
Quantized Neural Networks with New Stochastic Multipliers

Bingzhe Li*, M. Hassan Najafi*, Bo Yuan†, and David J. Lilja*

* Department of Electrical and Computer Engineering, University of Minnesota–Twin Cities
† Department of Electrical Engineering, City University of New York

{lixx1743, najaf011, lilja}@umn.edu, byuan@ccny.cuny.edu

Abstract—With increased interests of neural networks, hard-
ware implementations of neural networks have been investigated.
Researchers pursue low hardware cost by using different tech-
nologies such as stochastic computing and quantization. For
example, the quantization is able to reduce total number of
trained weights and results in low hardware cost. Stochastic
computing aims to lower hardware costs substantially by using
simple gates instead of complex arithmetic operations. In this
paper, we propose a new stochastic multiplier with shifted unary
code adders (SUC-Adder) for quantized neural networks. The
new design uses the characteristic of quantized weights and
tremendously reduces the hardware cost of neural networks.
Experimental results indicate that our stochastic design achieves
about 10x energy reduction compared to its counterpart binary
implementation while maintaining slightly higher recognition
error rates than the binary implementation.

Keywords-Neural networks, Stochastic computing, Quantiza-
tion, Multiplier

1. INTRODUCTION

Neural networks as a computational model based on neu-
rons, are becoming a prevalent method in many areas. Re-
searchers start to investigate neural networks with hardware
implementation, rather than restricting to software implemen-
tations. In the hardware implementations, two major directions
are explored. One aims to accelerate neural network perfor-
mance by using FPGA or VLSI designs [1][2]. The other
targets to low-power applications such as mobile devices and
Internet-of-things (IoT).

To achieve low hardware cost, quantization and stochastic
computing have been investigated, respectively. First, stochas-
tic computing [3] is known as a low-cost and fault-tolerate
technology used in approximate computation areas. By using
simple gates to implement complex arithmetic operations,
stochastic computing achieves extremely low hardware cost.
For example, several finite state machines are able to imple-
ment exponential function or tanh function. Thus, stochastic
computing is a promising approach to reduce hardware cost in
many applications. Second, the quantization is an approximate
method in digital designs. In terms of smaller quantization
levels, quantization introduces larger quantization errors while
reducing complexity of applications significantly. Therefore, to
investigate low-cost neural networks, people applied those two
approaches into neural network implementations, respectively.

On one hand, previous works have investigated neural
networks by using stochastic computing. For example, the
stochastic RBM implementation was proposed by Li et
al. [4][5]. Another work [6] implemented a tanh based neu-
ron and improved error rates of stochastic neural network
substantially. Two works [7][8] implemented deep stochastic

CNNs with approximate parallel counters using bipolar and
unipolar encoding formats, respectively. On the other hand,
some researchers studied efficient hardware implementations
of neural networks with the quantization technology. For ex-
ample, Hwang et al. [9] studied fixed-point feedforward neural
networks with different quantization levels. According to their
results, they achieved similar recognition error rates compared
to floating-point neural networks. Another work [10] exploited
sparseness in vocabulary speech recognition to reduce the
model size and execution time. However, the advantages of
both quantization and stochastic computing in neural networks
are not well investigated. Therefore, there is an opportunity
to design a quantized neural network by using stochastic
computing in order to reduce hardware cost of neural networks
further.

In this paper, we proposed a new stochastic neural net-
work architecture for quantized neural networks. The goal of
this work is to combine two technologies, quantization and
stochastic computing in neural networks and then to reduce
hardware cost of neural networks further. Regarding neural
network implementations, first we retrain a fully trained neural
network with the back-propagation algorithm in order to obtain
neural networks with quantized weights. Second, according
to the quantized weights, a stochastic matrix multiplication
is implemented with a new component called shifted unary
code adder (SUC-Adder). The SUC-Adder is capable of effi-
ciently summing up products of matrix elements and quantized
weights. As a result, the SUC-Adder can decrease the number
of inputs of parallel counters and then reduce hardware cost
of the whole neural network.

The main contributions of this paper are summarized as
followed:

• Retrained neural networks with different quantization
levels are implemented by stochastic computing.

