

A Low-Power Configurable Adder for Approximate Applications

Tongxin Yang1 Tomoaki Ukezono2 Toshinori Sato3
1 Graduate School of Information and Control Systems, Fukuoka University, Japan

2,3Department of Electronics Engineering and Computer Science, Fukuoka University, Japan
1Email: td166502@cis.fukuoka-u.ac.jp 2Email: tukezo@fukuoka-u.ac.jp

3Email: toshinori.sato@computer.org

Abstract
Addition is a key fundamental function for many error-

tolerant applications. Approximate addition is considered to
be an efficient technique for trading off energy against
performance and accuracy. This paper proposes a carry-
maskable adder whose accuracy can be configured at
runtime. The proposed scheme can dynamically select the
length of the carry propagation to satisfy the quality
requirements flexibly. Compared with a conventional ripple
carry adder and a conventional carry look-ahead adder, the
proposed 16-bit adder reduced power consumption by
54.1% and 57.5% and critical path delay by 72.5% and
54.2%, respectively. In addition, results from an image
processing application indicate that the quality of the
processed images can be controlled by the proposed adder.

Keywords
Approximate computing, accuracy-configurable adder,

carry-maskable adder, low-power adder

1. Introduction
Many increasingly popular applications, such as image

processing and recognition, which are computationally
demanding, have created challenges relative to power
consumption. Most of these applications are inherently
tolerant of small inaccuracies; therfore, there are
unprecedented opportunities to reduce power consumption.
Addition is a fundamental arithmetic function for such
applications [1] [2]. Approximate computing is an efficient
approach for error-tolerant applications because it can trade
off accuracy for power. Currently, this tradeoff plays a
significant role in such application domains [3]. Since the
quality requirements of an application may vary significantly
at runtime, it is preferable to design quality-configurable
systems that are able to trade off computation quality
according to application requirements [4] [5].

In this paper, we focus on the structure of an accuracy-
configurable adder design from the aspect of power
consumption. Our primary contribution is to achieve
accuracy configurability efficiently by slightly modifying a
conventional adder so that some of its logic gates can be
reused. We propose an adder in which the generation circuit
of each bit of its sum can be dynamically configured to
function as a full adder or an OR gate. This configurability is
realized by masking carry propagation. We implemented the
proposed adder, a conventional ripple carry adder (RCA),
and a conventional carry look-ahead adder (CLA) in
Verilog HDL using a 45-nm library and evaluated their
power consumption, critical path delays, and design areas.

Carry-in
Prediction

Adder Unit
M

U
X

C0

A0 B0

Control 0

S0

Carry-in
Prediction

Adder Unit

M
U

X

C1

A1 B1

Control 1

S1

Carry-in
Prediction

Adder Unit

M
U

X

C2

A2 B2

Control 2

S2

Adder Unit C3

A3 B3

S3

Figure 1: Accuracy gracefully-degrading adder in [5].

Comparisons with the conventional RCA and CLA show that,
with a 1.95% mean relative error distance (MRED), the
proposed adder reduces power consumption by 54.1% and
57.5%, respectively. We provide a crosswise comparison to
demonstrate the superiority of the proposed adder compared
to the existing approach. We implemented one of the
established accuracy-configurable adders to evaluate power
consumption, design area, critical path delay, and accuracy.
We also evaluated the quality of these two accuracy-
configurable adders in a real image processing application.

2. Related Work
Gupta et al. [6] discussed how to simplify the complexity

of a conventional mirror adder cell at the transistor level.
Mahdiani et al. [7] proposed a lower-part-OR adder, which
utilizes OR gates for the addition of the lower bits and
precise adders for addition of the upper bits. Venkatesan et
al. [8] proposed to construct an equivalent untimed circuit
that represents the behavior of an approximate circuit. Miao
et al. [9] introduced an aligned fixed internal-carry structure
and then proposed a dithering approximate adder by trading
off error magnitude and error frequency. Du et al. [10]
described a speculative carry select adder with reliable
variable latency to detect errors and recover results.

