
Deep Neural Network Acceleration Framework
Under Hardware Uncertainty

Mohsen Imani, Pushen Wang, and Tajana Rosing
Computer Science and Engineering, UC San Diego, La Jolla, CA 92093, USA

{moimani, puw001, tajana}@ucsd.edu

Abstract—Deep Neural Networks (DNNs) are known as ef-
fective model to perform cognitive tasks. However, DNNs are
computationally expensive in both train and inference modes as
they require the precision of floating point operations. Although,
several prior work proposed approximate hardware to accelerate
DNNs inference, they have not considered the impact of training
on accuracy. In this paper, we propose a general framework
called FramNN , which adjusts DNN training model to make
it appropriate for underlying hardware. To accelerate training
FramNN applies adaptive approximation which dynamically
changes the level of hardware approximation depending on the
DNN error rate. We test the efficiency of the proposed design
over six popular DNN applications. Our evaluation shows that
in inference, our design can achieve 1.9× energy efficiency
improvement and 1.7× speedup while ensuring less than 1%
quality loss. Similarly, in training mode FramNN can achieve
5.0× energy-delay product improvement as compared to baseline
AMD GPU.

I. INTRODUCTION

Deep neural networks (DNNs) have been shown a great
opportunity to be used in different domains including, natural
language processing, computer vision, voice recognition, and
health care, and manufacturing [1]–[4]. Although accuracy
is an important metric in DNN, in real world the energy
efficiency and performance are becoming more important
metrics, as many DNN applications want to run on embedded
devices with limited resources [4]–[8]. In recent years, growth
in the number of smart devices significantly increases the
rate of data generation over the world. This increases the
demands on machine learning algorithms to preprocess such
large data [9], [10]. Learning algorithms usually run on a
cloud, since embedded devices do not have enough resources
and battery to process costly algorithms. However, it is more
efficient, secure and cost effective to run machine learning
algorithms on processing edges.

Approximate computing is an efficient way to reduce the
cost of computation, by trading efficiency with accuracy.
Machine learning applications are stochastic in heart, thus
they accept a part of inaccuracy in the computation [11]–
[19]. Floating point multipliers are the most computationally
expensive units in neural networks [20]–[22]. Prior work used
approximate hardware to accelerate DNNs on CPU, GPU or
FPGA [23], [24]. The goal of approximate hardware is to
provide minimum quality loss while maximizing the efficiency.
However, DNNs working on real world data are usually
sensitive to approximation. Thus, the hardware cannot benefit
from the efficiency that comes from deep approximation.

In this paper, we proposed a novel general framework, called
FramNN , which enables DNNs to run on hardware with
deep approximation while providing good enough accuracy.
FramNN works for any approximate hardware and adapts

DNN training models to make it appropriate for underlying
hardware. Our design modifies the trained DNN model based
on the constraints of an approximate hardware in order to
minimize the impact of approximation on DNN accuracy.
To accelerate training, we proposed adaptive approximation
technique which dynamically changes the level of hardware
approximation, depending on the neural network error rate.
This technique significantly reduces the average time that hard-
ware work on deep approximation, while providing minimum
impact on accuracy. We test the efficiency of the proposed
design on six popular DNN applications. Our evaluation
shows that in inference, our design can achieve 1.9× energy
efficiency improvement and 1.7× speedup while ensuring less
than 1% quality loss. Similarly, in training mode, FramNN can
achieve 5.0× energy-delay product improvement as compared
to precise GPU.

II. RELATED WORK

Neural networks can be adapted to run on a wide variety
of hardware, including: CPU, general purpose GPU (GPGPU),
FPGA, and ASIC chips [23], [25], [26]. As DNNs benefit from
parallelism, significant efforts have been dedicated to utilizing
multiple cores. On GPGPUs, neural networks get up to two
orders of magnitude performance improvement as compared
to CPU implementations.

