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Abstract 
Addition is a key fundamental function for many error-

tolerant applications. Approximate addition is considered to 
be an efficient technique for trading off energy against 
performance and accuracy. This paper proposes a carry-
maskable adder whose accuracy can be configured at 
runtime. The proposed scheme can dynamically select the 
length of the carry propagation to satisfy the quality 
requirements flexibly. Compared with a conventional ripple 
carry adder and a conventional carry look-ahead adder, the 
proposed 16-bit adder reduced power consumption by 
54.1% and 57.5% and critical path delay by 72.5% and 
54.2%, respectively. In addition, results from an image 
processing application indicate that the quality of the 
processed images can be controlled by the proposed adder. 
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1. Introduction 
Many increasingly popular applications, such as image 

processing and recognition, which are computationally 
demanding, have created challenges relative to power 
consumption. Most of these applications are inherently 
tolerant of small inaccuracies; therfore, there are 
unprecedented opportunities to reduce power consumption. 
Addition is a fundamental arithmetic function for such 
applications [1] [2]. Approximate computing is an efficient 
approach for error-tolerant applications because it can trade 
off accuracy for power. Currently, this tradeoff plays a 
significant role in such application domains [3]. Since the 
quality requirements of an application may vary significantly 
at runtime, it is preferable to design quality-configurable 
systems that are able to trade off computation quality 
according to application requirements [4] [5].  

In this paper, we focus on the structure of an accuracy-
configurable adder design from the aspect of power 
consumption. Our primary contribution is to achieve 
accuracy configurability efficiently by slightly modifying a 
conventional adder so that some of its logic gates can be 
reused. We propose an adder in which the generation circuit 
of each bit of its sum can be dynamically configured to 
function as a full adder or an OR gate. This configurability is 
realized by masking carry propagation. We implemented the 
proposed adder, a conventional ripple carry adder (RCA), 
and a conventional carry look-ahead adder (CLA) in  
Verilog HDL using a 45-nm library and evaluated their 
power consumption, critical path delays, and design areas. 
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Figure 1: Accuracy gracefully-degrading adder in [5]. 
 

Comparisons with the conventional RCA and CLA show that, 
with a 1.95% mean relative error distance (MRED), the 
proposed adder reduces power consumption by 54.1% and 
57.5%, respectively. We provide a crosswise comparison to 
demonstrate the superiority of the proposed adder compared 
to the existing approach. We implemented one of the 
established accuracy-configurable adders to evaluate power 
consumption, design area, critical path delay, and accuracy. 
We also evaluated the quality of these two accuracy-
configurable adders in a real image processing application. 

2. Related Work 
Gupta et al. [6] discussed how to simplify the complexity 

of a conventional mirror adder cell at the transistor level. 
Mahdiani et al. [7] proposed a lower-part-OR adder, which 
utilizes OR gates for the addition of the lower bits and 
precise adders for addition of the upper bits. Venkatesan et 
al. [8] proposed to construct an equivalent untimed circuit 
that represents the behavior of an approximate circuit. Miao 
et al. [9] introduced an aligned fixed internal-carry structure 
and then proposed a dithering approximate adder by trading 
off error magnitude and error frequency. Du et al. [10] 
described a speculative carry select adder with reliable 
variable latency to detect errors and recover results. 

In practice, the computation quality requirement of an 
application may vary significantly at runtime. The above 
static approximate designs [6-10] with fixed accuracy may 
fail to meet application quality requirement or waste power 
when high quality is not required. This means that 
approximate adders should be dynamically configurable to 
match the different quality requirements of different program 
phases. To adapt to varying accuracy requirements of 
different workloads, Kahng et al. [4] proposed an accuracy-
configurable adder (ACA) based on a pipeline structure. The 
correction scheme of the ACA proceeds from stage 1 to 
stage 4. This means that, if the most significant bits of the 
results are required to be correct, all of the four stages 
should be performed. Motivated by the above, Ye et al. [5] 
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proposed an accuracy gracefully-degrading adder (GDA). As 
illustrated in Fig. 1, each sub adder block, except the 
rightmost one, has its own carry-in prediction block, adder 
unit, and multiplexer. Carry-out signals can be selected from 
either the adder units or carry-in prediction blocks by control 
signals in any order. Similar to [5], the adder proposed in 
this paper does not consider a pipeline structure. 

