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Abstract—Component-aging is unavoidable in legacy systems.
Although re-designing the system typically results in a high cost,
the need to replace aged components for legacy systems is an
urgent priority. Unfortunately, the aged components are likely to
be obsolete and not available on the current market. Obsolete
component replacement with field-programmable gate array
(FPGA) devices is emerging as a feasible option to extend the
lifetime of legacy systems. While replacing the aged component,
we traditionally only focus on matching the functionality and
neglect the potential security threats from FPGA replacement.
However, recent literature demonstrates that FPGA devices may
contain hardware Trojans, which are induced during FPGA
device fabrication or bitstream generation time. To prevent the
Trojans on FPGA from receiving external inputs or leaking
sensitive information, we propose a Runtime Pin Grounding
(RPG) scheme to ground the unused pins and check the pin
status at every clock cycle. Furthermore, we exploit the principle
of moving target defense (MTD) and propose a hardware MTD
(HMTD) method. In our method, the aged obsolete unit is
replicated to multiple copies in the FPGA device, and two of
the replicas are randomly selected for output comparison and
thus Trojan detection. We successfully implemented the proposed
RPG and HMTD methods on a Nexys-3 FPGA board. Our
case study shows that the proposed RPG scheme increases the
FPGA utilization rate by less than 0.1%. On average, our HMTD
method reduces the hardware Trojan bypass rate by 61% over
the existing method.

Index Terms—FPGA security, FPGA Trojan, Hardware se-
curity, hardware Trojan, legacy system, obsolete component
replacement, pin grounding.

I. INTRODUCTION

Due to high reliability requirements and cost on design
and installation, the lifetime of electronics systems in military
applications is expected to be longer than in industrial or
civil use. In a legacy system, some electronic components
may experience aging earlier than others. Unfortunately, the
aged components may no longer be manufactured or available
on the market. A straightforward solution is to re-design the
entire system, but the total cost for re-designing, testing,
and installation could be 10 times that of other alternatives,
such as component replacement [1]. An obsolete compo-
nent can be substituted by an equivalent device from gray
market, application-specific integrated circuit (ASIC), field-
programmable gate array (FPGA) [2], or uncommitted logic
array (ULA).

Traditionally, functionality matching is the primary focus
when we replace the aged module with a functional equiv-
alent. Little or no attention is paid to the security threats
originated from the component replacement. Unfortunately,
the trustworthiness of the FPGA supply chain has become
a serious concern now, so it is imperative to address those
security threats, in particular, from untrusted FPGA manufac-
turers and computer-aided design (CAD) tools associated with
FPGA deployment. The majority of existing efforts for FPGA
security [3, 4] aim at improving the system resilience against
intellectual property (IP) piracy and reverse engineering at-
tacks. In this work, we assume that the FPGA deployment
team and the legacy system user are trusted but the FPGA
manufacturer and the FPGA CAD tools are not trusted.

The remainder of this work is organized as follows. Section
II summarizes the related work and our main contributions. In
Section III, the attack model and the legacy system model
interested in this work are introduced. In Section IV, we
present our Runtime Pin Grounding (RPG) scheme and Hard-
ware Moving Target Defense (HMTD) method as an integrated
countermeasure to thwart security threats from FPGA and its
CAD tool. Assessment on security metric, performance, and
overhead are provided in Section V. We conclude this work in
Section VI.

II. RELATED WORK AND OUR CONTRIBUTIONS

A. Related Work

1) Using FPGA to Replace Obsolete Components in Legacy
Systems: Advanced Microcircuit Emulation (AME) [5] has
provided obsolescence solutions for over 25 years. Those
solutions are at the digital component level (e.g., logic de-
vices, ASICs, FPGAs, static memory devices, microproces-
sors, and micro-controllers). The Defense Logistics Agency
(DLA) supports the development of Generalized Emulation of
Microcircuits (GEM) technology [6] to extend the lifetime of
legacy systems. The DLA assumes that AME is completely
loyal and thus trusted. Unfortunately, it is difficult to hold
that assumption now as the number of trusted foundries keeps
decreasing due to the high cost of maintenance and upgrading
to new laboratory lines._______________
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2) Security Threats in FPGA Devices: A system that in-
corporates an FPGA device is vulnerable to various security
threats [7, 8]. The attack surface varies from FPGA fabric [9],
soft IP cores, CAD tools [10], and the download channel
(in-field or wireless) for FPGA configuration bitstream [11].
Thompson [12] provides an insightful example of how the tool
from an untrusted source can tamper with the original design,
and he also emphasizes that some bugs in microcode will be
almost impossible to detect. The purpose of attacks on FPGA-
based systems include IP piracy, IP cloning, denial of service,
and secret key leaking [4, 13]. Detailed examples of malicious
FPGA attacks are available in [14, 10].