Prior works attempted to leverage the stochastic properties
of DNNs in order to improve efficiency while relaxing the
computation [23], [24]. As shown in [24], implementing
neural networks in fixed-point quantized numbers improves
performance. Similarly, Lin et al. [27] examined the use of
trained binary parameters in order to avoid multiplication.
Work in [20] also tried to model multiplication in neural
neural using a lookup table. However, not all neural network
applications can benefit from this approach. Several other
designs tried to propose a new computing blocks such as
approximate adder, multiplier and multiply-accumulator in
order to accelerate the neural network computation. However,
all these designs apply approximation on inference while the
networks still train on exact hardware. Many applications can-
not benefit from this way of approximation, as their accuracy
significantly drops over unseen inference data.

Unlike these work, our design adapts the neural network
model such that approximation results in minimum loss in
quality for any approximate hardware. Our design also uses
full floating point precision in training, giving it more flexi-
bility when needed.

Han et al. [28], [29] investigated the use of model com-
pression in DNNs. They trained sparse models with shared
weights to compress the modelet al. [28]. The compressed

978-1-5386-1214-9/18/$31.00 ©2018 IEEE 389 19th Int'l Symposium on Quality Electronic Design

Convolutions Subsampling Convolutions Subsampling
Fully

connected
Fully

connected

Fig. 1. LeNet-5, a 7 layer convolutional neural network

parameters of [28] are used to design ASIC/FPGA acceler-
ators [29]. Compression fails to improve the implementation
in general purpose processors, which require the compressed
parameters to be decompressed into the original parameters.
Our method is orthogonal to all these previous work, as our
design can further reduce power consumption and execution
time by enabling adaptive training approximation. In addition,
our proposed design uses a general framework to adaptive
neural network model to accelerate neural network inference
on approximate hardware.

III. PROPOSED FRAMNN

A. Neural Network

Figure 1 gives a simple example of Convolutional Neural
Network (CNN), called leNet, which is one of the very first
CNN design. A typical CNN consists of an input layer, an
output layer and multiple hidden layers. CNN may have four
main types of layers:
Convolutional layer: is the most basic and important type of
layers in CNN, and give the name “Convolutional”. It serves
as a filter, extracting some features from the original images
or from the previous feature maps.
Activation function: is as simple as a nonlinear functions,
forcing every pixel to be non-negative, as well as introducing
non-linearity.
Pooling layer: The Pooling layer is used as a process of down
sampling, the primary purpose is to keep the most important
information of the input image and reduce the size at the same
time, thus reducing the computational complexity and avoid
overfitting.
Fully connected layer: is actually a multi layer Perceptron,
and “fully connected” means every neuron in a layer is
connected with every neuron in its previous layer as well as its
next layer. With the softmax activation function in the output
layer as the last one in the fully connected layer, the CNN
finally classify the image with the features extracted before.

In the execution process, given input image, the CNN
outputs the probability of each class and associates the image
with the label with maximum probability. And the training
process is the process for the CNN to learn form those input
images and adaptively change its parameters in each layer.
Training the CNN is actually an optimization problem, and
one approach is to iteratively change the weights to minimize
the errors with gradient decent. Our goal is to come up with a
framework which accelerates neural networks in both training
and testing phases, by running them on approximate hardware.
Our framework tries to adapt neural network model such that
the approximation can have minimum impact on the neural
network accuracy.

8−bits 12−bits 16−bits 20−bits 24−bits
0

4

8

12

16

Hardware Bit−Width

Q
u

a
li

ty
 L

o
ss

 (
%

)

MNIST: Handwriting

ISOLET: Speech Recognition

CIFAR−10: Object Detection

PASCAL: Virtual Object Classes

Fig. 2. Quality loss of different DNN applications in different level of
hardware approximation.