To generate outputs with different levels of computation 
accuracy and to obtain the configurability of accuracy, some 
multiplexers and additional logic blocks are required in [5]. 
The additional logic blocks cause area overhead and power 
waste when their outputs are not used to generate a sum. As 
shown in the GDA in Fig. 1, if all S0, S1, S2, and S3 are 
required to be accurate, the power consumption of the carry-
in prediction logic blocks will be wasted. To tackle this 
problem, only a carry mask signal was added to our 
proposed adder to achieve accuracy configurability. To the 
best of our knowledge, this is the first study that has 
achieved an accuracy-configurable adder without 
multiplexers to select approximate and accurate sums. 
Therefore, no additional circuits, such as carry-in prediction 
or error recovery logic blocks, are required. 

3. Carry-Maskable Adder 
A conventional half adder is shown in Fig. 2(a). A 2-

input XOR gate is used to generate sum s and a 2-input AND 
gate is used to generate carry Cout. An equivalent circuit of 
a half adder is shown in Fig. 2(b). The dashed frame 
represents an equivalent circuit of a 2-input XOR gate. Since 
there is a 2-input NAND gate in the dashed frame, we reuse 
it and add an INV gate to generate the carry signal Cout. The 
outputs of the 2-input NAND and OR gates in the dashed 
frame are named u and w, respectively. Table 1 is the truth 
table for the equivalent circuit of a half adder. 

As shown in Fig. 2(b) and Table 1, when the internal 
signal u is 1, the sum s is equal to a OR b and the carry Cout 
is 0. This means that, if u is controllable and can be 
controlled to 1, the carry propagation will be masked and the 
sum s will be equal to a OR b. The sum s = a OR b is 
different from the accurate sum (=a XOR b) only when both 
a and b are 1. In other words, the sum s = a OR b can be 
considered as an approximate sum. The selectivity between 
the accurate and approximate sums can be achieved by a 
control signal, which is used to control u to be a NAND b, or 
to be 1. 
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Figure 2: (a) Conventional half adder, and (b) equivalent 
circuit of a half adder. 
 

Table 1: Truth table for the equivalent circuit of a half adder. 

Inputs Internal signals Outputs 

a b u w s Cout 

0 0 1 0 0 0 

0 1 1 1 1 0 

1 0 1 1 1 0 

1 1 0 1 0 1 
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Figure 3: Carry-maskable half adder. 
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Figure 5: An 8-bit carry-maskable adder. 

 
We add a signal named “mask_x” as the control signal 

and use a 3-input NAND gate to replace the 2-input one in 
the dashed frame. This is called a carry-maskable half adder 
(CMHA) and shown in Fig. 3. When mask_x = 0, the sum s 
= a OR b, and the carry Cout = 0; otherwise, when mask_x = 
1, the sum s = a XOR b, and the carry Cout = a AND b. 
Similar considerations apply to a full adder, which is shown 
in Fig. 4. When mask_x = 0 and Cin = 0, the sum s = a OR b, 
and the carry Cout = 0, then obviously switching activities 
become smaller, and dynamic power consumption is reduced. 
This full adder is called a carry-maskable full adder (CMFA). 
An n-bit adder, which is implemented using one CMHA and 
(n-1) CMFA, is called an n-bit carry-maskable adder (CMA). 



Fig. 5 shows an 8-bit CMA as an example. The carry 
mask signal M_X comprises eight bits, which are denoted as 
m_x0, m_x1, … , m_x7. The left is the least significant bit in 
Fig. 5. The sum and carry of the CMHA are s0 and Cout0, 
respectively. Cin1 is connected to Cout0. When m_x0 is equal 
to 0, s0 = a0 OR b0, and Cin1 = Cout0 = 0. When both m_x1 
and m_x0 are equal to 0, s0 = a0 OR b0, Cin1 = Cout0 = 0, s1 = 
a1 OR b1, and Cout1 = 0 (Cin2 is also 0). In other words, 
carry propagation from CMHA to CMFA1 is masked. By 
expanding the above equations to CMFA7, when all m_x0, 
m_x1, … , m_x7 are 0, all Cout0, Cout1, … , Cout7 are 0, and 
s0 = a0 OR b0, s1 = a1 OR b1, … , s7 = a7 OR b7, s8 = 0 (s8 = 
Cout7). Thus, the carry propagation from CMHA to CMFA7 
is masked. Note that there are two conditions for masking 
the carry propagation of a CMFA: both m_x and Cin’s being 
0. Considering the above 8-bit CMA, if we want to mask the 
carry propagation from CMHA to CMFA3, we should set 
m_x0, m_x1, m_x2, and m_x3 to 0 (not set only m_x3 to 0) to 
ensure that Cin1, Cin2, and Cin3 are equal to 0. 