3) Countermeasures against FPGA Security Threats: To
detect the hardware Trojans carried in the FPGA configura-
tion bitstream, Chakraborty et al. [10] suggest the following:
grounding the unused I/O pins; monitoring the temperature of
the FPGA device; filling up the unused resources of the FPGA;
or scrambling the bitstream file. Bloom et al. [13] propose
to morph on-chip resources for moving target defense (MTD)
against fabrication-time Trojans. Their method heavily utilizes
encryption on the FPGA configuration for initialization boot
and hardware description of functional modules. Moreover,
process memory, L1 cache, and L2 cache are encrypted sepa-
rately using multi-layer encryption. Although the alteration of
two instances for the same CPU implementation can thwart
random hardware Trojans, the multi-layer encryption is too
costly for many real-time systems. The ideas proposed in [10]
and [13] remain at the conceptual level, and no practical
experiments have been conducted to demonstrate the method’s
feasibility.

To protect the FPGA configuration bitstream against piracy,
reverse engineering, and tampering, Karam et al. [15] obfus-
cate the FPGA bitstream by inserting additional functions in
the look-up tables (LUTs) that are configured for the true func-
tionality of the design. Jyothi et al. [16] utilize ring-oscillator
arrays to measure process variation among FPGA slices, which
may be modified by the untrusted FPGA manufacturer. Then,
the FPGA region where the process variation is below the
acceptable threshold is identified as a trust zone. The authors
place the hardware design only in the trusted FPGA zones.
This method assumes that the malicious FPGA slices lead
to significant changes on delay, and the FPGA CAD tool
is trusted. Mal-Sarkar et al. [14] propose an adapted triple
modular redundancy (ATMR) technique to detect the hardware
Trojan inserted in one of the design replicas. To reduce the
overhead on power consumption, the third replica is activated
once the output mismatch is detected from the other two
replicas. The limitation of this method is that the three copies
of the design module are allocated by the FPGA CAD tool
in a stationary manner. Because the untrusted CAD tool has
the prior knowledge of the place and route rules, theoretically,
the tool can insert the same Trojan in the two replicas of the
design. Thus, the ATMR method may not detect the Trojan.

The aforementioned methods assume that the FPGA CAD
tool is trusted. These methods do not consider the scenarios in
which hardware Trojans in the bitstream configuration can be
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Fig. 1: System model of FPGA replacement for a legacy system.

inserted during the place and route stage. Another challenge is
how to prevent the countermeasure from being removed/muted
by the untrusted FPGA CAD tool.

B. Contributions of This Work

To address the security concerns discussed in the previous
section, we propose a framework to detect the hardware Trojan
inserted by an untrusted FPGA manufacturer or CAD tools.
More specifically, our main contributions are as follows.
(1) To the best of our knowledge, this is the first work

that investigates the countermeasure against the security
threats that occur during the FPGA deployment for legacy
systems. The primary goal of this work is to address the
security attacks from the untrusted FPGA vendor and the
CAD tools for FPGA configuration, rather than the IP
piracy and side-channel attacks on FPGAs.

(2) We propose a RPG scheme. Compared with the concep-
tual proposal in [10], we implemented the pin grounding
concept on a Nexys-3 Spartan-6 FPGA board that suc-
cessfully prevents the communication between the exter-
nal environment and the FPGA device. Moreover, our
scheme additionally performs runtime checking to exam-
ine whether all user-unused I/O pins are truly grounded
at every clock cycle, thus thwarting the countermeasure
mutation by the FPGA CAD tool.

(3) We propose a HMTD method. In our method, the hard-
ware description of the aged functional module in the
legacy system is replicated multiple times. Two of the
replicas are randomly selected by an on-chip random
number generator to examine the consistency between the
two groups of outputs. Furthermore, instead of leaving
the FPGA CAD tool to place and route the replacement
module with default settings, we propose to explicitly
specify the slice physical distance between the replicas
in a FPGA user constraint file. Our method is able to
thwart the stationary hardware Trojan insertion by the
CAD tool.

