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Abstract—With ever-increasing application of machine learn-
ing models in various domains such as image classification,
speech recognition and synthesis, and health care, designing
efficient hardware for these models has gained a lot of popularity.
While the majority of researches in this area focus on efficient
deployment of machine learning models (a.k.a inference), this
work concentrates on challenges of training these models in
hardware. In particular, this paper presents a high-performance,
scalable, reconfigurable solution for both training and deploy-
ment of different dimensionality reduction models in hardware
by introducing a hardware-friendly algorithm. Compared to
state-of-the-art implementations, our proposed algorithm and
its hardware realization decrease resource consumption by 50%
without any degradation in accuracy.

I. INTRODUCTION

Advancements in developing high-performance hardware
platforms like GPUs have been a significant enabler for
shifting machine learning models, such as neural networks,
from rather theoretical concepts to practical solutions to a
wide variety of problems. For example, different applications
available on smartphones use machine learning models in
order to perform services such as categorizing photos based
on faces present in the picture through face recognition, digital
assistance through speech recognition and synthesis, suggest-
ing similar applications through recommendation systems, and
so forth. While existing hardware platforms like GPUs are
capable of performing these tasks, designing more energy-
efficient and high-performance hardware is crucial in order
to allow pervasive deployment of machine learning models
across different platforms, from data centers to smartphones
and the Internet of Things (IoT) devices.

Even tough there has been a substantial effort to design
accelerators or use alternative methods for efficient deploy-
ment of machine learning models such as convolutional neural
networks [1], the training phase of these models has been over-
looked. One of the difficulties in designing hardware that is
capable of training is that the training phase is typically much
more complicated and computationally expensive compared
to inference. We believe that designing high-performance
and/or energy-efficient hardware for training is of high im-
portance due to several reasons. First, transferring users’ data
to remote servers puts the users’ privacy in danger. Second,
communication latency may affect latency-critical applications
like online control systems. Third, adapting to a changing
environment requires updating model parameters frequently

and may be costly, especially in bandwidth-limited devices.
And lastly, the energy consumption of wireless modules that
need to send/receive data to/from cloud is relatively high [2]. A
suitable hardware for training machine learning models should
operate with high performance, be scalable, and be able to train
various models by exploiting resource sharing and real-time
reconfiguration.

Dimensionality reduction, which is the target machine learn-
ing model in this paper, has several advantages. First, it
removes redundant information from the set of input features,
which typically improves the performance of machine learning
models. Features that are highly correlated or are closely
dependent do not carry much additional information and only
make the model more complicated and computationally expen-
sive. Second, transforming features into a lower-dimensional
space is more suitable from a hardware design point of
view since it leads to a less complex design, less resource
consumption, lower memory usage, and so on.

This work presents a hardware-friendly algorithm for high-
performance, scalable, and reconfigurable training and deploy-
ment of dimensionality reduction models. The main focus of
this work is to deal with scalability issue of existing hardware
implementations for dimensionality reduction while it also
considers reconfigurability in order to use the same hardware
for various dimensionality reduction algorithms. The rest of
this paper is organized as follows. Section II reviews prior
work in designing hardware for dimensionality reduction. Sec-
tion III provides some background information about the effect
of dimensionality reduction on other machine learning models,
explains specific algorithms for dimensionality reduction, and
discusses the scalability issue of existing implementations.
Section IV presents our proposed algorithm for dimensionality
reduction as well as its hardware implementation. Section V
demonstrates experimental results and finally, Section VI con-
cludes the paper.

II. RELATED WORK

One of the most successful attempts at designing an algo-
rithm for scalable dimensionality reduction is random projec-
tion. Random projection is based on the Johnson-Lindenstrauss
lemma [3] and is much simpler than other distance-preserving
algorithms such as PCA (Principal Component Analysis). Ran-
dom projection has been applied to various applications and
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it has been shown that its quality of results are comparable to
other algorithms [4]–[6]. Recently, Fox et al. [7] implemented
random projection in hardware using a simple algorithm that
only requires addition and subtraction. The shortcoming of the
random projection though, is that it only deals with mixture of
Gaussian variables. In other words, it only considers second-
order statistics when transforming data points to a lower-
dimensional space.