• A stochastic quantized matrix multiplier is proposed
with SUC-Adders for the quantized neural networks.
The method can efficiently and accurately achieve high
accuracy of partial matrix multiplication by only using
several AND and OR gates.

• The stochastic neural networks with proposed multipliers
achieve much lower hardware costs compared to previous
works and binary implementations while maintaining
very close recognition error rates to binary neural net-
works.

The remainder of this paper is organized as follows: Section 2
demonstrates the motivation of this work and also introduces
the background of stochastic computing and quantized neural

978-1-5386-1214-9/18/$31.00 ©2018 IEEE 376 19th Int'l Symposium on Quality Electronic Design

networks. Section 3 provides the neural networks stochastic
implementation. The experimental results of neural network
comparisons are discussed in Section 4. The conclusions are
given in Section 5.

2. STOCHASTIC COMPUTING AND QUANTIZED
NEURAL NETWORKS

2.1. Motivation
A deep neural network normally has thousands of weights,

which result in long execution time within CPU/GPUs or
large hardware cost for neural network accelerators. Therefore,
previous researchers reduced the model size of deep neural
networks by quantizing all trained weights. Consequently, the
quantized weights decreased complexity of neural networks
and finally lowered execution time and hardware cost in both
conventional hardware and CPU/GPU implementations.

Similar to binary implementations, one advantage of quan-
tization in stochastic computing is that the number of non-
zero weights is reduced because because near-zero weights are
quantized to zeros. As seen in Fig. 1, a large portion of weights
in neural networks are around zero. Therefore, removing near-
zero weights can reduce a large number of operations. Another
advantage is that original weights in binary implementations
are quantized to their nearby levels and thus thousands of
weights are replaced by several constant values. As a result,
the quantized weights will further reduce resource utilization.

Nevertheless, directly applying stochastic computing to
quantized neural network may only obtain limited benefit. As
the second advantage mentioned above, the benefit of quan-
tized neural networks for stochastic computing is reducing
the number of stochastic number generators (SNG). However,
because of correlation between bit-streams, for the same value,
we cannot encode them by the same SNG when they are oper-
ated by each other in conventional stochastic implementations.
In addition, some researchers [11][12] have investigated low-
cost SNGs. As a result, the benefit of reducing number of
SNGs will become much smaller in future. Therefore, how to
efficiently apply stochastic computing to the quantized neural
networks motivates us to design a new stochastic neuron
architecture.

2.2. Stochastic Computing
Stochastic computing is performed with random bit-streams.

In stochastic computing domain, input data is encoded by
two ways, unipolar and bipolar formats. These two formats
are encoded by Pr(X) = x and Pr(X) = (x + 1)/2 [13],
respectively. Therefore, based on two encoding formats, their
corresponding operations are investigated. For example, re-
garding addition, Dickson et al. used a simple OR gate to
perform unipolar addition and Qian et al. [14] used a simple
MUX to implement both unipolar and bipolar format addition.
Moreover, for multiplication, simple AND [15] and XNOR
gate [16] are implemented for unipolar and bipolar formats,
respectively.

In this work, we use unipolar encoding format throughout
stochastic neural network implementations. Thus, AND gates
and OR gates are used for some basic operations like addition
and multiplication in the stochastic neural networks. Moreover,

another important part is the activation function in neural
networks. We use the restricted Boltzmann machine (RBM)
with sigmoid activation function. Some previous works have
investigated stochastic sigmoid implementation. For example,
Li el at. [4] proposed a stochastic sigmoid function based
on stochastic tanh() function using finite state machines. An-
other work [8] used approximate parallel counters connecting
finite-state machines to implement the sigmoid function. In
our work, the sigmoid activation function is integrated into
the neuron architecture with the multiplier. The details are
introduced in Section 3.

2.3. Neural Network Retraining
In general, a neuron implements a function of p = σ(A ∗

x + B), where σ is the activation function, x is input of the
neuron, A is the coefficient for matrix multiplication, and B is
the bias. Binary neural networks quantize all weights (A and
B) and inputs (x) in retraining process [9] in order to decrease
sizes of neural networks and then reduce resource utilization.
However, the trade-off is that the quantized neural networks
increase recognition error rates.