III. PRELIMINARIES

A. Model of Legacy System in This Work

Using an FPGA to replace the aged component in a legacy
system is a promising alternative to searching for a direct
replacement of the original chip [2, 17]. Following this path,
we further address the security threats in the process of FPGA
replacement. Figure 1 shows the model of our legacy system.
The FPGA device and CAD tool are not trusted, but the
engineering team for the aged module replacement is trusted.
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B. Attack Model

Literature [10] highlights that the FPGA bitstream may
be compromised by an adversary. The attacks of interest in
this work are hardware Trojans on FPGA fabric that are
permanently configured by untrusted FPGA manufacturers or
FPGA bitstream tampering through CAD tools. For the latter
attack, there are three attack surfaces, which are shown in
Fig. 2. Here, we use a Xilinx FPGA implementation flow [18]
as an example to explain the procedure of tampering with
FPGA configuration files.

The synthesis tool XST converts the functional module
designed in a hardware description language (HDL) to a logic
gate netlist (.ngc). The tool PlanAhead facilitates functional
module designers to generate a user constraint file (.ucf ). The
NGDBuild program translates the netlist and user constraint
files to a native generic database file (.ngd), which describes
the logic for the design and the constraints on timing, as well
as the preferred slice location. Based on the .ngd file, the
mapper program Map produces a native circuit description
file ( map.ncd), which maps the input and output pins to the
specific FPGA device. Next, the place & route program PAR
continues the physical design by using LUTs, flip-flops, and
SRAM blocks, and the map.ncd file is updated to a new .ncd
file. Finally, the Bitgen program converts the map.ncd file
to a FPGA bitstream, which is ready to be downloaded to the
target FPGA device. There are three attack surfaces that can
be exploited by the untrusted CAD tools.

(1) Attack Surface on Map: In the step of mapping, an
attacker can introduce additional I/O pins, exchange the
existing I/O pin connection, and modify the slew rate
and the voltage level of I/O pins. Because the tampered
map.ncd* is not readable (unless the FPGA CAD tool

vendor provides us with program ncd2xdl to read back
the native circuit description file), it is not easy to
notice the modification performed by the malicious CAD
program.

(2) Attack Surface on PAR: More hardware tampering can
be done in this stage than in the mapping step because
the original use of all the LUTs, flip-flops, SRAM blocks,
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and interconnects can be modified by the tool surrepti-
tiously. The tampered .ncd* file is not readable due to
the obfuscation performed by the CAD tool to protect
intellectual property.

(3) Attack Surface on Bitgen: To prevent reverse engineer-
ing attacks, the FPGA CAD tool writes the bitstream in
binary. Except for the Virtex-II FPGA family, no public
documents are available to guide FPGA users to convert
the bitstream back to a readable FPGA configuration
information. Although we can use a Hex editor to read
the bitstream, tracking the modification on the bitstream
file is almost impossible.

IV. PROPOSED METHOD

We propose a countermeasure that is composed of two parts:
(1) RPG and (2) HMTD. The RPG scheme is to terminate
the hardware Trojans that communicate with the external
environment through unused I/O pins on the FPGA device.
The HMTD method prevents the Trojan horses induced by the
malicious FPGA CAD tools from interfering with the FPGA
replacement in legacy systems. Figure 3 depicts the overview
of the proposed countermeasure against hardware Trojans on
the FPGA device.

A. Proposed Runtime Pin Grounding

Inspired by the idea proposed in [10], we apply the pin
grounding scheme to the unused FPGA I/O pins by using a
user constraint file. In this work, we continue to use the Nexys-
3 FPGA board to introduce the procedure of our RPG scheme.
This scheme is implemented on the top level of the hardware
description module as shown in the black shadowed area of
Fig. 3.

First, we assign every unused pin a net name in the top level
of the hardware design file. Then, each NET name is linked
with an unused I/O pin in the user constraint file by using the
command (1).

NET “net name” LOC = pin name (1)



Fig. 4: Detailed slice assignment shown in the FPGA Editor. The two red dots represents
the locations for the two replicas of MTR equivalence that are specified in our method
through FPGA Editor.

After that, we proceed to ground those I/O pins through the
command (2).