In order to consider higher-order statistics (HOS), another
class of algorithms known as ICA (Independent Component
Analysis) [8] is used. Among different algorithms that im-
plement ICA, EASI (Equivariant Adaptive Separation via
Independence) [9] has been one of the most suitable ones from
a hardware implementation standpoint because it only requires
addition and multiplication. EASI includes both training and
inference of a dimensionality reduction model that implements
ICA. Meyer-Baese et al. [10] implement EASI in hardware,
but their work has a few shortcomings. First, the clock
frequency and throughput are very low. Second, the clock fre-
quency decreases by increasing the number of input or output
dimensions. This is a serious problem, especially given the
high dimensionality of datasets in existing machine learning
problems. Nazemi et al. [11] try to address these issues by
defining a new approximation to stochastic gradient descent
algorithm that is suitable for hardware implementation. Their
implementation of EASI using the aforementioned approxima-
tion increases the clock frequency by one order of magnitude
compared to [10] and keeps the clock frequency independent
of input and output dimensions. However, [11] suffers from
poor scalability in that its hardware implementation for four
input dimensions and two output dimensions consume more
than one third of the digital signal processing (DSP) blocks on
their target FPGA platform. In general, the major problem with
PCA and ICA is their high hardware complexity in terms of
adders and multipliers, which limits their scalability to larger
dimensions.

III. PRELIMINARIES

This section demonstrates the effect of dimensionality re-
duction on the accuracy of other machine learning models
and provides background information about some of the di-
mensionality reduction models and scalability issue of existing
hardware implementations. Additionally, it provides a short
mathematical description of the EASI algorithm that is used
later in Section IV for justifying the proposed algorithm.

A. Effect of Dimensionality Reduction on Accuracy

One of the major advantages of dimensionality reduction
is that it decreases both computation and storage complexity.
When a dimensionality reduction algorithm is applied, the
number of input features is reduced and therefore, a smaller
amount of memory is required to store the input features.
Additionally, the machine learning model that follows the
dimensionality reduction model needs to deal with a lower
number of input features, which in turn makes that model less
computationally expensive. Fig. 1 compares the classification

accuracy for various datasets, different dimensionality reduc-
tion algorithms, and different number of input features. For
all these datasets, an artificial neural network with two hidden
layers is trained in order to perform classification.

Fig. 1a demonstrates the effect of reducing dimensionality
of input features on the classification accuracy for images in
the MNIST dataset [12]. The MNIST database of handwritten
digits includes 70,000 samples where each sample is a 28x28
image (784 pixels total) and the objective is to classify each
sample into one of ten classes 0-9. It can be observed that
reducing the number of input features to about 100 (~8x
reduction) using random projection and bilinear transform
does not affect the classification accuracy. In this dataset, PCA
and ICA can achieve even higher degrees of reduction (~16x)
without any noticeable accuracy degradation.

Similarly, Fig. 1b shows the effect of dimensionality reduc-
tion on HAR dataset [13]. This dataset uses the accelerometer
and gyroscope embedded in a smartphone to measure a
group of volunteers’ activities over a period of time and the
objective is to classify each sample into one of six classes that
determines a volunteer’s activity. The original number of input
features for each sample is 561. It can be seen that ICA and
random projection outperform the other two methods and can
achieve about 6x reduction in input features without signifi-
cantly affecting the classification accuracy. Bilinear transform
does not perform well in this dataset and the classification
accuracy is below 60%.

Lastly, Fig. 1c demonstrates the effect of dimensionality
reduction on Ads dataset [14]. This dataset represents a set of
possible advertisements on Internet pages where each sample
has 1558 input features, which include the geometry of the
image, phrases occurring in the URL, the anchor text, words
occurring near the anchor text, etc., and the objective is to
determine whether a sample is an advertisement or not. It is
observed that reducing the number of input features to five
(~300x reduction) does not affect the classification accuracy.
This observation corroborates the results presented in prior
work on this dataset.

It can be concluded that dimensionality reduction models
typically perform well for a variety of datasets, including the
ones that deal with images, time series, and/or natural lan-
guage. However, various dimensionality reduction algorithms
perform differently on these datasets. This is another reason
why a piece of hardware that is capable of implementing
different dimensionality reduction algorithms is superior.