In practice, the computation quality requirement of an
application may vary significantly at runtime. The above
static approximate designs [6-10] with fixed accuracy may
fail to meet application quality requirement or waste power
when high quality is not required. This means that
approximate adders should be dynamically configurable to
match the different quality requirements of different program
phases. To adapt to varying accuracy requirements of
different workloads, Kahng et al. [4] proposed an accuracy-
configurable adder (ACA) based on a pipeline structure. The
correction scheme of the ACA proceeds from stage 1 to
stage 4. This means that, if the most significant bits of the
results are required to be correct, all of the four stages
should be performed. Motivated by the above, Ye et al. [5]

978-1-5386-1214-9/18/$31.00 ©2018 IEEE 347 19th Int'l Symposium on Quality Electronic Design

proposed an accuracy gracefully-degrading adder (GDA). As
illustrated in Fig. 1, each sub adder block, except the
rightmost one, has its own carry-in prediction block, adder
unit, and multiplexer. Carry-out signals can be selected from
either the adder units or carry-in prediction blocks by control
signals in any order. Similar to [5], the adder proposed in
this paper does not consider a pipeline structure.

To generate outputs with different levels of computation
accuracy and to obtain the configurability of accuracy, some
multiplexers and additional logic blocks are required in [5].
The additional logic blocks cause area overhead and power
waste when their outputs are not used to generate a sum. As
shown in the GDA in Fig. 1, if all S0, S1, S2, and S3 are
required to be accurate, the power consumption of the carry-
in prediction logic blocks will be wasted. To tackle this
problem, only a carry mask signal was added to our
proposed adder to achieve accuracy configurability. To the
best of our knowledge, this is the first study that has
achieved an accuracy-configurable adder without
multiplexers to select approximate and accurate sums.
Therefore, no additional circuits, such as carry-in prediction
or error recovery logic blocks, are required.

3. Carry-Maskable Adder
A conventional half adder is shown in Fig. 2(a). A 2-

input XOR gate is used to generate sum s and a 2-input AND
gate is used to generate carry Cout. An equivalent circuit of
a half adder is shown in Fig. 2(b). The dashed frame
represents an equivalent circuit of a 2-input XOR gate. Since
there is a 2-input NAND gate in the dashed frame, we reuse
it and add an INV gate to generate the carry signal Cout. The
outputs of the 2-input NAND and OR gates in the dashed
frame are named u and w, respectively. Table 1 is the truth
table for the equivalent circuit of a half adder.

As shown in Fig. 2(b) and Table 1, when the internal
signal u is 1, the sum s is equal to a OR b and the carry Cout
is 0. This means that, if u is controllable and can be
controlled to 1, the carry propagation will be masked and the
sum s will be equal to a OR b. The sum s = a OR b is
different from the accurate sum (=a XOR b) only when both
a and b are 1. In other words, the sum s = a OR b can be
considered as an approximate sum. The selectivity between
the accurate and approximate sums can be achieved by a
control signal, which is used to control u to be a NAND b, or
to be 1.

a
b

s

Cout

a
b

s

Cout

u

w

(a) (b)

Figure 2: (a) Conventional half adder, and (b) equivalent
circuit of a half adder.

Table 1: Truth table for the equivalent circuit of a half adder.

Inputs Internal signals Outputs

a b u w s Cout

0 0 1 0 0 0

0 1 1 1 1 0

1 0 1 1 1 0

1 1 0 1 0 1

a
b

mask_x

s

Cout

Figure 3: Carry-maskable half adder.

a
b

Cin
s

Cout

mask_x

Figure 4: Carry-maskable full adder.

CMHA

Cout0s0 s1

m_x0a0

Cin1

Cout1

CMFA2

s2

Cin2

Cout2

CMFA7

Cin7

s7 s8

b0 m_x1a1 b1

Two inputs: A = {a7, a6, a5, a4, a3, a2, a1, a0}, B = {b7, b6, b5, b4, b3, b2, b1, b0}
Mask signal: M_X = {m_x7, m_x6, m_x5, m_x4, m_x3, m_x2, m_x1, m_x0}

sum: S = {s8, s7, s6, s5, s4, s3, s2, s1, s0}

m_x2a2 b2 m_x7a7 b7

CMFA1

Figure 5: An 8-bit carry-maskable adder.

We add a signal named “mask_x” as the control signal

and use a 3-input NAND gate to replace the 2-input one in
the dashed frame. This is called a carry-maskable half adder
(CMHA) and shown in Fig. 3. When mask_x = 0, the sum s
= a OR b, and the carry Cout = 0; otherwise, when mask_x =
1, the sum s = a XOR b, and the carry Cout = a AND b.
Similar considerations apply to a full adder, which is shown
in Fig. 4. When mask_x = 0 and Cin = 0, the sum s = a OR b,
and the carry Cout = 0, then obviously switching activities
become smaller, and dynamic power consumption is reduced.
This full adder is called a carry-maskable full adder (CMFA).
An n-bit adder, which is implemented using one CMHA and
(n-1) CMFA, is called an n-bit carry-maskable adder (CMA).