For stochastic quantized neural networks, we only quantize
the coefficient A. The reasons are given as follows: First, our
new proposed architecture obtains benefits from the weight A
which is used for multiplications. Thus, it is not necessary to
quantize inputs and other weights B in our implementations.
Second, we use the same un-quantized input images as pre-
vious works in order that our work is designed for the same
input datasets as the previous works. Third, since quantization
reduces precision of neural networks, quantizing unnecessary
weights results in increasing error rates. As seen in Fig. 2, the
results indicate the neural network with partially quantized
weights has better recognition error rates than the one with
fully quantized weights. Therefore, to obtain lower recognition
error rates, we only quantized coefficient A.

In our training process, we use the following steps retraining
neural networks in order to obtain the quantized weights:

1) Fully train neural networks with floating-point weights.
2) Choose number of iterations to minimize the output

error.
3) Quantize weights used for multiplications in hidden

layers.
4) Remove near-zero biases of hidden layers.
5) Perform back-propagation algorithm [17] to update

weights.
6) Repeat Step 3 to Step 5 to minimize the output error

and quantize partial weights.
After retraining the neural networks, we obtain the quantized
neural networks and all weights are regarded as constant
values for stochastic neural network classifiers. In addition,
the recognition error rates can be found in Table II. Compared
to the floating-point neural network, the quantized neural
network has slightly higher recognition error rates.

3. STOCHASTIC NEURAL NETWORK IMPLEMENTA-
TIONS

In this section, we introduce stochastic implementations for
quantized neural networks. We use 2-bit quantization as an

(a) 2-bit (b) 3-bit

(c) 4-bit (d) Floating-point

Fig. 1: Retraining with quantization levels of 2-bit, 3-bit, 4-bit and original floating-point (no retraining).

Fig. 2: Error rate comparisons between fully quantizing
weights, partially quantizing weights and floating-point
weights.

example and the architecture of the stochastic implementation
are quite similar for other quantization levels.

3.1. Stochastic Quantized Bit-streams

In our stochastic implementation, multiplication for unipolar
format bit-streams is achieved by ANDing two inputs. One of
the inputs is quantized weight as a constant value. For 2-bit
quantized weights with unipolar format, the quantized weights
only have five values, 0, 0.25, 0.5, 0.75, and 1 in stochastic
computing domain. Thus, the multiplication is changed to
select 0%, 25%, 50%, 75% and 100% bits of the other input
bit-stream and then pad un-selected bits with zeros. As a
result, only selected bits contain useful information for future
addition operations. Therefore, considering how to efficiently
use the unselected bits, we propose a new type of bit-stream
for the quantized weights.

The quantized weight bit-streams are similar to the time-
based unary streams in previous works [18][19]. The differ-
ence is that our quantized weight bit-streams have contiguous
’1’s located in different phases. As seen in Fig. 3, it is
an example for 2-bit quantized weights and the quantized
bit-streams are generated from unary bit-streams by shifting

Fig. 3: Sequences of 2-bit quantized weights.

Fig. 4: An example of multiplication with 2-bit quantized
weights.

different bits. By using the quantized weight bit-streams, the
multiplication becomes to select a sequential part of a bit-
stream as seen an example in Fig. 4. Finally, the output of
quantized multiplication consists of a sequential part of one
input and a sequence of zeros. The advantage of such encoding
method is introduced in the following sections.

3.2. Stochastic Quantized Addition
As discussed above, the multiplication with 2-bit quantized

weights truncates inputs with a number of sequential bits and
pads them with zeros. Therefore, if the output bit-stream of
the multiplication is padded with another product of two bit-
streams instead of padding zeros, the output bit-stream will
become the sum of two products (suppose two product bit-
streams have enough number of padded zeros). For example,
suppose an operation is to compute a/4 + b/4 + c/4 + d/4.
As seen in Fig. 5, four bit-streams (a, b, c and d) generated
by four stochastic number generators (SNGs) are ANDed with
four shifted unary bit-streams of 1/4 whose phases of ’1’s are
interleaved. That is, those four bit-streams of 1/4 select differ-
ent part of a, b, c and d. Consequently, after going through OR
gates, the output becomes (a+b+c+d)/4. Therefore, the four
products are summed up by using only seven simple gates in
this example. We call the adder as Shifted Unary Code Adder
(SUC-Adder), whose inputs are products of shifted unary bit-
streams and conventional stochastic bit-streams.