B. Inference Acceleration on Approximate Hardware

Multiplication is the most expensive neural network com-
putation in inference. There are several designs came up with
the new multiplier and multiplier-accumulator to accelerate
neural network’s inference [23], [30], [31]. However, it seems
unreasonable to approximate hardware without modifying the
training mode. Although several work tried to show this
possibility, our evaluation indicates that the advantage coming
from approximation is low.

Let’s consider an example of approximate hardware where
the multiplications bit-width can change (e.g. using 16-bits
multiplier instead of 32-bits). We use such hardware to test
the classification accuracy of neural networks running on four
popular datasets, MNIST: a handwriting image [32], ISOLET:
speech recognition [33], CIFAR-10: object detection [34]
and PASCAL: virtual object classes [35]. The configuration
of networks running these datasets are listed in Table III.
Figure 2 shows the classification accuracy of two networks
when the bit-width of multiplier varies from 8-bit to full range
(24-bits) in inference. We observed that MNIST can almost
achieve maximum accuracy even using 8-bits multiplier. How-
ever, working on more complicated datasets such as CIFAR-
10 or PASCAL, the network has much higher sensitivity
to approximation. For CIFAR-10 and PASCAL datasets, the
classification accuracy drops by 13.2% and 15.7% when the
bit-width scales to 24 and 16 bits respectively.

Looking closely at DNN functionality, we observed that
the network in inference works closely as it is trained for.
Therefore, any uncertainty or approximation in hardware in
train mode can impact on the inference accuracy. In fact,
approximation in inference can significantly decrease the
accuracy of DNN, since the network has not been trained
for. Considering the above examples, when DNN trains on
exact hardware, it is not appropriate to use such trained model
to run DNN inference on approximate hardware. This could
significantly increase the network inaccuracy since the trained
model is not adapted to work under such hardware uncertainty.

For a certain convolutional layer l, the input comes from
the output of previous layer l − 1. Assume the input is an
n×n image, and each pixel denoted by yl−1

i j . The outputs are
k feature maps, each is the convolution on the input image and
a filter (or to say kernel), denoted by matrix wl

m×m. The size

of each output feature maps(denoted by xl
i j) will be n−m+1.

xl
i j =

m−1

∑
a=0

m−1

∑
b=0

wl
abyl−1

i+a, j+b (1)

Just like the parameters in the multi-layer perceptron, let
wl

ji denotes the weight from the ith neuron in the l-1th layer
to the jth neuron in the lth layer and bl is the offset parameter.
Then, if the input of lth is xl

i , we have

xl
j = σ

(
∑

i
w jixl−1

i +bl
j

)
(2)

in which σ(·) is the activation function, and one of the most
common activation function is the sigmoid function or the
softmax function (for output layer). The purpose of back-
propagation is to propagate the error from the output layer
to the first layer, then update the weights layer by layer to
minimize the total classification error.

We propose a novel framework, called FramNN , which
adapts DNN training model such that the approximate hard-
ware can have maximum benefit form that. FramNN pro-
poses a general technique that works for any hardware under
approximation and generates a trained model which better
matches with the underlying hardware. The input of FramNN
can be a non-trained DNN or trained DNN model. Our
framework modifies that model and generates a new model
which perfectly matches with approximate hardware. There are
multiple ways for adapt new model for approximate hardware
as listed below:

First approach: The first approach is to train DNN on the
same approximate hardware which the inference is going to
run on. For example, if we plan to use a hardware which has 8-
bits multiplier, this approach trains DNN on the hardware with
the same approximation. In that case the network has been
trained and tested with the same constraints, thus it likely to
provide higher accuracy in inference. Although this idea works
over a few networks, it has the following disadvantages: (i)
it provides very low accuracy over the complicated datasets
which require to train using high precision hardware. (ii) It
does not allow the hardware to run on deep approximation.
To improve the accuracy of this approach, we can train
the network on exact mode and then adjust the weights by
validating the model over a part of training dataset. This
technique provides slightly better accuracy than the first tech-
nique, because as we explained, DNNs train based on gradient
descent equations which requires full floating point precision
in order to work with very small values. In addition, adjusting
model on approximate hardware slightly changes the weights
and make the model appropriate for approximate hardware.

