High Performance Training of Deep Neural
Networks Using Pipelined Hardware Acceleration
and Distributed Memory

Raghav Mehta!, Yuyang Huang?, Mingxi Cheng?, Shrey Bagga*, Nishant Mathur?,

Ji Li*, Jeffrey Draper*, and Shahin Nazarian

4

"Mentor, A Siemens Business, Wilsonville, OR, USA
2Nvidia, Shanghai, China
3Duke University, Durham, NC, USA
4University of Southern California, Los Angeles, CA, USA

Abstract—Recently, Deep Neural Networks (DNNs) have made
unprecedented progress in various tasks. However, there is a
timely need to accelerate the training process in DNNs specifically
for real-time applications that demand high performance, energy
efficiency and compactness. Numerous algorithms have been
proposed to improve the accuracy, however the network training
process is computationally slow. In this paper, we present a
scalable pipelined hardware architecture with distributed mem-
ories for a digital neuron to implement deep neural networks.
We also explore various functions and algorithms as well as
different memory topologies, to optimize the performance of our
training architecture. The power, area, and delay of our proposed
model are evaluated with respect to software implementation.
Experimental results on the MNIST dataset demonstrate that
compared with the software training, our proposed hardware-
based approach for training process achieves 33X runtime re-
duction, 5X power reduction, and nearly 168X energy reduction.
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I. INTRODUCTION

Deep Neural Networks (DNN) have recently advanced to
encompass various areas of problem solving requiring analysis
of large sets of unclassified data [1], [2]. The current trends
in DNN implementation warrants use of a large number of
hidden layers to achieve high accuracy levels that are required
in many applications like image recognition (ILSVRC) [3],
object detection (COCQ), audio detection [4] and natural lan-
guage processing [5]. For example, ResNet can have anywhere
between 34 to 152 hidden layers depending on application [6].
Higher number of hidden layers allows the DNN to extract
large number of features from a complex training dataset
resulting in high accuracy predictions and categorization.

The hidden layers in a DNN comprise of nodes for which
activation values are computed based on partial product of
previous node values, node interconnection edges and activa-
tion function. Nonlinear activation functions, such as rectified
linear unit (ReLU), logistic or sigmoid and hyperbolic tangent,
are commonly used in a DNN [7], [8]. Weights of the
interconnecting edges are assigned during the training phase,

which is then validated and tested. Thus, training a DNN
requires forward propagation of activation values based on
previous node values to arrive at output for each input vector.
The error - difference between expected output and generated
output for each vector - is then back propagated to adjust
edge weights of individual hidden layers [9]. Calculation of
activation value for each node is a dense matrix multiplication
with a series of multiply-accumulate operations. A large
number of such nodes amongst an ever growing number of
hidden layers makes the task of training a neural network
highly computationally intensive and time consuming [10].
The situation worsens for DNN applications requiring frequent
retraining due to changing dataset or efficiency requirements.
This has pushed the capabilities of conventional hardware
like CPUs to their limit leading to unrealistic amounts of
training time, necessitating the use of specialized hardware.
GPUs, are thus, increasingly being used for such applications,
as they are able to effectively exploit very high degree of
parallelism offered by DNNs. Moreover, GPUs offer high
performance through a large number of floating point units
along with high bandwidth on-chip and off-chip memories
designed specifically for DNNs. However, these advancements
have led to high implementation and power consumption costs
as well.

FPGAs can offer low cost and power implementation capa-
bilities. Their reprogrammable nature also makes them suitable
for DNN applications requiring frequent retraining. However,
they are yet to catch up with GPUs in performance terms
due to which their applications for commercial DNN training
and implementation has been quite limited. Off late, FPGAs
have tried to bridge this gap through rapid advancements
in technology, by offering a very high number of floating
point units with high-speed-high-bandwidth memories [11].
However, the re-programmable nature of FPGAs warrants the
need for additional circuitry inherently limiting their capa-
bilities. Thus, use of FPGAs for training of DNNs is ideal
for applications requiring small number of hidden layers and
nodes.

ASICs on the other hand have the capability to offer much
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logic cells as compared to a similar FPGA and by extension a
GPU [11], [12]. ASICs are also highly power and area efficient
due to their application specific nature [13—15]. However, their
use has been limited due to high initial costs of development
and their relative inflexibility to be reconfigured [16], [17].

We therefore, propose an ASIC implementation of a hard-
ware accelerator to expedite the training process of complex
neural nets. This can allow widespread adoption of cognitive
systems and deep learning on smaller platforms. ASICs can
also be configured to have a customized distributed memory to
allow high-speed-high-bandwidth memory access eliminating
the threat of memory bottleneck.