Moreover, for different combinations of quantized weights,
the SUC-Adders are implemented by different circuits. Fig. 6
lists four types of SUC-Adders for 2-bit quantized weights.
For stochastic quantized neural network implementation, since
2-bit quantized weights are constant values and we know the
total number of each quantized value, the number and types
of SUC-Adders are determined after training neural networks.

Compared to traditional unipolar adder (only OR gate), as
seen in Table I, our SUC-Adder has much better accuracy than
the OR based adders. The analysis is given in Section 3.3.

Fig. 5: An example of a four-input SUC-Adder with 2-bit
quantized weights.

TABLE I: Mean absolute error (MAE) comparison between
quantized weight generator and LFSRs

Bit-length 16 32 64 128
Operation (a+ b+ c+ d)/4

(i) Quantized weight generator 7.74% 5.17% 3.61% 2.50%
(ii) Same LFSR 9.30% 6.12% 4.00% 2.75%

(iii) Different LFSRs 7.82% 5.33% 3.64% 2.53%
(iv) OR with same LFSR 26.9% 26.8% 26.7% 26.7%

(v) OR with different LFSRs 11.8% 10.2% 9.40% 8.97%
Operation (a+ b+ c+ d+ e+ f + g + h)/8

(i) Quantized weight generator 8.16% 5.60% 3.88% 2.69%
(ii) Same LFSR 11.88% 7.80% 5.03% 3.28%

(iii) Different LFSRs 8.50% 5.63% 3.94% 2.75%
(iv) OR with same LFSR 37.6% 37.7% 37.4% 37.5%

(v) OR with different LFSRs 12.5% 11.0% 10.3% 9.91%

In addition, compared to previous stochastic neural network
implementations [6][7][20], the SUC-Adder can reduce the
number of inputs of parallel counters because it simply im-
plements multi-input addition with several AND and OR gates.
Therefore, the stochastic quantized neural networks with SUC-
Adders will reduce hardware cost a lot compared to previous
works.

Fig. 6: SUC-Adders with different combinations of weights.
All quantized weight bit-streams have different phases of
’1’s in each circuit.

Fig. 7: An example of quantized weight generator for
bit-streams with a period of 16 bits. A binary value and
D3D2D1D0 go through a comparator to generate a
bit-stream of the binary value.

3.3. Stochastic Quantized Weight Generator
In this section, we mainly focus on the stochastic quantized

weights generator. As discussed in Section 3.1, quantized
weights have 2n non-zero values (n is the quantization level)
in stochastic computing. Since each non-zero value needs to
be encoded to interleaved bit-streams for SUC-Adders, for
one non-zero value i/2n (1 ≤ i ≤ 2n), there are b2n/ic
types of shifted unary bit-streams. Therefore, it totally needs∑n

i=1b2n/ic quantized weight generators used in the whole
neural networks.

The design of the quantized weight generator is shown in
Fig. 7, which is an example for producing bit-streams with a
period of 16 bits. To generate bit-streams of different levels of
quantized weights and different phases of ’1’s, we only need
to initialize D Flip-flops by loading desired values.

To investigate accuracy of the shifted unary bit-streams, we
use the operations of (a + b + c + d)/4 and (a + b + c +
d + e + f + g + h)/8 with 3-bit quantized weights. Then,
we compare our generator with linear-feedback shift registers
(LFSR) by the mean absolute error (MAE). Moreover, we
compare conventional OR adders with our design as well. In
the implementation, all inputs are encoded by LFSRs and the
coefficients (1/4 and 1/8) are produced by different methods.
Five configurations are compared: (i) SUC-Adder: the same
coefficient values are generated by the same quantized weight
generator. (ii) Parallel adder: the same coefficient values are
generated by the same LFSR. (iii) Parallel adder: the same
coefficient values are generated by different LFSRs. (iv) OR
adder: the same coefficient values are generated by the same
LFSR. (v) OR adder: the same coefficient values are generated
by different LFSRs.