Fig. 5 shows an 8-bit CMA as an example. The carry
mask signal M_X comprises eight bits, which are denoted as
m_x0, m_x1, … , m_x7. The left is the least significant bit in
Fig. 5. The sum and carry of the CMHA are s0 and Cout0,
respectively. Cin1 is connected to Cout0. When m_x0 is equal
to 0, s0 = a0 OR b0, and Cin1 = Cout0 = 0. When both m_x1
and m_x0 are equal to 0, s0 = a0 OR b0, Cin1 = Cout0 = 0, s1 =
a1 OR b1, and Cout1 = 0 (Cin2 is also 0). In other words,
carry propagation from CMHA to CMFA1 is masked. By
expanding the above equations to CMFA7, when all m_x0,
m_x1, … , m_x7 are 0, all Cout0, Cout1, … , Cout7 are 0, and
s0 = a0 OR b0, s1 = a1 OR b1, … , s7 = a7 OR b7, s8 = 0 (s8 =
Cout7). Thus, the carry propagation from CMHA to CMFA7
is masked. Note that there are two conditions for masking
the carry propagation of a CMFA: both m_x and Cin’s being
0. Considering the above 8-bit CMA, if we want to mask the
carry propagation from CMHA to CMFA3, we should set
m_x0, m_x1, m_x2, and m_x3 to 0 (not set only m_x3 to 0) to
ensure that Cin1, Cin2, and Cin3 are equal to 0.

Each CMFA, as well as the CMHA has its own carry
mask signal in a CMA. Considering a 16-bit CMA, a 16-bit
M_X signal (m_x0, m_x1, … , m_x15) is required. To
simplify the structure of a CMA, we can also group some
CMFAs as a sub adder unit. Fig. 6 is a 16-bit CMA with four
sub adder units. Each sub adder unit has four CMFAs
(except for sub adder unit 0: one CMHA and three CMFAs)
and 1-bit carry mask signal to mask carry propagation. There
is no carry mask signal for sub adder unit 3 in this example.
The structure of sub adder unit 1 is shown in Fig. 7 as an
example. C0 is the output of sub adder unit 0 and 1-bit
mask_x1 is the carry mask signal for sub adder unit 1. If
mask_x1 = 0 and C0 = 0, we can obtain C1 = 0 and S1 = A1
OR B1 (4-bit parallel OR function). Note that the bit-length
of each sub adder unit can be different.

4. Experimental Results

4.1. Experimental Setup
In this section, the proposed adder is evaluated in terms

of computational accuracy, power consumption, critical path
delay, and design area. To clarify the contributions to the
power saving of the proposed adder, we implemented and
evaluated CMA, the conventional RCA, CLA and GDA [5].
We implemented a full adder of RCA as with CMFA (Fig. 4),
except for the 3-input NAND gate in the dashed frame
replacing the 2-input NAND gate in RCA.

Sub adder
Unit 0

Sub adder
Unit 1

Sub adder
Unit 2

Sub adder
Unit 3

C0 C1 C2

A0 B0 A1 B1 A2 B2 A3 B3
mask_x0 mask_x1 mask_x2

S0 S1 S2 S3

C3

Figure 6: A 16-bit CMA with four sub adder units.

CMFA

s4 s5

m_x

a4

CMFA

s6

CMFA

s7

b4

Two inputs: A1 = {a7, a6, a5, a4}, B1 = {b7, b6, b5, b4}

sum: S1 = {s7, s6, s5, s4}

CMFA

a b m_xa b m_xa b m_xa bCin

s s Coutss

a5 b5 a6 b6 a7 b7

C0

C1

mask_x1

Cin Cin Cin

CoutCoutCout

Figure 7: Structure of sub adder unit 1.