Each CMFA, as well as the CMHA has its own carry 
mask signal in a CMA. Considering a 16-bit CMA, a 16-bit 
M_X signal (m_x0, m_x1, … , m_x15) is required. To 
simplify the structure of a CMA, we can also group some 
CMFAs as a sub adder unit. Fig. 6 is a 16-bit CMA with four 
sub adder units. Each sub adder unit has four CMFAs 
(except for sub adder unit 0: one CMHA and three CMFAs) 
and 1-bit carry mask signal to mask carry propagation. There 
is no carry mask signal for sub adder unit 3 in this example. 
The structure of sub adder unit 1 is shown in Fig. 7 as an 
example. C0 is the output of sub adder unit 0 and 1-bit 
mask_x1 is the carry mask signal for sub adder unit 1. If 
mask_x1 = 0 and C0 = 0, we can obtain C1 = 0 and S1 = A1 
OR B1 (4-bit parallel OR function). Note that the bit-length 
of each sub adder unit can be different.  

4. Experimental Results 

4.1. Experimental Setup 
In this section, the proposed adder is evaluated in terms 

of computational accuracy, power consumption, critical path 
delay, and design area. To clarify the contributions to the 
power saving of the proposed adder, we implemented and 
evaluated CMA, the conventional RCA, CLA and GDA [5]. 
We implemented a full adder of RCA as with CMFA (Fig. 4), 
except for the 3-input NAND gate in the dashed frame 
replacing the 2-input NAND gate in RCA.  
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Figure 6: A 16-bit CMA with four sub adder units. 

CMFA

s4 s5

m_x

a4

CMFA

s6

CMFA

s7

b4

Two inputs: A1 = {a7, a6, a5, a4}, B1 = {b7, b6, b5, b4}

sum: S1 = {s7, s6, s5, s4}

CMFA

a b m_xa b m_xa b m_xa bCin

s s Coutss

a5 b5 a6 b6 a7 b7

C0

C1

mask_x1

Cin Cin Cin

CoutCoutCout

 
Figure 7: Structure of sub adder unit 1. 

 
All of these adders are 16-bit. The 16-bit CLA is 

implemented using five 4-bit carry look-ahead units: four 4-
bit carry look-ahead units in stage 1 and one 4-bit carry 
look-ahead unit in stage 2. The bit-lengths of the sub adder 
units in GDA and CMA are both set to four bits. The 
numbers of carry-in prediction bits in GDA and carry 
unmasked bits in CMA are both set to 0, 4, 8, and 12 bits. 
Thus, the configuration settings of GDA and CMA are the 
same. The adders are referred to as GDA1, GDA2, GDA3, 
GDA4, CMA1, CMA2, CMA3, and CMA4. For example, on 
the basis of Fig. 6, CMA1 means that sub adder units 0, 1, 
and 2 are all masked (mask_x0,1,2 = 0), and the accuracy of 
CMA1 will be the worst among the CMAs. CMA2 means 
that sub adder units 0 and 1 are masked (mask_x0,1 = 0), but 
sub adder unit 2 is unmasked (mask_x2 = 1). CMA4 means 
that sub adder units 0, 1, and 2 are all unmasked (mask_x0,1,2 
= 1). With these settings, accurate results are obtained. 

The adders were coded using Verilog HDL. The 
Synopsys VCS was used to simulate the designs and 
generate value change dump (VCD) files to evaluate the 
power consumption precisely. The Synopsys Design 
Compiler was used to synthesize the adders with the 
NanGate 45nm Open Cell Library [11]. The power 
consumption was evaluated at a frequency of 0.5GHz. The 
operating conditions for synthesis employed typical 
conditions (a 1.00 process factor, 1.1V power supply, and 
25°C operating temperature). All designs were synthesized 
and optimized with default compile options. The Synopsys 
Power Compiler was used to estimate power consumption 
from switching activity interchange format files generated 
from the VCD files. The Synopsys VCS was used to 
evaluate the numerical outputs of all of the adders with one 
million randomly generated input patterns. 