NET “net name” PULLDOWN (2)
Even if we have grounded all of the unused pins through the

user constraint file, the malicious FPGA CAD tool can alter the
user-specified pin configuration by modifying the native circuit
description (.ncd) file. This phenomenon has been observed
in our FPGA deployment environment Xilinx ISE 14.1 [18]
when we manually ground the pin reserved for the power
supply. Because the .ncd file is not readable, the hardware
Trojans placed by the CAD tool are stealthy. To thwart the
unrevealed modification from the CAD tool, we enhance our
pin grounding scheme by adding a runtime detection circuit.
Since we have assigned a net name for each unused I/O pin,
we can simply use the logic of NOR to examine the grounding
status of those unused pins.

B. Proposed Hardware Moving Target Defense

To prevent the malicious CAD tool from successfully sab-
otaging the original FPGA configuration, we use the principle
of MTD to develop our HMTD method. We assume that the
functionality of the module-to-replace (MTR) in the legacy
system is known by the FPGA deployment team, who is
trusted. Our HMTD method replicates the MTR into multiple
copies CP0, CP1, · · · , CPj . We use the “RLOC” command to
specify the relative physical distance between two replicas in
the user constraint file. For instance, we can assign CP0 and
CP1 to the two corners of the FPGA device by setting RLOC
= X36Y61 and RLOC = X1Y60, respectively. Alternatively,
we can utilize the FPGA Editor tool to perform the similar
operation. Figure 4 shows that two replicas of MTR equivalent
are successfully placed to two FPGA corners by our method.

In the next step, we add a low-cost, random number genera-
tor in the Rin unit to select two replicas of the function module
to feed the N-bit inputs from U2 in the system shown in Fig. 3.
This setting is essentially a power-gating technique to reduce
the power consumption. For sequential circuits, state restore
will be required to use the input gating technique. Note that
the random number generator is implemented on the FPGA,
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Fig. 5: Flowchart of proposed hardware moving defense method.

and thus the random selection is performed at runtime. The
random number generator also controls the Rout unit to choose
which two replicas for the Trojan detection in the consistency
checking unit (CCU). Once the output inconsistency is found,
the M-bit output pins are grounded immediately and the flag
for the Trojan detection is turned on. The flowchart of our
HMTD method is summarized in Fig. 5.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The following experiments were performed on the Nexys-
3 Board, which contains a Xilinx Spartan-6 XC6SLX16
CSG324C FPGA. This FPGA device includes 324 I/O pins
(232 of which are user I/O pins) and 2,278 slices, each
containing four 6-input LUTs and eight flip-flops. We used
the Xilinx ISE 14.1 version to synthesize, place and route
the Verilog HDL design files and generate bitstreams. The
hardware overhead assessment was based on the ISCAS’85
benchmark circuits. We inserted the hardware Trojans on
the FPGA device through two techniques: one is through
the FPGA Editor, and the other is via editing the native
circuit description file. Both of these techniques do not require
changing the Verilog HDL file of the function module. The
slice assignment shown in the FPGA Editor (see Fig. 6(a))
demonstrates that the FPGA CAD tool can successfully alter
the configuration of one unused FPGA slice without disturbing
the logic netlist. Although a native circuit description (.ncd)
file is not readable, we can use an xdl program to translate
that .ncd file to a readable file. Figure 6(b) also demonstrates
that the hardware Trojan has been successfully placed in an
un-occupied slice. We compared the Trojan resistance strength
of our method and the ATMR approach [14] in the following
subsection.

B. Hardware Trojan Bypass Rate

We validated the proposed HTMD method on the Nexys-
3 board. Whenever a Trojan is detected, the flag light on the
board will be turned on as shown in the right side of Fig. 5. To
extensively assess the success rate of different FPGA hardware
Trojan detection methods, we modeled the Trojan insertion and
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Fig. 6: FPGA hardware Trojans inserted without disturbing the hardware description
file. The modified slice can be observed from (a) the FPGA Editor and (b) the .xdl file
converted from a .ncd file.
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Fig. 7: Hardware Trojan bypass rate versus number of hardware Trojans inserted in the
FPGA device.

the detection methods in MATLAB. We randomly selected
10 slices for hardware Trojan insertion. This operation was
conducted after the slices for the original design module were
configured. The hardware Trojan bypass rate is defined as the
number of incorrect outputs, due to Trojans, over the number
of test cases.

The impact of the number of the hardware Trojans on the
Trojan bypass rate is shown in Fig. 7. As can be seen, for
the range of 1 to 10 Trojans, the Trojan bypass rate almost
monotonically increases with the number of injected hardware
Trojans. As the number of Trojans increases, the probability
for multiple replicas of the functional module simultaneously
containing Trojans increases. Hence, comparison of the two
copies’ outputs gradually loses the Trojan detection capability,
and thus the Trojan bypass rate increases.