All of these adders are 16-bit. The 16-bit CLA is

implemented using five 4-bit carry look-ahead units: four 4-
bit carry look-ahead units in stage 1 and one 4-bit carry
look-ahead unit in stage 2. The bit-lengths of the sub adder
units in GDA and CMA are both set to four bits. The
numbers of carry-in prediction bits in GDA and carry
unmasked bits in CMA are both set to 0, 4, 8, and 12 bits.
Thus, the configuration settings of GDA and CMA are the
same. The adders are referred to as GDA1, GDA2, GDA3,
GDA4, CMA1, CMA2, CMA3, and CMA4. For example, on
the basis of Fig. 6, CMA1 means that sub adder units 0, 1,
and 2 are all masked (mask_x0,1,2 = 0), and the accuracy of
CMA1 will be the worst among the CMAs. CMA2 means
that sub adder units 0 and 1 are masked (mask_x0,1 = 0), but
sub adder unit 2 is unmasked (mask_x2 = 1). CMA4 means
that sub adder units 0, 1, and 2 are all unmasked (mask_x0,1,2
= 1). With these settings, accurate results are obtained.

The adders were coded using Verilog HDL. The
Synopsys VCS was used to simulate the designs and
generate value change dump (VCD) files to evaluate the
power consumption precisely. The Synopsys Design
Compiler was used to synthesize the adders with the
NanGate 45nm Open Cell Library [11]. The power
consumption was evaluated at a frequency of 0.5GHz. The
operating conditions for synthesis employed typical
conditions (a 1.00 process factor, 1.1V power supply, and
25°C operating temperature). All designs were synthesized
and optimized with default compile options. The Synopsys
Power Compiler was used to estimate power consumption
from switching activity interchange format files generated
from the VCD files. The Synopsys VCS was used to
evaluate the numerical outputs of all of the adders with one
million randomly generated input patterns.

4.2. Accuracy Results
The ED and MED are proposed for the evaluation of the

performance of approximate arithmetic circuits [12]. ED is
defined as the arithmetic difference between the accurate
sum (S) and the approximate sum (S′): ED = | S − S′|. MED
is the average of EDs for a set of outputs. The relative error
distance (RED) is the ED divided by the accurate output:
RED = |S − S′|/S, whereas MRED is the average of REDs
and can be obtained similarly to MED. The error rate (ER) is
the percentage of inaccurate outputs among all outputs

generated from all combinations of inputs. These three
metrics (i.e., MED, MRED, and ER) are used to evaluate the
adders.

Table 2 compares the accuracy of the results and shows
that the accuracy of both CMA and GDA changed widely
according to the settings of the configuration. Both the MED
and MRED of CMA are smaller than those of GDA at each
setting. As expected, there are no errors in CMA4 and
GDA4. Although the ER value of CMA is larger than that of
GDA in each accuracy configuration setting, the MED and
MRED of CMA are about 50% of GDA.

4.3. Power, Delay and Area Results
Comparisons of the power consumption and critical path

delay for the different adders are shown in Fig. 8 and Fig. 9.
The x-axes denote the adders with different configuration
settings of CMA and GDA, as well as the conventional
accurate RCA and CLA, whereas the y-axes denote the
power consumption and critical path delay.

As shown in Fig. 8, the power consumption of CMA1 is
the smallest among the adders. Compared with RCA and
CLA, CMA1 delivers 54.1%, and 57.5% of power
consumption reductions, respectively. Owing to the carry-
maskable structure of CMA, power consumption increases in
a linear manner in the order of CMA1 to CMA4. The power
consumption of CMA4 is slightly larger than that of RCA.
Remember that our proposed CMA is an accuracy-
configurable adder and CMA4 delivers an accurate result.
Compared with another accuracy-configurable adder GDA
with the same configuration settings, the power consumption
of GDA4 is 1.8 times larger than that of CMA4. Furthermore,
the power consumption of GDA1 is 3.8 times larger than that
of CMA1.

Fig. 9 demonstrates that the delay of CMA1 is the
smallest among the adders. The linearity of delay can also be
found in the order of CMA1 to CMA4, with the delay of
CMA4’s being the largest among the adders. As can be seen,
just as the delay of CMA4 is close to that of RCA, the delay
of GDA4 is close to that of CLA, demonstrating that the
accuracy configurability of CMA is based on the structure of
RCA and that of GDA is based on the structure of CLA. The
delay of CMA4 is slightly larger than that of RCA. The
critical path of an adder is the carry propagation path, and
the critical paths of both adders are from the inputs at bit
position 1 (a1, b1) to the sum at bit position 15 (s15). The
internal delay of CMFA at bit position 1 in CMA4 is slightly
larger than that of the full adder at bit position 1 in RCA
because CMFA is implemented using a 3-input NAND gate
and RCA is implemented using a 2-input NAND gate. Note
that the other full adders and CMFAs from bit positions 2 to
15 do not have any effect on the carry propagation. Thus, the
critical paths of the two adders are the same from bit
positions 2 to 15.