Second approach: we propose which adapts training model
by looking more insight the training procedure. Training
consists of two phases: feed-forward and back-propagation. In
feed-forward, a training data loads to the network and gener-
ates an output based on the current model/weights. Depending
on the error in output layer, the network changes the network
weights layer by layer in back-propagating using gradient
descent equations. The goal of back-propagation is to train
the network to minimize fee-forward error at next iterations.
Therefore, in order to achieve maximum training accuracy,
the hardware uncertainty should be modeled on feed-forward

TABLE I
DNN CLASSIFICATION ACCURACY RUNNING ON EXACT AND

APPROXIMATE HARDWARE (16-BIT INFERENCE APPROXIMATION).

MNIST ISOLET HAR CIFAR-10 CIFAR-100 PASCAL
Exact 98.5% 96.4% 98.3% 85.6% 70.6% 57.7%

Approx.Training 96.8% 93.7% 96.6% 80.9% 65.2% 51.0%
FramNN 98.5% 95.4% 97.8% 84.0% 68.7% 55.5%

step. Therefore, there should be no approximation on back-
propagation step as this step (i) tries to find the best weights
for a hardware which runs feed forward. (ii) it works with
small values and requires floating point precision for proper
training. Thus, we need to model inference approximation on
feed-forward step, while back-propagation works in precise
hardware. This technique does not compromise the precision
that gradient decedent equations require, while provides the
model that approximate hardware in inference can enjoy that.

Table I shows the classification accuracy of different DNN
structures running on exact and approximate hardware over
six popular DNN applications. The details of datasets and
networks are explained in Section V-A. In approximate mode,
the classification accuracy has been calculated using approx-
imate training and proposed FramNN . As we explained, the
first approach trains and tests the networks on approximate
hardware with 16-bit multiplier. While FramNN trains the
networks when the feed forward layer runs on approximate
hardware with the same level of approximation. The results
indicates that FramNN always outperforms the accuracy of
approximate training over all tested datasets. Our evaluation
also indicates that FramNN can achieve 2.6% (up to 45%)
higher classification accuracy as compared to approximate
training over all datasets. In Section V, we will show how this
accuracy can significantly improve by adjusting the hardware
approximation in training mode.

IV. OPTIMAL TRAINING

There are crucial need to train DNNs on embedded devices.
DNNs are trained based on gradient descent equations. We
observe that DNNs accuracy changes significantly during
training mode. In first training iterations, the DNNs show large
error rate. This error reduces during a training such that in a
final training iterations the algorithm converges. This training
procedure takes significant time and energy of the process. In
order to enable approximate training, the approximation needs
to be applied on a training portion which has minimum impact
on accuracy.

We use an approximate floating point multiplier which can
dynamically change the level of approximation. This multiplier
adds exponential part of two input value, but instead of
multiplying full rang (N-bits) mantissa together, it multiplies
a first m-bits of two mantissas. This multiplier can dynam-
ically changes the number of effective mantissa bits. Our
design exploits this adaptive hardware to change the level
of approximation in training and improve training efficiency
while providing the maximum accuracy. Intuitively, at very
beginning, we would like to train the model very “roughly”,
or to say most approximately to cut power consumption and
speedup the training procedure. This approximation will have
less impact on final DNNs accuracy, since in this mode the
network has large error by itself, and the error added by
approximation does not significantly impact on DNN accuracy.

TABLE II
EDP IMPROVEMENT AND ACCURACY OF DIFFERENT APPLICATIONS

TRAINING ON EXACT AND APPROXIMATE HARDWARE WITH UNIFORM AND
LINEAR APPROXIMATION (N=16).