Without any loss of generality, we present the ASIC designs
of basic operations for the backpropagation training algorithm,
which is the most popular training algorithm proposed by
Rumelhart for DNN [9]. Then the entire accelerator is imple-
mented with the gradient descent for training a general mul-
tilayer feed forward neural network. A customized distributed
memory architecture is also proposed for this accelerator to
assist in fast training of neuron by providing a high-speed-
high-bandwidth memory structure. We have confirmed the
high efficiency of our accelerator architecture for training
purposes, by evaluating its hardware costs as well in addition
to its performance on a small customized network as well as
a classic medium-sized DNN. We also analyze the memory
bandwidth requirements of such a hardware and analyze the
performance of our proposed memory architecture in meeting
those requirements.

The contribution of this work is twofold. First, we design
three essential blocks in HDL for basic operations in DNN
training with high accuracy, including forward propagation,
backpropagation, and gradient descent. These blocks enable
fast on-the-fly incremental learning of each neuron. Second,
the proposed hardware accelerator for fast training is evaluated
on a customized network for distinguishing a particular color
in an RGB color configuration, and also on a DNN for the
MNIST dataset for fast analysis [18]. The proposed design
significantly speeds up the training process with reduced power
and energy compared with software training on a general
processor. Memory bandwidth limitations have been overcome
through a layered memory architecture that employs dis-
tributed memory architecture for training DNN. Additionally,
the proposed memory organization is both fast and scalable.

Experimental results on the MNIST dataset demonstrate that
our proposed hardware-based approach achieves 33X runtime
reduction, 5X power reduction, and 168X energy reduction,
compared with software training.

II. RELATED WORKS

Recently, DNNs have pushed Artificial Intelligence (AI)
limits in a wide range of tasks [19]. Today’s DNNs are
almost exclusively trained on many very fast and power-
hungry Graphic Processing Units (GPUs) [20], but the soft-
ware training is not efficient for a large sized network because
of the exponential increase in the training time.

With the powerful parallelism capability of DNNs, the ASIC
approach offers a viable solution to this computationally inten-
sive process. Hence, the recent focus has been the development
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Fig. 1. A single layer neural network with five inputs, one bias unit (b = 1)
and a single output.
of hardware-based DNNs to build efficient adaptive systems.
There are lots of ongoing research on hardware friendly
classifiers and optimization of machine learning algorithms.
Some of the most noticeable recent works are DaDianNao
[16], Eyeriss [21], and EIE [22]. The DianNao accelerator is
used for the fast and low-energy execution of the inference of
large CNNs and DNNs in a small form factor [16]. Eyeriss pro-
vides several key improvements for inference in convolutional
neural networks [21]. The EIE, an energy-efficient engine is
optimized to operate on compressed deep neural networks and
accelerated the resulting sparse matrix-vector multiplication
with weight sharing. EIE is shown to significantly reduce the
energy compared to GPUs [22]. Authors in [23] attempt to
implement an independent component analysis algorithm that
tracks changes in inputs for creation, training and deployment
of machine learning models on hardware (FPGA) which offers
considerably higher throughput.

However, none of the aforementioned works have focused
on accelerating the training process of DNN using the ASIC
approach.

III. PROPOSED ACCELERATION FOR FAST TRAINING IN
NEURAL NETWORKS

A. Background of Neural Network Training

We adopt a typical artificial neural network which consists
of interconnected computing units which display features of
biological network to accomplish a pattern recognition task
[24]. Each unit has N inputs, weights for each input and
computes a weighted sum to produce an output. These output
values and external inputs determine the activation and output
of the next cell in the network. Figure 1 shows a single layer
network with five inputs and one bias which results in one
output.

Forward Propagation for Activation: We consider a
neural network with L Layers with zy as the input vector,
x7, and h denotes the actual and predicted vector, respectively
[25]. We use sigmoid activation function, which takes the
weighted inputs and restricts them in continuous range of
values between O and 1. From 0 representing no firing to 1
being fully saturated firing [26].

Backpropagation Training: The backpropagation algo-
rithm makes use of the concept of gradient descent to calculate
minimum of error function in weights and optimize the weight
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Fig. 2. ALU replicated for a neural network layer

of the network iteratively [27]. The largest loss function weight
contribution is then determined and gradient descent is used
to change the direction towards minimum loss path. Finally,
the activation functions are updated as part of forward trace
again and the process is continued for each batch to achieve
the actual output with minimum error.

