writing circuitry.

First we compare the hardware performance in terms of
area and power consumption of the whole LeNet-5 DCNN
with different memory technologies and different weight
storing formats (binary or stochastic). When the weights
are stored in 7-bit binary numbers, the area and power con-
sumption of using different types of memories are almost
the same, because the DFFs and SNGs in the network dom-
inate under this scenario. However, when the weights are
stored in stochastic numbers and stored with DWMs, the
area and power consumption reduce compared with the
binary-based cases. The amounts of reductions are less

(a)

BN- Binary Number
SN-Stochastic Number

SN-Stochastic Number

(b)

BN- Binary Number

Weight Format

Weight Format

Fig. 11. Hardware performance on (a) area and (b) power con-
sumption of LeNet-5 DCNN with different memory technologies and
different weight storage formats

compared with Table 1 because the SC-based computation
blocks, e.g., inner product, pooling, activation function, are
accounted for in Figure 11 and remain unchanged. More-
over, benefiting from the highly compact cell size of DWMs
and high capacity, the area almost does not increase with
the increase of stored bits. As for the power consump-
tion shown in Figure 11-(b), the power consumption using
SRAMs dramatically increases with the increasing of stor-
ing bits, but the power consumption of using DWMs and
stochastic numbers only increases very insignificantly.



TABLE II

Hardware performance comparison results on the resource sharing scheme of the fully-connected layer with different

lengths for weight storage. (SN: Stochastic Number)

Weight Storage 32-bit SN 64-bit SN 128-bit SN 512-bit SN 1024-bit SN
Structure Shared Unshared Shared Unshared Shared Unshared Shared Unshared Shared Unshared

Power(mW ) 24.67 428.97 26.10 430.40 28.96 433.26 46.13 450.43 69.02 473.31
Energy(nJ) 2071.51 2196.31 2191.63 2203.64 2431.86 2218.29 3873.26 2306.18 5795.14 2423.37
Area(um2) 18410 38860 18875 39324 19804 40254 25379 45829 32814 53263

As explained in the previous sections, the calculation
imprecisions in the (last) fully-connected layers have rela-
tively insignificant impact on the overall application-level
accuracy. For testing, we test different lengths of weight
bit-streams (using stochastic numbers) in the last fully-
connected layer from 32 to 1024 (assuming an input bit-
stream length of 1024) and the overall application-level ac-
curacy of the LeNet-5 DCNN structure. Table 2 illustrates
the testing results, which validate the observation as the
motivation of our resource sharing scheme. Similarly, a
length of weight bit-stream of 256 will yield a high-enough
overall accuracy when applied to all the fully-connected
layers of LeNet-5.

TABLE III

Application-level accuracy of the LeNet-5 DCNN vs. length

of weight bit-streams at the last fully-connected layer.

bit-stream length 32 64 128 256 512 1024
accuracy 99.04% 99.04% 98.94% 98.95% 99.00% 99.01%

Finally, we conduct experiments to test the hardware
performance, including power, energy, and area, on the
resource sharing scheme of the fully-connected layer us-
ing DWM for weight storage. Table 3 provides the results
of the whole fully-connected layer at different lengths for
weight storage. It can be observed that the resource shar-
ing scheme can reduce the area by up to 52.6% and reduce
the power consumption by 17.35× compared with the case
without resource sharing. The main results of such gains
in area and power/energy efficiencies are due to the smaller
size of APC (and APC-based inner product block) as well
as the sharing of DWM reading/writing circuitry.

VI. Conclusion

In this paper, we adopt a novel technology of non-volatile
Domain-Wall Memory (DWM), which can achieve ultra-
high density, to replace SRAM for weight storage in SC-
based DCNNs. We proposed the first comprehensive archi-
tecture and optimization framework of DW-CNN by devel-
oping an optimal scheme of memory type, precision, and
organization, as well as whether to store binary or stochas-
tic numbers. We achieve a desirable small size and energy
efficient SC-based DCNN while maintaining a very high
application-level accuracy.
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