MNIST ISOLET HAR CIFAR-10 CIFAR-100 PASCAL

Uniform Accuracy 0.3% 0.7% 0.8% 1.7% 4.7% 4.1%
EDP 3.4× 2.0× 3.6× 2.7× 2.4× 1.9×

Linear Accuracy 1.4% 1.9% 2.9% 4.4% 13.5% 11.6%
EDP 6.1× 4.4× 4.8× 4.0× 3.2× 2.7×

At the end of training process, we want more precise training
with less bits to mask, at the cost of efficiency, because any
error in that iterations, the weight are already adjusted and
adding extra error can impact on DNN accuracy. There is a
trade-off between the accuracy and power, and the key is to
find a way to adaptively change the number of bits to mask to
find a balance between them. One approach is to change the
level of hardware approximation linearly such that the training
starts with maximum approximation and reduce the level of
approximation linearly until the training ends in exact mode.
Table II lists the accuracy and efficiency of our design when
it trains on the exact and approximate hardware. For approxi-
mation, we have a hardware which applies uniform and linear
approximation during a training. The uniform approximation
fixes the level of hardware approximation during training. Our
evaluation shows that linear training approximation can result
in average 3.9% (up to 7.4%) higher classification accuracy
than uniform approximation, while achieving a similar training
efficiency.

However, linearly changing the approximation cannot op-
timally trade accuracy and efficiency. In this paper, we de-
sign a novel adaptive strategy which optimally changes the
approximation depending on the criterion we define. One of
criterion can be minimizing the energy-delay product given
the total number of epochs of the training. Let pi be the
power of the system, when i bits mask put on the results
of the multiplication, the corresponding number of iterations
is denoted as ti, and let T = ∑Ti as the total number of
iterations or epochs. Then the problem can be formulated as
the following optimization problem:

max ∑ pit2
i

s.t. ∑ ti = T

With Lagrange multiplier, let

L(ti;λ) = ∑ pit2
i +λ (∑ ti−T)

Then calculate the gradient:

∇tiL(ti;λ) = 2piti +λ = 0

∀i, piti = constant C

And then, ti =
T

pi ∑
1
pi

, that means after training with i bits

to mask for ti iterations, we should switch to t − i bits and
training for ti−1 iterations until i = 0. This algorithm gives us
the iteration that the hardware approximation needs to change
in order to maximum EDP, while maximizing the accuracy. In
Section V, we will show the impact of proposed FramNN on
the neural network accuracy and efficiency.

TABLE III
DNN MODELS AND BASELINE ERROR RATES FOR SIX APPLICATIONS.

Dataset Network Topology Error
MNIST 784, 512, 512, 10 1.5%
ISOLET 617, 512, 512, 26 3.6%

HAR 561, 512, 512, 19 1.7%
CIFAR-10 Conv32×32×3,Conv32×3×3,Pool2×2,

Conv64×3×3,Conv64×3×3,512, 10 (100)
14.4%

CIFAR-100 42.3%

PASCAL Conv32×32×3,Conv32×3×3,Pool2×2,
Conv64×3×3,Conv64×3×3, 512,1024, 1024, 20 29.4%

V. RESULTS

A. Experimental Setup

We integrate configurable FPUs on the AMD Southern Is-
land GPU, Radeon HD 7970 device, a recent GPU architecture
with 2048 streaming cores. We use multi2sim, a cycle accu-
rate CPU-GPU simulator for architecture simulation [36] and
change the GPU kernel code to enable configurable floating
point unit approximation in runtime simulation. We use Syn-
opsys Design Compiler to calculate the energy consumption of
the balanced FPUs in GPU architecture in 45-nm ASIC flow.
We perform circuit level simulations to design configurable
FPU using HSPICE simulator in 45-nm TSMC technology.
Neural networks are realized using OpenCL, an industry-
standard programming model for heterogeneous computing.