As seen in Table I, because of correlation the OR adder
with same LFSR gets the worst MAE results and the OR
adder with different LFSRs are worse than our design. In
addition, our quantized weight generator has even better MAE
results with different bit lengths than the parallel counter
implementations. Therefore, it proves that bit-streams gener-
ated by our quantized weight generators can obtain similar
or even better accurate results compared to the conventional
LFSR implementations. The details of hardware comparison
of generators are shown in Section 4.2.

3.4. Stochastic Neuron Implementation
A single neuron is the basic unit in neural networks, which

consists of a matrix multiplication and an activation function.
For the structure of a stochastic neuron shown in Fig. 8, the

Fig. 8: The stochastic structure of a neuron with matrix
multiplication.

inputs of neurons come from image bit-streams generated by
stochastic number generators or outputs of previous layers.
Since image pixel inputs and outputs of previous layers
(outputs of sigmoid function) are always in the range of [0, 1],
the signs of products of inputs and quantized weights are
determined by the quantized weights. Therefore, the number
of positive and negative products are clearly known when the
classifiers have been trained.

In our proposed neuron, inputs are separated into positive
and negative groups based on their quantized weights and are
ANDed with the quantized weights to compute their products.
Then, we group some of products going to the same SUC-
Adder. Since number of quantized weights are determined,
we can minimize the number of SUC-Adders by adding as
many products as possible in one SUC-Adder. For example,
we can group two products with weights of 1/4 and 3/4, or
three products with weights of 1/4, 1/4 and 2/4. After that,
partial addition results and bias are assigned to parallel counter
to sum bit-streams up. bias+ and bias− in the positive and
negative parts are extra constant inputs, which are obtained
from training process as constant values here. Finally, the full
adder will compute the subtraction of positive and negative
part and go through a comparator to generate a bit-stream
which is the input of next layer. In addition, the activation
function is sigmoid function in restricted Boltzmann machine
and because the Taylor expansion of the sigmoid function is
sigmoid(x) = 1/2+ x/4− x3/48..., we use the approximate
the sigmoid function [21] of x+2

4 and it is automatically
achieved in the proposed neuron.

TABLE II: Recognition error rates comparisons of RBM classifiers with different bit-lengths.

Quantization Conventional Binary Quantized Binary Our method Prior work [20]
16 32 64 128 16 32 64 128

2-bit
0.98%

1.44% 2.73% 2.71% 2.56% 2.37% 4.29% 2.86% 2.52% 1.92%
3-bit 1.18% 2.59% 2.42% 2.49% 1.82% 7.68% 2.80% 2.24% 2.03%
4-bit 0.99% 2.39% 2.05% 1.85% 1.79% 15.82% 3.36% 2.08% 1.80%

4. EXPERIMENTAL RESULTS OF NEURAL NET-
WORK COMPARISON

In this section, we use RBM classifier implemented by
stochastic computing with a configuration of 784-500-1000-
10. The MNIST handwritten digit image dataset [22] is used
as input images, which consists of 70,000 data. Among the
images, 60,000 images are training data and the rest 10,000
data are used for testing stochastic and conventional neural
networks. All weights and coefficients of neural networks are
first fully trained and then retrained.

4.1. Recognition Error Rates

First, we compared error rates of our stochastic imple-
mentation with previous stochastic methods and deterministic
RBM implementation. In the stochastic implementation, we
compared our work with the stochastic method in [20]. The
bit-stream lengths are varied from 16 bits to 128 bits.

As seen in Table II, the quantized binary RBM implementa-
tion obtains recognition error rates quite similar to the conven-
tional binary RBM. For the stochastic RBM comparisons, our
method obtains slightly higher recognition error rates than the
binary implementation. However, compared to the previous
work, our implementation achieves much lower recognition
error rates at shorter bit lengths.

4.2. Hardware Cost

In this section, we focus on hardware cost of different
neural network implementations. We use the design compiler
to synthesis neural networks with FreePDK 45nm library [23]
for the binary and stochastic implementations. The binary
implementation uses 8-bit fixed binary.