The power-delay product (PDP) is proposed to evaluate
approximate arithmetic circuits [2]. The results of PDP for
CMA and GDA are shown in Fig. 10 and Fig. 11 for a better
overview of the circuit characteristics. The circles and
triangles represent CMA and GDA, respectively. Smaller

values represent better results in energy savings. CMA1
delivers the best results. Compared to CLA and RCA,
CMA1 delivers 80.5% and 87.4% PDP reduction,
respectively. Compared to the GDAs, the PDP of GDA1 is
4.4 times larger than that of CMA1, and the PDP of GDA4
is 1.2% larger than that of CMA4. The PDP of CMA4 is 3%
larger than that of RCA. Fig. 11 performs a comparison of
PDP results relative to MRED in order to clarify the
contributions to the power saving and accuracy of the
proposed adder. As can be seen, CMAs with all of the
different configuration settings are at the bottom left of Fig.
11. It means when the same accuracy (MRED) is required,
the energy consumption (PDP) of a CMA is smaller than that
of a GDA; when the same limited energy is supplied, the
accuracy of a CMA is higher than that of a GDA. Fig. 10 and
Fig. 11 demonstrate that our proposed CMA definitely
achieves good results in energy savings.

Table 2: Accuracy Comparison.

MED MRED (10-4) ER (%)
CMA1 1012.62 195.14 95.95
CMA2 58.38 10.38 88.36
CMA3 3.72 0.79 68.15
CMA4 0.00 0.00 0.00
GDA1 2022.95 388.69 83.08
GDA2 116.81 20.53 5.58
GDA3 6.59 1.62 0.16
GDA4 0.00 0.00 0.00

Figure 8: Power consumption results.

Figure 9: Critical path delay results.

Figure 10: PDP results.

Figure 11: PDP results relative to MRED.

Figure 12: Area results.

A comparison of the design area results is shown in Fig.

12. Note that the accuracy configuration setting does not
have any effect on the design areas of CMA and GDA.
Although CMA is slightly larger than RCA, its area is 76.5%
of CLA and 48.1% of GDA. As expected, the design area of
RCA is the smallest among the adders.

 (a) Original (b) accurate

 (c) CMA1 (d) CMA2 (e) CMA3

 (f) GDA1 (g) GDA2 (h) GDA3
Figure 13: Images processed by sharpening algorithm (a),
(b), (c), (d), (e), (f), (g), and (h).

5. Image Processing
In this section, an image processing application of the

proposed adder was also evaluated. An image sharpening
algorithm [13], which is popular in the evaluation of
approximate adders, was used. Six 512 × 512 8-bit grayscale
bitmap images collected from the Internet were used. Only
the additions were replaced by the adders, whereas all of the
other operations (multiplication, subtraction, and division)
were accurate.

Fig. 13 shows the images processed by image sharpening
algorithm. To achieve a clear comparison, the images
processed by CMA and GDA at the same configuration
setting are placed in the same column. Fig. 13 (a) is the
original image (No. 1) and the accurately processed image is
Fig. 13 (b). The images processed by CMA1, CMA2, CMA3,
GDA1, GDA2, and GDA3 are Figs. 13 (c), (d), (e), (f), (g),
and (h), respectively. As can be seen, the images processed
by CMA3 (e) and GDA3 (h) are visually indistinguishable
images from the accurately processed image (b). Obviously,
the image processed by CMA2 (d) is sharper than that
processed by GDA2 (g). The difference between the images
processed by CMA2 (d) and CMA3 (e) is imperceptible
because the bit-lengths of the sub adder units in GDA and
CMA were set to four bits. For more controllability of
accuracy (quality) to achieve smaller difference in the
accuracy between two different configuration settings, the
bit-lengths of the sub adder units can be reduced.

Similar to [5], the processed image quality was measured
using the peak signal-to-noise ratio (PSNR), which is usually
used to measure the quality of reconstructive processes that
involve information loss.

Table 3: PSNR results of CMA and GDA with different configuration settings in dB.

Image No. & Description CMA1 CMA2 CMA3 GDA1 GDA2 GDA3
1. Lena 7.79 27.01 49.60 7.45 25.86 40.58
2. Some peppers 8.88 27.83 51.49 8.32 27.90 41.86
3. A bridge 12.11 28.44 51.38 11.05 25.44 42.15
4. A truck on grassland 9.62 27.79 51.68 8.79 26.61 40.18
5. A bird standing in a stream 11.20 27.35 49.67 10.34 26.12 40.09
6. A view of a small town 8.88 27.24 49.60 8.43 24.93 39.45

Table 3 shows the PSNR results of CMA and GDA in dB.