We tested the efficiency of the FramNN on six popular
machine learning applications. Table III lists the DNN
topologies and baseline error rates for the original models.
Each DNN model is trained using stochastic gradient
descent with momentum [37]. In order to avoid over-fitting,
Dropout [38] is applied to fully-connected layers with a drop
rate of 0.5. In all the DNN topologies, the activation functions
are set to “Rectified Linear Unit” (ReLU), and a “Softmax”
function is applied to the output layer.

Handwritten Image Recognition (MNIST): MNIST is
a popular machine learning data set including images of
handwritten digits [32]. The objective is to classify an input
picture as one of the ten digits {0 . . . 9}.

Voice Recognition (ISOLET): Many mobile applications
require online processing of vocal data. We evaluate lookNN
with the Isolet dataset [33] which consists of speech collected
from 150 speakers. The goal of this task is to classify the vocal
signal to one of the 26 English letters.

Human Activity Recognition (HAR): For this data set,
the objective is to recognize human activity based on 3-axial
linear acceleration and 3-axial angular velocity that have been
captured at a constant rate of 50Hz [39].

CIFAR-10 and CIFAR-100: CIFAR-10 dataset involves
classification of different objects [34]. This dataset consists of
60000 32x32 colour images in 10 classes, with 6000 images
per class. Dataset is divided into five training batches and
test batch contains 1000 randomly-selected images from each
class.

PASCAL: Pascal vitual object classes provides standardized
image datasets for object class recognition [35]. This dataset
contains 20 classes. The train and validation data has 11,530
images containing 27,450 ROI annotated objects and 6,929
segmentations.

(a) MNIST (b) ISOLET (c) HAR

(d) CIFAR-10 (f) PASAL VOC(e) CIFAR-100

8-bits 14-bits 18-bits 22-bits 28-bits

Training Approximation (Feedforward)
9-bits 14-bits 18-bits 23-bits 26-bits

Training Approximation (Feedforward)

8-bits 13-bits 18-bits 22-bits 26-bits

Training Approximation (Feedforward)

10-bits 15-bits 18-bits 24-bits 29-bits

Training Approximation (Feedforward)

10-bits 15-bits 19-bits 22-bits 30-bits

Training Approximation (Feedforward)

9-bits 13-bits 18-bits 23-bits 27-bits

Training Approximation (Feedforward)

Fig. 3. Energy efficiency improvement, speedup and accuracy of DNN applications in different inference approximation.

B. Inference Efficiency-Accuracy Trade-off
Our goal is to find the best level of feed-forward ap-

proximation in training, such that the inference provides
maximum accuracy when running on approximate hardware.
Our framework starts applying approximation on the feed-
forward steps. We observed that in all cases the best level of
feed-forward approximation (train mode) is equivalent to the
inference approximation. Figure 3 shows the energy efficiency
improvement, speedup and classification accuracy of different
applications when the inference runs on approximate hard-
ware. We compare our proposed with a conventional technique
when the training performs on exact hardware. The bottom
and top x-axis in Figure 3 show the level of inference and
training approximation (feed-forward) that provide maximum
classification accuracy. Our result shows that FramNN pro-
vides maximum accuracy when the feed-forward is in slightly
deeper approximation than inference. For instance, in order
to work with 16-bits hardware precision, MNIST trains on
hardware with 18-bits approximation.

The result shows that FramNN accuracy outperforms the
accuracy of DNNs training on exact mode. Over MNIST
dataset, FramNN can provide the same accuracy as exact
hardware when it runs on 16-bits multiplier. Similarly, over
CIFAR-100 dataset, our design provides negligible 1.9% qual-
ity loss when it runs on 16-bits multipliers. For the same
configuration, DNNs trained on exact hardware will have 5.4%
error. The result shows that FramNN can achieve on average
1.9× energy efficiency improvement and 1.7× speedup as
compare to DNNs in exact mode, while providing less than
1% quality loss. Similarly, accepting 2% quality loss, this
energy efficiency and speedup increases to 2.4× and 2.0×
respectively.