B. Proposed Neuron Accelerator Design

We first implement a fully digital HDL hardware of a
scalable neural network accelerator and explore complication
that the hardware implementation acknowledges compared to
software in the training process and time. In the Section
IV.A we implement, optimize and examine the productivity
of a single neuron. In Section IV.B we explain our proposed
memory architecture customized to offer maximum memory
bandwidth to forward and backward units during training
phase. In Section IV.C we explain how to connect neurons
to a DNN using an example DNN that distinguishes a color
component in an RGB pixel.

To analyze the efficacy of our approach, a simple neural
network was chosen that contains an input layer, two hidden
layers and an output layer. The input and hidden layers consists
of three neurons each and the output layer consists of a single
neuron.

The digital neuron design is composed of three blocks,
the first being forward propagation, followed by backward
propagation and finally gradient descent. Each of these blocks
are considered as separate modules in HDL and integrated to
perform functionality for a neuron.

The floating point arithmetic unit has been pipelined to
ensure fixed latency outputs. We have used 32-bit IEEE 754
floating point standard in forward propagation and backprop-
agation algorithms.

Figure 2 shows architecture design of the ALU considered
for neurons in one layer.

1) Forward Unit: We first implemented a fully digital
neuron with ability to compute activation. For this activation
function, we perform a sigmoid operation for linear regression.
For hardware implementation a near approximation of the
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Fig. 3. Sigmoid functions and alternative activation functions

sigmoid function is considered and scaled accordingly. Note
that the design can be applied to other activation functions as
well.

From the several options for sigmoid we chose the above
since it was implementable and works well when synthesized.
Figure 3 shows a different sigmoid that we considered for our
design.

We build a tailored design and instruction set to operate
in pipeline mode with dedicated 32 bit IEEE 754 single-
precision floating-point adders and multipliers for forward,
backpropagation and gradient calculations. Each node com-
ponents include a control unit, interfaces and ALU units for
calculation of activation. The ALU is pipelined to produce 1
result per clock.

2) Backpropagation Unit: This unit is the most com-
plex module of the hardware structure that implements the
backpropagation algorithm for training process and produces
results for the next module. It provides the ability to back
propagate and calculate § error on scalable inputs and compute
derivative of cost function. In order to save area, the forward
unit makes use of the same ALU along with some additional
control signals. This module contains separate sub-modules
that compute different functions in pipelined stages. Using
actual output, the first submodule computes the ¢ for the last
layer such that § is the difference between activation of its own
compute in forward unit and the actual output. This process is
repeated for each neuron in the network. The next submodule
calculates Al i.e is the sum of product of activation and 6.

AL = AL 4 a5 (1)

where ¢ denotes iteration for node j in layer [. The last
submodule computes the partial derivative of the cost function
which is very much dependent on the sum of product Al and
the number of training iterations m for the training process.
3) Gradient Descent Unit: This module also uses the ALU
architecture and updates the weights of the network using cost
function and learning rate . As expected, with large o equal
to 0.1, the training process is faster but the swing between
0 and 1 is very small. While with smaller value of o equal



to 0.01 the descent is slower but the accuracy and swing are
higher.

C. Distributed Memory System

A distributed memory architecture based on frequency of
data access and bandwidth requirements is proposed. A mem-
ory that utilizes a layered structure to provide a small and fast
scratch memory with multiple access ports is envisaged.

We, therefore, propose a Synchronous Dynamic Random
Access Memory (SDRAM) to store large number of training
vectors and a Static Random Access Memory (SRAM) for
storage of weights and intermediate results [28] [29].

The SRAM is sized according to the cumulative memory
requirement based on training weights and calculation re-
sults including loss function for each layer. This provides a
low latency memory access during training phase. The main
SDRAM is sized as a shared memory amongst all DNN layers
to store all training vectors for data processing during testing
and validation stages. This memory structure increases the
overall available memory bandwidth during training phase
providing significant advantages as compared to a generic
CPU.

We have two kinds of memory accesses: (i) DNN to SRAM
(i) SRAM to SDRAM

Access time is optimized in the proposed memory architec-
ture by parallelizing the two types of memory accesses. For
instance, lets consider a base case where 10,000 (say) training
vectors are in SDRAM and 256 training vectors stored in our
SRAM. At the end of completion of 64 vectors, as we begin
to process the 65th vector, our multi ported SRAM would
swap out the previously used 64 training vectors with new
vectors from SDRAM cache. With a conservative estimate that
SRAM is twice as fast as SDRAM, by the time 192 vectors
would have been processed, 64 new vectors would have been
swapped in. This overlapping of memory accesses can lead to
significant reductions in memory bandwidth requirements.