4.2. Accuracy Results 
The ED and MED are proposed for the evaluation of the 

performance of approximate arithmetic circuits [12]. ED is 
defined as the arithmetic difference between the accurate 
sum (S) and the approximate sum (S′): ED = | S − S′|. MED 
is the average of EDs for a set of outputs. The relative error 
distance (RED) is the ED divided by the accurate output: 
RED = |S − S′|/S, whereas MRED is the average of REDs 
and can be obtained similarly to MED. The error rate (ER) is 
the percentage of inaccurate outputs among all outputs 



generated from all combinations of inputs. These three 
metrics (i.e., MED, MRED, and ER) are used to evaluate the 
adders. 

Table 2 compares the accuracy of the results and shows 
that the accuracy of both CMA and GDA changed widely 
according to the settings of the configuration. Both the MED 
and MRED of CMA are smaller than those of GDA at each 
setting. As expected, there are no errors in CMA4 and 
GDA4. Although the ER value of CMA is larger than that of 
GDA in each accuracy configuration setting, the MED and 
MRED of CMA are about 50% of GDA. 

4.3. Power, Delay and Area Results 
Comparisons of the power consumption and critical path 

delay for the different adders are shown in Fig. 8 and Fig. 9. 
The x-axes denote the adders with different configuration 
settings of CMA and GDA, as well as the conventional 
accurate RCA and CLA, whereas the y-axes denote the 
power consumption and critical path delay. 

As shown in Fig. 8, the power consumption of CMA1 is 
the smallest among the adders. Compared with RCA and 
CLA, CMA1 delivers 54.1%, and 57.5% of power 
consumption reductions, respectively. Owing to the carry-
maskable structure of CMA, power consumption increases in 
a linear manner in the order of CMA1 to CMA4. The power 
consumption of CMA4 is slightly larger than that of RCA. 
Remember that our proposed CMA is an accuracy-
configurable adder and CMA4 delivers an accurate result. 
Compared with another accuracy-configurable adder GDA 
with the same configuration settings, the power consumption 
of GDA4 is 1.8 times larger than that of CMA4. Furthermore, 
the power consumption of GDA1 is 3.8 times larger than that 
of CMA1. 

Fig. 9 demonstrates that the delay of CMA1 is the 
smallest among the adders. The linearity of delay can also be 
found in the order of CMA1 to CMA4, with the delay of 
CMA4’s being the largest among the adders. As can be seen, 
just as the delay of CMA4 is close to that of RCA, the delay 
of GDA4 is close to that of CLA, demonstrating that the 
accuracy configurability of CMA is based on the structure of 
RCA and that of GDA is based on the structure of CLA. The 
delay of CMA4 is slightly larger than that of RCA. The 
critical path of an adder is the carry propagation path, and 
the critical paths of both adders are from the inputs at bit 
position 1 (a1, b1) to the sum at bit position 15 (s15). The 
internal delay of CMFA at bit position 1 in CMA4 is slightly 
larger than that of the full adder at bit position 1 in RCA 
because CMFA is implemented using a 3-input NAND gate 
and RCA is implemented using a 2-input NAND gate. Note 
that the other full adders and CMFAs from bit positions 2 to 
15 do not have any effect on the carry propagation. Thus, the 
critical paths of the two adders are the same from bit 
positions 2 to 15. 

The power-delay product (PDP) is proposed to evaluate 
approximate arithmetic circuits [2]. The results of PDP for 
CMA and GDA are shown in Fig. 10 and Fig. 11 for a better 
overview of the circuit characteristics. The circles and 
triangles represent CMA and GDA, respectively. Smaller 

values represent better results in energy savings. CMA1 
delivers the best results. Compared to CLA and RCA, 
CMA1 delivers 80.5% and 87.4% PDP reduction, 
respectively. Compared to the GDAs, the PDP of GDA1 is 
4.4 times larger than that of CMA1, and the PDP of GDA4 
is 1.2% larger than that of CMA4. The PDP of CMA4 is 3% 
larger than that of RCA. Fig. 11 performs a comparison of 
PDP results relative to MRED in order to clarify the 
contributions to the power saving and accuracy of the 
proposed adder. As can be seen, CMAs with all of the 
different configuration settings are at the bottom left of Fig. 
11. It means when the same accuracy (MRED) is required, 
the energy consumption (PDP) of a CMA is smaller than that 
of a GDA; when the same limited energy is supplied, the 
accuracy of a CMA is higher than that of a GDA. Fig. 10 and 
Fig. 11 demonstrate that our proposed CMA definitely 
achieves good results in energy savings. 
 
Table 2: Accuracy Comparison. 