C. Adaptive Approximate Training
Our design can accelerate training using uniform or adaptive

approximate hardware. In linear approximation the hardware

precision is fixed during the training, while adaptive approach
puts the hardware on deep approximation, then reduces the
level of approximation until the final level. This final approxi-
mation level has impact on the efficiency of adaptive training.
Figure 4 shows energy-delay product (EDP) improvement that
adaptive and uniform approximation can provide when the
final level of approximation changes. The EDP is normalized
to the hardware which trains on exact hardware. In addition,
the quality loss defines as an accuracy difference between the
network running on precise hardware and proposed approx-
imate hardware. Our evaluation shows that our design can
accelerate EDP improvement by 3.6× while still providing
the same accuracy as DNNs running on exact hardware. In
case of accepting 1% and 2% quality loss, EDP improvement
increases to 5.0× (5.8×) respectively. In these configurations,
FramNN EDP improvements are 2.1× and 2.3× higher than
the results that unifrom approximation provides.

VI. CONCLUSION

In this paper we propose two novel techniques to accelerate
neural network computation in both inference and train modes.
Our design exploits the efficiency of hardware in approximate
mode to accelerate DNNs computation with minimal impact
on accuracy. In inference, our proposed framework adjusts
DNN training model to make it appropriate for underlying
hardware. In train mode, we proposed adaptive approximation
technique which dynamically reduces the level of hardware
approximation depending on the neural network error rate.
We test the efficiency of the proposed design on six popular
DNN applications. Our evaluation shows that in inference,
our design can achieve 1.9× energy efficiency improvement
and 1.7× speedup while ensuring less than 1% quality loss.
Similarly, in training mode, FramNN can achieve 5.0×
energy-delay product improvement as compared to precise
GPU.

(d) CIFAR-10 (f) PASAL VOC(e) CIFAR-100

(a) MNIST (b) ISOLET (c) HAR

Fig. 4. Energy efficiency improvement, speedup and accuracy of DNN applications in different inference approximation.

VII. ACKNOWLEDGMENT

This work was supported by NSF grants #1730158 and
#1527034.

REFERENCES

[1] B. Yao et al., “Multifractal analysis of image profiles for the character-
ization and detection of defects in additive manufacturing,” Journal of
Manufacturing Science and Engineering, 2017.

[2] Deng et al., “Recent advances in deep learning for speech research at
microsoft,” in ICASSP, 2013, pp. 8604–8608, IEEE.

[3] Srinivas et al., “Applications of data mining techniques in healthcare
and prediction of heart attacks,” IJCSE, vol. 2, no. 02, pp. 250–255,
2010.

[4] M. Imani et al., “Voicehd: Hyperdimensional computing for efficient
speech recognition,” in ICRC, IEEE.

[5] X. Lei et al., “Accurate and compact large vocabulary speech recognition
on mobile devices,” in Interspeech, vol. 1, 2013.

[6] M. Ghasemzadeh et al., “Resbinnet: Residual binary neural network,”
arXiv preprint arXiv:1711.01243, 2017.

[7] M. Imani et al., “Nngine: Ultra-efficient nearest neighbor accelerator
based on in-memory computing,” in ICRC, IEEE.

[8] Y. Kim et al., “Orchard: Visual object recognition accelerator based on
approximate in-memory processing,” in ICCAD, 2017.

[9] L. L. C. Kasun, H. Zhou, G.-B. Huang, and C. M. Vong, “Representa-
tional learning with elms for big data,” 2013.

[10] M. Imani et al., “Low-power sparse hyperdimensional encoder for
language recognition,” IEEE Design & Test, vol. 34, no. 6, pp. 94–101,
2017.

[11] M. Imani et al., “Resistive configurable associative memory for approx-
imate computing,” in DATE, pp. 1327–1332, IEEE, 2016.