Moreover, with a memory requirement of less than 1kB per
neuron, the proposed memory model is highly scalable. This
is especially suited for DNN applications where a couple of
hundred to a few thousand neurons are anticipated for any real
world application.

D. Training the Proposed Accelerator

Here, we explain how to connect each neurons to a DNN
using a small network example. We consider a network shown
in Figure 4 having two hidden layers with each neurons
implemented as logic circuits. With each neuron having the
ability to forward propagate and back propagate we connect
the dots through the weights. The complete system is coded in
hardware descriptive language and evaluated based on ASIC
synthesis. Based on the operation defined by the control
unit all the nodes in each layer process their functions in
parallel. All the modules are connected using the interfaces and
communicate based on the acknowledgments. This approach
can be used in embedded applications to provide both low
energy and faster training.

During the forward trace, the activation a is calculated for
all the nodes in first layer and an acknowledgment is sent to the

Fig. 4. Network architecture of a multi-layer neural network (Two hidden
layers with three neurons, one output layer with one neuron and three input
units)

next layer to start computation. The acknowledgment is passed
until first hypothesis is computed. Following the forward trace,
0 error is calculated for each neuron in all hidden layers in
parallel while back propagating from the last layer towards
the first. Each hardware neuron performs multiplication of
inputs and synapses, addition of all the products and saves
the § error value in the memory. This is done for m iterations
corresponding to m training sets in a batch of size b. It is
observed that pipelined architecture improves the performance
by 60% as compared to non-pipelined.

50 = (OMT 50D o0k (1 — a®) )

where 6 represents the feature or the weight, a is the activation
function, and / represents computation for a particular layer.

Considering S; units in layer /, the inputs 6! is sized (S;+1)
by S;i1, 6t is sized Sy by 1, a' is sized (S;+1) by
1 and the output error for layer [ i.e. &' is sized (S;+1)
by 1. After each iteration of nearly 250 clocks the final
accumulated output stored in the memory can be used as a
part of computing the gradient of the error function.

IV. EXPERIMENTAL RESULTS

To compare the efficiency of our hardware accelerator
for training, we have used the 45nm NanGate Open Cell
Library [30] and Synopsys Design Compiler to synthesize
our architecture. We have also implemented the corresponding
neural networks for each experiment, also in software utilizing
TensorFlow [31], and run the Python implementation on a 12-
core 2.66GHz Intel i7 CPU with 8GB memory.

To increase the accuracy of comparisons, we have used
three methods of power/energy measurement for the software,
namely, (i) Intel Power Gadget [32] calculation, (ii) system
profile measurement, and (iii) Thermal Design Power (TDP)
[33] estimation. More precisely, the first method, based on
Intel Power Gadget [32], monitors the real-time power con-
sumption of the computer in the idle mode and also while
training using TensorFlow and reports the difference, which
would be the power consumption of the DNN training. The
second method retrieves the system power profile for the idle
mode and also the average power during training and reports



the difference. The TDP method also reports the difference of
power for the idle mode and the training duration.

In order to compare the performance of hardware and
software-based approach, we conduct three experiments: (i)
single neuron evaluation, (ii) small network evaluation, and
(iii) practical large-scale network evaluation based on MNIST,
in Section IV-A, Section IV-B, and Section IV-C, respectively.

Lastly, our proposed distributed memory system and unified
memory system for a small neural network was estimated
using cacti tool.

A. Single Neuron Evaluation

This experiment evaluates the architecture of a single neuron
for area, time and power consumption. There are two ways to
implement the sigmoid function: (i) using a separate ALU unit
that shows accuracy up to 7-th decimal place, and (ii) using
lookup table (LUT) that nearly approximates the output. As
expected the first implementation consumes much more time,
with nearly 3.5x of the clock cycles compared to the look up
table implementation. Therefore, we adopt the LUT approach
to implement sigmoid function.

The relation between the scaled inputs and the number of
clocks required for a single neuron that performs forward
trace, backpropagation and gradient calculation is shown in
Table 1. The complete area is reported to be 51171.5 nm?2.
Total dynamic power of this neuron is 4.47 mW, whereas
cell leakage power is 269.36 V.