First, we compare hardware cost of the conventional LFSR
and our proposed quantized weight generator. As seen in
Table III, our proposed generator has a little lower area and
power compared to the conventional LFSR for producing
different lengths of bit-streams. Thus, our generator does not
introduce any extra overhead in the hardware implementations.

There are mainly two types of implementations in current
stochastic neural networks. One type of stochastic imple-
mentations [7][6] is based on bipolar format. They normally
encode input images and weights as bipolar format bit-streams.
Then, to achieve a neuron including matrix multiplication and
activation function, the bit-streams go into parallel counters
and then go to finite state machines. Finally, outputs of a
neuron keep bipolar format and are matched to next layers.
Another type of stochastic implementations [20] is unipolar
based. Its structure is quite similar to ours. The differences
between our method and other unipolar based implementations
are stochastic matrix multiplication and quantized weight
generator.

TABLE III: Hardware comparison between LFSR and
quantized weight generator

Types of SNGs Area Power
(um2) (uW)

4-bit LFSR 81.7 15.2
5-bit LFSR 100.4 18.7

4-bit quantized weight generator 74.6 14.4
5-bit quantized weight generator 99 17.2

TABLE IV: Hardware comparison between stochastic RBM
with 32-bit length and conventional RBM implementation
with SNGs

Neural networks Area Power Energy
(mm2) (mW) (nJ)

Binary 188.6 14668 73.6
Stochastic Unipolar [20] 5.01 558.8 34.89
Stochastic Bipolar [6][7] 6.86 870.0 107.7

Our work 2.72 123.2 7.44

In hardware implementation, we compare our design with
two previous stochastic methods and binary implementations.
As seen in Table IV, compared to previous stochastic im-
plementations, our architecture obtains about 2.18x, 5.94x,
and 9.58x reduction in terms of area, power and energy,
respectively. This is because our design significantly decreases
the sizes of parallel counters and finally obtains reduction
of hardware cost. Moreover, compared to the binary im-
plementation, our approach with 32-bit length derives about
69x, 119x and 10x less area, power and energy, respectively.
Furthermore, even we increase the bit-length to 128, our
design still has about 2.5x less energy compared to the binary
implementation.

5. CONCLUSION

In this paper, we propose a new stochastic architecture for
quantized neural networks. The quantized neural networks are
retrained by different quantization levels and obtain recog-
nition error rates similar to floating point neural networks.
Then, we propose a new adder called SUC-Adder, which
is capable of summing several product bit streams without
losing precision. The SUC-Adder can reduce the number of
inputs of parallel counters and hence decrease hardware cost of
the whole neural networks. In experimental results, in terms
of area, power and energy, our approach with 32-bit length
derives 2.2x, 6x and 10x reduction compared to previous
stochastic implementations, and obtains 69x, 119x and 10x
less hardware cost compared to the binary implementation
while maintaining slightly higher recognition error rates than
the binary implementation.

6. ACKNOWLEDGMENTS

This work was supported in part by National Science
Foundation grant no. CCF-1408123. Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of the NSF.

REFERENCES

[1] A. R. Omondi and J. C. Rajapakse, FPGA implementations of neural
networks. Springer, 2006, vol. 365.

[2] S. Jung and S. su Kim, “Hardware implementation of a real-time neural
network controller with a dsp and an fpga for nonlinear systems,” IEEE
Transactions on Industrial Electronics, vol. 54, no. 1, pp. 265–271, 2007.

[3] B. R. Gaines et al., “Stochastic computing systems,” Advances in
information systems science, vol. 2, no. 2, pp. 37–172, 1969.

[4] B. Li, M. H. Najafi, and D. J. Lilja, “An fpga implementation of a
restricted boltzmann machine classifier using stochastic bit streams,”
in 2015 IEEE 26th International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE, 2015, pp. 68–69.

[5] B. Li, M. H. Najafi, and D. J. Lilja, “Using stochastic computing to
reduce the hardware requirements for a restricted boltzmann machine
classifier,” in Proceedings of the 2016 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays. ACM, 2016, pp. 36–41.