MED MRED (10-4) ER (%) 
CMA1 1012.62 195.14 95.95 
CMA2 58.38 10.38 88.36 
CMA3 3.72 0.79 68.15 
CMA4 0.00 0.00 0.00 
GDA1 2022.95 388.69 83.08 
GDA2 116.81 20.53 5.58 
GDA3 6.59 1.62 0.16 
GDA4 0.00 0.00 0.00 

 

 
Figure 8: Power consumption results. 

 
Figure 9: Critical path delay results. 



 
Figure 10: PDP results. 

 
Figure 11: PDP results relative to MRED. 

 

 
Figure 12:  Area results. 

 
A comparison of the design area results is shown in Fig. 

12. Note that the accuracy configuration setting does not 
have any effect on the design areas of CMA and GDA. 
Although CMA is slightly larger than RCA, its area is 76.5% 
of CLA and 48.1% of GDA. As expected, the design area of 
RCA is the smallest among the adders. 
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Figure 13: Images processed by sharpening algorithm (a), 
(b), (c), (d), (e), (f), (g), and (h). 

5. Image Processing 
In this section, an image processing application of the 

proposed adder was also evaluated. An image sharpening 
algorithm [13], which is popular in the evaluation of 
approximate adders, was used. Six 512 × 512 8-bit grayscale 
bitmap images collected from the Internet were used. Only 
the additions were replaced by the adders, whereas all of the 
other operations (multiplication, subtraction, and division) 
were accurate. 

Fig. 13 shows the images processed by image sharpening 
algorithm. To achieve a clear comparison, the images 
processed by CMA and GDA at the same configuration 
setting are placed in the same column. Fig. 13 (a) is the 
original image (No. 1) and the accurately processed image is 
Fig. 13 (b). The images processed by CMA1, CMA2, CMA3, 
GDA1, GDA2, and GDA3 are Figs. 13 (c), (d), (e), (f), (g), 
and (h), respectively. As can be seen, the images processed 
by CMA3 (e) and GDA3 (h) are visually indistinguishable 
images from the accurately processed image (b). Obviously, 
the image processed by CMA2 (d) is sharper than that 
processed by GDA2 (g). The difference between the images 
processed by CMA2 (d) and CMA3 (e) is imperceptible 
because the bit-lengths of the sub adder units in GDA and 
CMA were set to four bits. For more controllability of 
accuracy (quality) to achieve smaller difference in the 
accuracy between two different configuration settings, the 
bit-lengths of the sub adder units can be reduced. 

Similar to [5], the processed image quality was measured 
using the peak signal-to-noise ratio (PSNR), which is usually 
used to measure the quality of reconstructive processes that 
involve information loss. 



 
Table 3: PSNR results of CMA and GDA with different configuration settings in dB. 

Image No. & Description CMA1 CMA2 CMA3 GDA1 GDA2 GDA3 
1. Lena 7.79  27.01  49.60  7.45  25.86  40.58  
2. Some peppers 8.88  27.83  51.49  8.32  27.90  41.86  
3. A bridge 12.11  28.44  51.38  11.05  25.44  42.15  
4. A truck on grassland 9.62  27.79  51.68  8.79  26.61  40.18  
5. A bird standing in a stream 11.20  27.35  49.67  10.34  26.12  40.09  
6. A view of a small town 8.88  27.24  49.60  8.43  24.93  39.45  

 
Table 3 shows the PSNR results of CMA and GDA in dB. 

Larger values represent better quality images. Excepted for 
the results of image No. 2 for CMA2 and GDA2, all of the 
PSNR values of CMA are larger than those of GDA at the 
same configuration settings, demonstrating that our proposed 
CMA delivers better quality images than GDA. CMA4 and 
GDA4 are accurate, with no PSNR results. 

6. Conclusion 
This paper proposes an accuracy-configurable 

approximate adder that does not require any additional logic 
blocks to achieve accuracy configuration. The experimental 
results demonstrate that the proposed adder is able to deliver 
more significant energy savings than the conventional RCA 
and CLA while maintaining a significantly small circuit area. 
Compared to other previously studied adders, the 
experimental results from both the circuit and application 
levels demonstrate that our proposed adder delivers greater 
improvements in energy saving, design area, and accuracy. 

Our ongoing work seeks to implement accuracy-
configurable designs for arithmetic components from the 
aspect of power consumption. The achievement of the 
selectivity from energy and performance at runtime of 
accuracy-configurable systems and applications is an 
interesting avenue for future exploration. 
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