Larger values represent better quality images. Excepted for
the results of image No. 2 for CMA2 and GDA2, all of the
PSNR values of CMA are larger than those of GDA at the
same configuration settings, demonstrating that our proposed
CMA delivers better quality images than GDA. CMA4 and
GDA4 are accurate, with no PSNR results.

6. Conclusion
This paper proposes an accuracy-configurable

approximate adder that does not require any additional logic
blocks to achieve accuracy configuration. The experimental
results demonstrate that the proposed adder is able to deliver
more significant energy savings than the conventional RCA
and CLA while maintaining a significantly small circuit area.
Compared to other previously studied adders, the
experimental results from both the circuit and application
levels demonstrate that our proposed adder delivers greater
improvements in energy saving, design area, and accuracy.

Our ongoing work seeks to implement accuracy-
configurable designs for arithmetic components from the
aspect of power consumption. The achievement of the
selectivity from energy and performance at runtime of
accuracy-configurable systems and applications is an
interesting avenue for future exploration.

7. Acknowledgment
This work was supported by JSPS KAKENHI Grant

Number JP17K00088 and by funds (No.175007 and
No.177005) from the Central Research Institute of Fukuoka
University. This work is supported by VLSI Design and
Education Center (VDEC), the University of Tokyo in
collaboration with Synopsys, Inc.

8. References
[1] S. Cotofana, C. Lageweg, and S. Vassiliadis, “Addition

related arithmetic operations via controlled transport of
charge”, IEEE Transactions on Computers, vol. 54, no.
3, pp. 243-256, Mar. 2005.

[2] V. Beiu, S. Aunet, J. Nyathi, R. R. Rydberg, and W.
Ibrahim, “Serial Addition: Locally Connected
Architectures”, IEEE Transactions on Circuits and
Systems-I: Regular papers, vol. 54, no. 11, pp. 2564-
2579, Nov. 2007.

[3] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K.
Roy, and A. Raghunathan, “Quality programmable
vector processors for approximate computing”, 46th

Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 1-12, Dec. 2013.

[4] A. B. Kahng, and S. Kang, “Accuracy-configurable
adder for approximate arithmetic designs”, IEEE/ACM
Design Automation Conference (DAC), pp. 820-825,
Jun. 2010.

[5] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On
Reconfiguration-Oriented Approximate Adder Design
and Its Application”, IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp.
48-54, Nov. 2013.

[6] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy,
“Low-Power digital signal processing using
approximate adders”, IEEE Transactions on Comptuer-
Aided Design of Integrated Circuits and Systems, vol.
32, no. 1, pp. 124-137, Jan. 2013.

[7] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C.
Lucas, “Bio-Inspired imprecise computational blocks
for efficient VLSI implementation of Soft-Computing
applications”, IEEE Transactions on Circuits and
Systems I: Regular papers, vol. 57, no. 4, pp. 850-862,
Apr. 2010.

[8] R. Venkatesan, A. Agarwal, K. Roy, and A.
Raghunathan, “MACACO: modeling and analysis of
circuits for approximate computing”, IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD), pp. 667-673, Nov. 2011.

[9] J. Miao, K. He, A. Gerstlauer, and M. Orshansky,
“Modeling and Synthesis of Quality-Energy Optimal
for Approximate Adder”, IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp.
728-735, Nov. 2012.

[10] K. Du, P. Varman, and K. Mohanram, “High
performance reliable variable latency carry select
addition”, IEEE/ACM Design, Automation Test in
Europe (DATE), pp. 1257-1262, Mar. 2012.

[11] NanGate, Inc. NanGate FreePDK45 Open Cell Library,
http://www.nangate.com/?page_id=2325, 2008

[12] J. Liang, J. Han, and F. Lombardi, “New metrics for
the reliability of approximate and probabilistic adders”,
IEEE Transactions on computers, vol. 62, no. 9, pp.
1760-1771, Sep. 2013.

[13] M. S. Lau, K. V. Ling, and Y. C. Chu, “Energy-Aware
probabilistic multiplier: Design and Analysis”,
International Conference on Compliers, architecture,
and synthesis for embedded systems, pp. 281-290, Oct.
2009.