B. Random Projection
In a random projection, the lower-dimensional input features

are found by multiplying the original input features by a
randomly generated matrix R:

\bfv n\times 1 = Rn\times m\bfx m\times 1 m \geq n (1)

where \bfx is a column vector of input features, R is the randomly
generated matrix, \bfv is a column vector of features in the
lower-dimensional space, m is the dimensionality of input
features, and n is the dimensionality of features in the lower-
dimensional space. The elements of R (i.e. rij) are often
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Fig. 1. Classification accuracy for various datasets, different
dimensionality reduction algorithms, and different number of
input features.

sampled from a Gaussian distribution, however, there are other
proposed distributions such as the ones introduced in [15],
[16] that are more suitable for hardware implementation. In
this work, we use the distribution that is described in [7]:

rij =

\left\{     
1, with probability 1/(2n)

0, with probability 1 - 1/n

 - 1, with probability 1/(2n)

The advantage of this distribution is that is replaces all
multiplications with addition and subtraction and therefore,
reduces the hardware cost.

One of the major advantages of random projection is that
the model does not need to be trained based on input data. As
a result, the R matrix can be computed offline without having
any information about upcoming input features.

C. PCA Whitening
PCA whitening is an important preprocessing step in many

machine learning algorithms. The objective of PCA whitening
is to transform data to a lower-dimensional space such that
features are less correlated with each other and all features
have the same variance (typically unit variance). This can be
written as

\bfz n\times 1 = Wn\times m\bfx m\times 1 m \geq n (2)

where \bfx is a column vector of input features, W is the
whitening matrix, \bfz is a column vector of whitened features,
m is the dimensionality of input features, and n is the
dimensionality of features in the lower-dimensional space.

D. EASI Algorithm
ICA can be defined as a generative model in which input

features are modeled as linear combinations of some indepen-
dent components:

\bfx m\times 1 = Am\times n\bfs n\times 1 m \geq n

where \bfx is a column vector of input features, A is the
mixing matrix, \bfs is a column vector of random independent
components, m is the dimensionality of input features, and n is
the dimensionality of independent components in the lower-
dimensional space. The objective of ICA is to estimate the
mixing matrix and independent components without having
any prior information about them.

The estimation can be achieved by applying a whitening
matrix followed by an orthogonal transformation, i.e. rotation,
of intermediate input features. This process is illustrated in
Fig. 2. The whitening step can be written as

\bfz n\times 1 = Wn\times m\bfx m\times 1 m \geq n

where \bfx is a column vector of input features, W is the
whitening matrix, and \bfz is a column vector of whitened
features. By definition, W is a whitening matrix if \bfz is spatially
white, that is

\Sigma \bfz n\times n = \mathrm{E}[\bfz \bfz T ] = In\times n

where \Sigma \bfz is the covariance matrix of \bfz , and \mathrm{E} is the expec-
tation operator.

One of the methods for finding the whitening matrix is to
minimize the the Kullback-Leibler divergence [17] between
\Sigma \bfz and I . The adaptive updating algorithm for W that
minimizes Kullback-Leibler divergence can be written as

Wk+1 = Wk  - \mu k[\bfz k\bfz k
T  - I]Wk (3)

in which k is the iteration index and \mu is the learning rate.
The learning rate does not necessarily need to change across
iterations, i.e. \mu k = \mu .
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Fig. 2. Finding independent components by whitening (b) followed by a rotation (c). The whitened features have the same
variance and therefore, an appropriate rotation can find the original independent components.

The goal of EASI is to find a separation matrix that provides
an estimate of independent components without having any
prior information about independent components, \bfs , or the
mixing matrix, A. This can be written as

\bfy n\times 1 = Bn\times m\bfx m\times 1 (4)

where \bfy is a column vector of estimates of independent
components and B is the separation matrix.

The separation matrix can be found by applying the whiten-
ing matrix followed by a rotation, i.e.

Bn\times m = Un\times nWn\times m

where U is an orthogonal matrix. An adaptive updating
algorithm that keeps U an orthogonal matrix can be found
by

Uk+1 = Uk  - \mu k[\bfg (\bfy k)\bfy k
T  - \bfy k\bfg (\bfy k)

T ]Uk (5)

where \bfg (.) is a nonlinear function that introduces HOS into
the problem.