TABLE I
CLOCK ANALYSIS FOR A SINGLE HARDWARE NEURON
No. of Inputs [ 2 4 8 16 32 64 128

No. of Clock Cycles | 152 225 368 661 1,192 2325 4,647

The synthesized neuron requires a 4ns clock and so a
two-input cell takes 0.61ms for one iteration while software
implementation for a neuron takes 15.5ms. Figure 5 illustrates
the significant duration differences between the software and
our proposed hardware implementations.
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Fig. 5. Time duration of one iteration for one neuron, as a function of number
of inputs

B. Small Network Evaluation

The network shown in Figure 4 is also synthesized and
reports an area of 248.44um?. Total dynamic power of this
network is 23.88mW and cell leakage power is 1.31mW.
The two input network is evaluated using simple data set
to examine the output to be red or not red, considering the
average of blue and green as the other input. We evaluated two

TABLE II
RESULT OF NETWORK 784-100-100-10 WITH LEARNING RATE 0.005
Accuracy Resource Usage

Input Train Validation Test Time/min | Power/W | Energy/Wh
100000 0.9983 0.9740 0.9720 3.60 29 £2 1.7400
200000 0.9988 0.9782 0.9748 7.19 29 £2 3.4752
300000 0.9996 0.9762 0.9755 10.76 29 £2 5.1572
400000 1.0000 0.9776 0.9778 14.97 29 £2 7.2355
500000 1.0000 0.9790 0.9788 18.18 29 £2 8.7870

synthesized versions with 4ns clock, one with lookup table
sigmoid and other using 32-bit IEEE floating-point ALU. The
network was trained with a set of 6000 examples and tested
on 1000 examples. It took 10.6 ms to train and 1.7 ms to test
the LUT based network. For the ALU based sigmoid network,
it took 35.4 ms to train and 5.9 ms to test.

The same network is modeled and implemented in software
and evaluated for the same data set to examine red and not
red. It takes 22s to train and 2.4s to test the considered data
set, which means our ASIC implementation would speed up
the process of training by a factor of 1000.

The total access time for one iteration in case of unified
memory system was 52.82ns and for distributed memory
system was 18.42ns. This shows that our proposed memory
architecture is 2.9 times faster. However, the average read
power consumption was slightly increased from 14.01mW to
18.1TmW

C. Practical Large-Scale Network Evaluation using MNIST
Dataset

We extrapolate the conditions and calculate the area, time
and power consumption of the network having configuration
784-100-100-10 for the MNIST dataset [18]. The MNIST data
set consists of 28 x 28 digit images classified into digits O
to 9 with 60,000 examples for training and 10,000 examples
on testing, nearly 10x times the data we considered for our
basic model in Section IV-B. Since the inputs are 28 x 28,
we consider 784 inputs cells, and 100 fully connected cells in
each of the two hidden layers and finally 10 output cells to
determine digit from O - 9. Note that this DNN architecture is
also used in the experiments in [17].

For the software implementation, the DNN is trained with
a different amount of training data and the learning rate is
varied in the range of 0.0001 to 0.01. The corresponding
test accuracy under different conditions is shown in Figure 6.
Based on the simulations, the Intel Power Gadget and system
profile measurement methods, listed earlier in this section,
produce similar results, whereas the TDP estimation reports
much higher results. In this work, we refer to the lowest
power/energy reported by the three methods as the software
training power/energy consumption. Detailed power usage and
result of network 784-100-100-10 with learning rate 0.005 are
shown in Table II.

As for the hardware implementation, our calculation shows
that it takes 6.43s to train the MNSIT dataset on this practical
hardware with 100,000 inputs, and the area and the total power
are 6493.22mm? and 5.37W, respectively. Hence, compared
with the software training, our hardware accelerator achieves
33X runtime reduction, 5X power reduction, and 168X energy
reduction.
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V. CONCLUSION

We presented an ASIC implementation for accelerating

the

training process for DNNs. A fully digital neuron was

designed, which comprises a forward unit, backpropagation
unit and gradient descent unit, for the forward pass, back-
propagation and gradient descent calculation, respectively. Its
performance was optimized by pipelining the floating point
arithmetic unit and memory bandwidth issues were addressed
using our proposed distributed memory architecture. Next,
multiple neurons were connected to build a small DNN for
a simple task, and finally the neurons were extrapolated for a
standard dataset. We observed that the distributed memory ar-
chitecture is 2.9 times faster but consumes slightly more power
than the unified memory. We examined the trade-off between
ASIC and software implementations in terms of power/energy
performance and training time. Experimental results on the
MNIST dataset with a 784-100-100-10 DNN showed that
our proposed hardware-based approach for training process
achieves 33X runtime reduction, 5X power reduction, and
168X energy reduction, as compared to the software training.
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