We vary the number of FPGA slices to examine the impact
of the FPGA size on the hardware Trojan bypass rate. In
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Fig. 8: Impact of the number of FPGA slices on hardware Trojan bypass rate.

T
ro

ja
n
 B

y
p
a
s
s
 R

a
te

Number of FPGA Slices Number of Hardware Trojans

0
150

0.02

0.04

10

0.06

0.08

8
100

0.1

6

0.12

4
2

50 0

Proposed

ATMR

Fig. 9: Three-dimensional plot for the dependent factors for hardware Trojan bypass rate.

Fig. 8, we can observe that the Trojan bypass rate for a larger
FPGA is lower than that for a smaller one. This is because
the number of Trojans placed in the FPGA device is fixed per
each FPGA size. The chance for a Trojan slice colliding with
a design slice is higher in a smaller FPGA than in a larger one.
The ATMR method compares the two of three copies for the
design module using a fixed algorithm, which can only resist
truly random Trojans. In contrast, our method randomly selects
any two replicas for Trojan detection at runtime; moreover,
our method is capable of assigning each replica to a specific
location. Thus, the design location specified by our method
is not predictable to the CAD tool. Hence, the randomness
and unpredictability of our method strengthens the FPGA
replacement resistance against the security threats from the
untrusted FPGA manufacturer and CAD tool vendor.

To have a comprehensive view, we plot the Trojan bypass
rate versus the FPGA size and the number of Trojans in Fig. 9.
As shown, the 3D mesh sheet of our method is lower than that
of the ATMR method [14]. On average, our method reduced
the Trojan bypass rate by 61%.

C. Overhead on Hardware Cost and Performance

We applied the RPG scheme to the ISCAS’85 benchmark
circuits. Because more unused I/O pins lead to more overhead



TABLE I: FPGA Overhead of Proposed Runtime Pin Grounding

Overhead\Circuits s298 s344 s444 s526 s1488
Increased No. LUTs 40 30 38 40 39
Increased No. Slices 12 6 11 12 16

Fig. 10: The delay overhead of proposed HMTD applied on benchmark circuits.

for pin grounding, we chose the benchmark circuits with a
small number of inputs/outputs. As shown in Table I, the
number of utilized LUTs go as high as 40, whereas the
number of occupied slices go up to 16. These hardware
implementations consume 0.044% more LUTs and 0.07%
more slices, respectively.

After the FPGA place and route step, we measured the
worst-case delay of the c432, c1355, and c6288 benchmark
circuits with and without the proposed HMTD method. As
we mentioned in Section IV.B, we manually added a physical
distance between the replicas of the functional module to
thwart the Trojan attack from the CAD tool. The induced
separation may result in longer routing interconnects than
the baseline. Depending how the replicas are assigned to the
FPGA slices and the amount of distance is added between two
copies, the delay overhead of our method varies. We recorded
the minimum and maximum delay overhead as observed in
our case study. As shown in Fig. 10, the average minimum
(maximum) delay overhead of HMTD is 37% (70%).

VI. CONCLUSIONS

Traditionally, FPGA replacement for legacy systems was
mainly focusing on matching functionality. As the trustwor-
thiness of FPGA devices and the CAD tools become more
questionable, it compels us to address the potential security
threats from the malicious FPGA manufacturer and CAD tool
vendor. Existing studies provide some ideas on how to tackle
the security threats on FPGA, but they do not implement their
proposed methods nor perform extensive assessments. This
work validates the feasibility of pin grounding and further
extends it to a runtime scheme. Our method not only grounds
the FPGA I/O pins at the configuration time, but it also
checks the pin status during the operation time. To thwart
the FPGA Trojan configured by an untrusted FPGA vendor
or malicious CAD tools, we propose an HMTD method.
In addition to replicating the functional module to replace
the obsolete component for the legacy system, our method
further specifies the relative physical distance between two

replicas in the FPGA user constraint file and performs output
comparison from two randomly selected replicas. Because the
CAD tool cannot foresee the user constraint file, our method
can effectively detect FPGA Trojans inserted by the CAD
tool through implicit settings at the development time of that
tool. Our experimental results show that the proposed HMTD
method reduces the hardware Trojan bypass rate by 61% (on
average) lower than the existing ATMR method. Our RPG
scheme increases the FPGA utilization rate below 0.1%. In
the future work, we will improve our method to further reduce
the delay overhead.
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