A global adaptive updating algorithm for the separation
matrix can be found by Bk+1 = Uk+1Wk+1 and plugging
in Wk+1 and Uk+1 from Eq. 3 and Eq. 5, respectively. By
neglecting the \mu 2 term, the adaptive updating algorithm for B
can be written as

Bk+1 = Bk  - \mu k[\bfy k\bfy k
T  - I + \bfg (\bfy k)\bfy k

T  - \bfy k\bfg (\bfy k)
T ]Bk

(6)
Eq. 6 is known as the EASI algorithm for independent
component analysis.

E. Scalability Problem

Although the hardware implementation of EASI algorithm
that is presented in [11] increases the clock frequency by an
order of magnitude compared to its prior work, the design
suffers from poor scalability. Figure 3 depicts different stages
of hardware implementation of EASI algorithm based on [11].
The algorithm consists of five high-level stages where each
stage is responsible for one of the steps explained in Algo-
rithm 1. By calculating the number of adders and multipliers
required for implementing each stage, one can observe that

Algorithm 1 EASI with Modified Update Rule

Input:
\bfx : input features

Output:
B: separation matrix
\bfy : input features in the lower-dimensional space

1: repeat
2: Update \bfy according to Eq. 4
3: Apply cubic nonlinearity to \bfy 
4: Calculate \bfy k\bfy k

T  - I + \bfg (\bfy k)\bfy k
T  - \bfy k\bfg (\bfy k)

T

5: Update relative gradient
6: Update separation matrix according to Eq. 6
7: until convergence

the hardware complexity of both adder and multiplier units is
\scrO (mn2). This is obviously not a scalable algorithm and its
hardware implementation will occupy the resources available
on an FPGA very quickly.

IV. PROPOSED SOLUTION

By looking at Eq. 6 carefully, we observe that the \bfy k\bfy k
T - I

term is in fact responsible for dealing with second-order
statistics while the \bfg (\bfy k)\bfy k

T  - \bfy k\bfg (\bfy k)
T term deals with

higher-order statistics. Adding this to what was explained
in Fig. 2 and the fact that random projection is a suitable
algorithm for dealing with second-order statistics, we propose
the following solution for implementing the EASI algorithm
more efficiently. Initially, input features are fed to a random
projection module that preserves the second-order distance
among these features, but reduces the dimensionality to an
intermediate value p. After that, a modified datapath for the
EASI algorithm that bypasses the \bfy k\bfy k

T  - I term applies a
rotation to intermediate input features in order to find features
that are independent and have a dimensionality n. This process
is repeated until the model is trained and can be used later
for inference. The major advantage of this solution is that
the number of inputs to the EASI module will be decreased
because of the dimensionality reduction that is performed by



Fig. 3. Hardware implementation of the EASI algorithm.

the random projection module. This in turn reduces the number
of adders and multipliers in the EASI module linearly due to
the linear dependency between the hardware complexity and
number of input dimensions.

Given the fact that the hardware implementation of random
projection has a low overhead, this enables dealing with higher
number of input dimensions at the cost of slightly increasing
latency. The increase in latency is due to the fact that EASI
applies whitening and rotation in parallel, but the proposed
solution applies whitening and rotation sequentially. However,
the asymptotic latency of random projection is negligible
compared to EASI and can be ignored.

By comparing Eq. 2 with Eq. 4 and Eq. 3 with Eq. 6,
we observe that the algorithm’s flow for implementing PCA
whitening and EASI are the same. In both algorithms, not only
the basic operations like matrix-vector multiplication, matrix-
matrix multiplication, and update rule are the same, but also
the dimensionality of matrices and vectors are the same. As a
result, a hardware that implements EASI for ICA can be used
for implementing PCA whitening as well. The only difference
is that EASI has an additional term \bfg (\bfy k)\bfy k

T  - \bfy k\bfg (\bfy k)
T

that needs to be bypassed for PCA whitening simply by
using a multiplexer. This allows real-time reconfigurability by
issuing proper control signals for each algorithm and therefore,
enables using the same hardware for both PCA whitening and
ICA.