[6] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic energy-
accuracy trade-off using stochastic computing in deep neural networks,”
in Proceedings of the 53rd Annual Design Automation Conference.
ACM, 2016, p. 124.

[7] Z. Li, A. Ren, J. Li, Q. Qiu, Y. Wang, and B. Yuan, “Dscnn: Hardware-
oriented optimization for stochastic computing based deep convolutional
neural networks,” in Computer Design (ICCD), 2016 IEEE 34th Inter-
national Conference on. IEEE, 2016, pp. 678–681.

[8] J. Li, Z. Yuan, Z. Li, C. Ding, A. Ren, Q. Qiu, J. Draper, and Y. Wang,
“Hardware-driven nonlinear activation for stochastic computing based
deep convolutional neural networks,” arXiv preprint arXiv:1703.04135,
2017.

[9] K. Hwang and W. Sung, “Fixed-point feedforward deep neural network
design using weights+ 1, 0, and- 1,” in Signal Processing Systems (SiPS),
2014 IEEE Workshop on. IEEE, 2014, pp. 1–6.

[10] D. Yu, F. Seide, G. Li, and L. Deng, “Exploiting sparseness in deep
neural networks for large vocabulary speech recognition,” in Acoustics,
Speech and Signal Processing (ICASSP), 2012 IEEE International
Conference on. IEEE, 2012, pp. 4409–4412.

[11] K. Kim, J. Lee, and K. Choi, “An energy-efficient random number
generator for stochastic circuits,” in Design Automation Conference
(ASP-DAC), 2016 21st Asia and South Pacific. IEEE, 2016, pp. 256–
261.

[12] R. Venkatesan, S. Venkataramani, X. Fong, K. Roy, and A. Raghunathan,
“Spintastic: spin-based stochastic logic for energy-efficient computing,”
in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2015. IEEE, 2015, pp. 1575–1578.

[13] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation
on stochastic bit streams digital image processing case studies,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 22,
no. 3, pp. 449–462, 2014.

[14] W. Qian and M. D. Riedel, “Synthesizing logical computation on
stochastic bit streams,” submitted to Communications of the ACM, 2010.

[15] J. A. Dickson, R. D. McLeod, and H. Card, “Stochastic arithmetic
implementations of neural networks with in situ learning,” in Neural
Networks, 1993., IEEE International Conference on. IEEE, 1993, pp.
711–716.

[16] P. Li, D. J. Lilja, W. Qian, M. D. Riedel, and K. Bazargan, “Logical
computation on stochastic bit streams with linear finite state machines,”
IEEE Transactions on Computers, p. 1, 2012.

[17] R. Salakhutdinov and G. Hinton, “Deep boltzmann machines,” in
Artificial Intelligence and Statistics, 2009, pp. 448–455.

[18] M. H. Najafi, S. Jamali-Zavareh, D. J. Lilja, M. D. Riedel, K. Bazargan,
and R. Harjani, “Time-encoded values for highly efficient stochastic
circuits,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 5, pp. 1644–1657, 2017.

[19] D. Jenson and M. Riedel, “A deterministic approach to stochastic
computation,” in Computer-Aided Design (ICCAD), 2016 IEEE/ACM
International Conference on. IEEE, 2016, pp. 1–8.

[20] V. T. Lee, A. Alaghi, J. P. Hayes, V. Sathe, and L. Ceze, “Energy-efficient
hybrid stochastic-binary neural networks for near-sensor computing,” in
2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2017, pp. 13–18.

[21] B. Li, Y. Qin, B. Yuan, and D. J. Lilja, “Neural network classifiers using
stochastic computing with a hardware-oriented approximate activation
function,” in 2017 IEEE 35th International Conference on Computer
Design (ICCD). IEEE, 2017, pp. 97–104.

[22] Y. LeCun and C. Cortes, “Mnist handwritten digit database,” AT&T Labs
[Online]. Available: http://yann. lecun. com/exdb/mnist, 2010.

[23] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis,
P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh et al., “Freepdk:
An open-source variation-aware design kit,” in Microelectronic Systems
Education, 2007. MSE’07. IEEE International Conference on. IEEE,
2007, pp. 173–174.