[12] M. Imani et al., “Approximate computing using multiple-access single-
charge associative memory,” TETC, 2016.

[13] M. Imani et al., “Multi-stage tunable approximate search in resistive
associative memory,” TMSCS, 2017.

[14] M. Imani et al., “Masc: Ultra-low energy multiple-access single-charge
tcam for approximate computing,” in DATE, pp. 373–378, IEEE, 2016.

[15] M. Imani et al., “Processing acceleration with resistive memory-based
computation,” in MEMSYS, pp. 208–210, ACM, 2016.

[16] M. Imani et al., “Acam: Approximate computing based on adaptive
associative memory with online learning,” in ISLPED, 2016.

[17] J. Sim et al., “Enabling efficient system design using vertical nanowire
transistor current mode logic,”

[18] M. Imani et al., “Remam: low energy resistive multi-stage associative
memory for energy efficient computing,” in ISQED, pp. 101–106, IEEE,
2016.

[19] M. Imani et al., “Nvalt: Non-volatile approximate lookup table for gpu
acceleration,” Embedded Systems Letters, 2017.

[20] M. S. Razlighi et al., “Looknn: Neural network with no multiplication,”
in DATE, pp. 1775–1780, IEEE, 2017.

[21] M. Imani et al., “Efficient neural network acceleration on gpgpu using
content addressable memory,” in DATE, pp. 1026–1031, IEEE, 2017.

[22] M. Imani et al., “Canna: Neural network acceleration using configurable
approximation on gpgpu,” in ASPDAC, IEEE, 2018.

[23] V. Mrazek et al., “Design of power-efficient approximate multipliers
for approximate artificial neural networks,” in Computer-Aided Design
(ICCAD), 2016 IEEE/ACM International Conference on, pp. 1–7, IEEE,
2016.

[24] D. Lin et al., “Fixed point quantization of deep convolutional networks,”
arXiv preprint arXiv:1511.06393, 2015.

[25] C. Zhang et al., “Caffeine: towards uniformed representation and accel-
eration for deep convolutional neural networks,” in ACM ICCAD, p. 12,
ACM, 2016.

[26] Y. Wang et al., “Deepburning: Automatic generation of fpga-based
learning accelerators for the neural network family,” in IEEE/ACM DAC,
IEEE, 2016.

[27] Z. Lin et al., “Neural networks with few multiplications,” arXiv preprint
arXiv:1510.03009, 2015.

[28] Han et al., “Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding,” CoRR,
abs/1510.00149, vol. 2, 2015.

[29] S. Han et al., “Eie: efficient inference engine on compressed deep neural
network,” arXiv preprint arXiv:1602.01528, 2016.

[30] D. Kim et al., “A power-aware digital multilayer perceptron accelerator
with on-chip training based on approximate computing,” IEEE Transac-
tions on Emerging Topics in Computing, 2017.

[31] S. S. Sarwar et al., “Multiplier-less artificial neurons exploiting error
resiliency for energy-efficient neural computing,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2016, pp. 145–150,
IEEE, 2016.

[32] Y. LeCun et al., “The mnist database of handwritten digits,” 1998.
[33] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/

ISOLET.
[34] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from

tiny images,” 2009.
[35] M. Everingham et al., “The pascal visual object classes (voc) challenge,”

International journal of computer vision, vol. 88, no. 2, pp. 303–338,
2010.

[36] R. Ubal et al., “Multi2sim: a simulation framework for cpu-gpu com-
puting,” in PACT, pp. 335–344, ACM, 2012.

[37] I. Sutskever et al., “On the importance of initialization and momentum
in deep learning.,” ICML (3), vol. 28, pp. 1139–1147, 2013.

[38] N. Srivastava et al., “Dropout: a simple way to prevent neural networks
from overfitting.,” JMLR, vol. 15, no. 1, pp. 1929–1958, 2014.

[39] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/
Human+Activity+Recognition+Using+Smartphones.