In conclusion, our hardware implementation will comprise
of a random projection module followed by an EASI module.
The hardware can be used to perform random projection, PCA
whitening, ICA, or a combination of random projection with
the other two algorithms. This not only achieves implementing
different dimensionality reduction algorithms on the same
piece of hardware, but also allows dealing with higher number
of dimensions.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset

In order to demonstrate the potentials of proposed solution,
we use the Waveform Database Generator (Version 2) Dataset
[18], which is publicly available on UCI Machine Learning
Repository [19]. The dimensionality of input features is 40
where all features are noisy and the latter 19 are pure noise
with a zero mean and variance of one. The input features
are all real numbers and there are no missing values in the
dataset. There are three classes of waves and the output classes
represent combinations of two out of three of these base waves.
The number of samples is 5000 where we use the first 4000 for
training of our models and the remaining 1000 for testing. The
objective is to classify samples into the three output classes.
In this work, we remove the latter eight input features and
therefore, reduce the number of features that are pure noise to
13. As a result, the total number of input features will be 32.

B. Machine Learning Model

Our machine learning model consists of a dimensionality
reduction module followed by an artificial neural network with
two hidden layers and 64 neurons per each layer. For dimen-
sionality reduction, we use different algorithms such as EASI,
random projection, or a combination of both. For training the
model, we first train the dimensionality reduction model in an
unsupervised manner and reduce the dimensionality of input
features. After that, we train the neural network using features
in the reduced space. Finally, we use the dimensionality
reduction model to decrease the dimensionality of test data
and use the neural network for classification.

C. Results

Table I compares the classification accuracy for different di-
mensionality reduction models and various number of interme-



TABLE I. Classification accuracy for different models and
various number of intermediate and output features.

m Algorithm 1 p Algorithm 2 n Accuracy (%)

32 – – EASI 16 84.6
32 Random Projection 24 EASI 16 84.5

32 – – EASI 8 80.9
32 Random Projection 16 EASI 8 80.8

TABLE II. Comparison of hardware cost between EASI and
random projection followed by EASI.

Input Intermediate Output DSPs ALMs Registers

32 – 8 4052 38122 138368
32 16 8 2212 70031 75392

diate and output features. It is observed that in configurations
where the number of output features is the same, applying
EASI independently or using random projection followed
by EASI result in almost the same classification accuracy.
However, as we will show later, the amount of hardware
resources required for the latter is substantially smaller.

Table II summarizes the amount of resources required for
implementing models where the number of input dimensions is
32 and the number of output dimensions is 8, after successful
synthesis on FPGA. In both implementations, 32-bit floating-
point variables and operations are used. The target FPGA is
part of Arria 10 family which includes 427,200 adaptive logic
modules (ALMs), 55,562,240 bits of block RAM, and 1518
DSP blocks. It can be observed that the number of digital
signal processors (DSPs), adaptive logic modules (ALMs),
and bits required to store values in registers is reduced by a
factor of two in the second scenario. In general, it is expected
that the amount of savings will be proportional to m/p. As
a result, using the random projection module to decrease the
intermediate dimensionality further will lead to a more effi-
cient hardware implementation. However, this typically affects
the classification accuracy of different models. Therefore, the
designer needs to trade off the hardware cost and accuracy
in order to find a desirable point for number of intermediate
features that achieves a relatively high classification accuracy,
but reduces the hardware cost as much as possible. Note that
the number of resources presented in Table II are more than
the capacity of the target FPGA board and these numbers
demonstrate the projected amount of required resources.

Note that the pipelined implementation allows all algorithms
to operate at the same clock frequency. As a result, using
random projection followed by EASI does not lead to a lower
frequency of operation, but slightly increases the latency.
On our target FPGA, the post-place and route frequency of
operation is 106.64\mathrm{M}\mathrm{H}\mathrm{z}.

VI. CONCLUSION

In this work, we presented a hardware-friendly algorithm
for improving the scalability of existing dimensionality re-
duction models. Additionally, we presented a reconfigurable
hardware implementation that is capable of performing ran-
dom projection, PCA whitening, and ICA through the EASI

algorithm. The part of hardware implementation that improves
scalability divides the whitening and rotation tasks between
the random projection and EASI modules, respectively. This
allows improving the hardware cost by a linear factor which
is proportional to the ratio of the number of input features
to intermediate features. Our experimental results show a
2x hardware cost reduction for a specific dataset, without
affecting the classification accuracy by more than 0.1%.
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